import gc import os from collections import OrderedDict from typing import ForwardRef import torch from safetensors.torch import save_file, load_file from jobs.process.BaseProcess import BaseProcess from toolkit.metadata import get_meta_for_safetensors, load_metadata_from_safetensors, add_model_hash_to_meta, \ add_base_model_info_to_meta from toolkit.train_tools import get_torch_dtype class ModRescaleLoraProcess(BaseProcess): process_id: int config: OrderedDict progress_bar: ForwardRef('tqdm') = None def __init__( self, process_id: int, job, config: OrderedDict ): super().__init__(process_id, job, config) self.process_id: int self.config: OrderedDict self.progress_bar: ForwardRef('tqdm') = None self.input_path = self.get_conf('input_path', required=True) self.output_path = self.get_conf('output_path', required=True) self.replace_meta = self.get_conf('replace_meta', default=False) self.save_dtype = self.get_conf('save_dtype', default='fp16', as_type=get_torch_dtype) self.current_weight = self.get_conf('current_weight', required=True, as_type=float) self.target_weight = self.get_conf('target_weight', required=True, as_type=float) self.scale_target = self.get_conf('scale_target', default='up_down') # alpha or up_down self.is_xl = self.get_conf('is_xl', default=False, as_type=bool) self.is_v2 = self.get_conf('is_v2', default=False, as_type=bool) self.progress_bar = None def run(self): super().run() source_state_dict = load_file(self.input_path) source_meta = load_metadata_from_safetensors(self.input_path) if self.replace_meta: self.meta.update( add_base_model_info_to_meta( self.meta, is_xl=self.is_xl, is_v2=self.is_v2, ) ) save_meta = get_meta_for_safetensors(self.meta, self.job.name) else: save_meta = get_meta_for_safetensors(source_meta, self.job.name, add_software_info=False) # save os.makedirs(os.path.dirname(self.output_path), exist_ok=True) new_state_dict = OrderedDict() for key in list(source_state_dict.keys()): v = source_state_dict[key] v = v.detach().clone().to("cpu").to(get_torch_dtype('fp32')) # all loras have an alpha, up weight and down weight # - "lora_te_text_model_encoder_layers_0_mlp_fc1.alpha", # - "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_down.weight", # - "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_up.weight", # we can rescale by adjusting the alpha or the up weights, or the up and down weights # I assume doing both up and down would be best all around, but I'm not sure # some locons also have mid weights, we will leave those alone for now, will work without them # when adjusting alpha, it is used to calculate the multiplier in a lora module # - scale = alpha / lora_dim # - output = layer_out + lora_up_out * multiplier * scale total_module_scale = torch.tensor(self.current_weight / self.target_weight) \ .to("cpu", dtype=get_torch_dtype('fp32')) num_modules_layers = 2 # up and down up_down_scale = torch.pow(total_module_scale, 1.0 / num_modules_layers) \ .to("cpu", dtype=get_torch_dtype('fp32')) # only update alpha if self.scale_target == 'alpha' and key.endswith('.alpha'): v = v * total_module_scale if self.scale_target == 'up_down' and key.endswith('.lora_up.weight') or key.endswith('.lora_down.weight'): # would it be better to adjust the up weights for fp16 precision? Doing both should reduce chance of NaN v = v * up_down_scale v = v.detach().clone().to("cpu").to(self.save_dtype) new_state_dict[key] = v save_meta = add_model_hash_to_meta(new_state_dict, save_meta) save_file(new_state_dict, self.output_path, save_meta) # cleanup incase there are other jobs del new_state_dict del source_state_dict del source_meta torch.cuda.empty_cache() gc.collect() print(f"Saved to {self.output_path}")