# ref: # - https://github.com/p1atdev/LECO/blob/main/train_lora.py import time from collections import OrderedDict import os from typing import Optional from toolkit.config_modules import SliderConfig from toolkit.paths import REPOS_ROOT import sys from toolkit.stable_diffusion_model import PromptEmbeds sys.path.append(REPOS_ROOT) sys.path.append(os.path.join(REPOS_ROOT, 'leco')) from toolkit.train_tools import get_torch_dtype, apply_noise_offset import gc from toolkit import train_tools import torch from leco import train_util, model_util from .BaseSDTrainProcess import BaseSDTrainProcess, StableDiffusion class ACTION_TYPES_SLIDER: ERASE_NEGATIVE = 0 ENHANCE_NEGATIVE = 1 def flush(): torch.cuda.empty_cache() gc.collect() class EncodedPromptPair: def __init__( self, target_class, positive, negative, neutral, width=512, height=512, action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE, multiplier=1.0, weight=1.0 ): self.target_class = target_class self.positive = positive self.negative = negative self.neutral = neutral self.width = width self.height = height self.action: int = action self.multiplier = multiplier self.weight = weight class PromptEmbedsCache: # 使いまわしたいので prompts: dict[str, PromptEmbeds] = {} def __setitem__(self, __name: str, __value: PromptEmbeds) -> None: self.prompts[__name] = __value def __getitem__(self, __name: str) -> Optional[PromptEmbeds]: if __name in self.prompts: return self.prompts[__name] else: return None class EncodedAnchor: def __init__( self, prompt, neg_prompt, multiplier=1.0 ): self.prompt = prompt self.neg_prompt = neg_prompt self.multiplier = multiplier class TrainSliderProcessOld(BaseSDTrainProcess): def __init__(self, process_id: int, job, config: OrderedDict): super().__init__(process_id, job, config) self.step_num = 0 self.start_step = 0 self.device = self.get_conf('device', self.job.device) self.device_torch = torch.device(self.device) self.slider_config = SliderConfig(**self.get_conf('slider', {})) self.prompt_cache = PromptEmbedsCache() self.prompt_pairs: list[EncodedPromptPair] = [] self.anchor_pairs: list[EncodedAnchor] = [] def before_model_load(self): pass def hook_before_train_loop(self): cache = PromptEmbedsCache() prompt_pairs: list[EncodedPromptPair] = [] # get encoded latents for our prompts with torch.no_grad(): neutral = "" for target in self.slider_config.targets: # build the cache for prompt in [ target.target_class, target.positive, target.negative, neutral # empty neutral ]: if cache[prompt] is None: cache[prompt] = self.sd.encode_prompt(prompt) for resolution in self.slider_config.resolutions: width, height = resolution only_erase = len(target.positive.strip()) == 0 only_enhance = len(target.negative.strip()) == 0 both = not only_erase and not only_enhance if only_erase and only_enhance: raise ValueError("target must have at least one of positive or negative or both") # for slider we need to have an enhancer, an eraser, and then # an inverse with negative weights to balance the network # if we don't do this, we will get different contrast and focus. # we only perform actions of enhancing and erasing on the negative # todo work on way to do all of this in one shot if both or only_erase: prompt_pairs += [ # erase standard EncodedPromptPair( target_class=cache[target.target_class], positive=cache[target.positive], negative=cache[target.negative], neutral=cache[neutral], width=width, height=height, action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE, multiplier=target.multiplier, weight=target.weight ), ] if both or only_enhance: prompt_pairs += [ # enhance standard, swap pos neg EncodedPromptPair( target_class=cache[target.target_class], positive=cache[target.negative], negative=cache[target.positive], neutral=cache[neutral], width=width, height=height, action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE, multiplier=target.multiplier, weight=target.weight ), ] if both: prompt_pairs += [ # erase inverted EncodedPromptPair( target_class=cache[target.target_class], positive=cache[target.negative], negative=cache[target.positive], neutral=cache[neutral], width=width, height=height, action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE, multiplier=target.multiplier * -1.0, weight=target.weight ), ] prompt_pairs += [ # enhance inverted EncodedPromptPair( target_class=cache[target.target_class], positive=cache[target.positive], negative=cache[target.negative], neutral=cache[neutral], width=width, height=height, action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE, multiplier=target.multiplier * -1.0, weight=target.weight ), ] # setup anchors anchor_pairs = [] for anchor in self.slider_config.anchors: # build the cache for prompt in [ anchor.prompt, anchor.neg_prompt # empty neutral ]: if cache[prompt] == None: cache[prompt] = self.sd.encode_prompt(prompt) anchor_pairs += [ EncodedAnchor( prompt=cache[anchor.prompt], neg_prompt=cache[anchor.neg_prompt], multiplier=anchor.multiplier ) ] # move to cpu to save vram # We don't need text encoder anymore, but keep it on cpu for sampling # if text encoder is list if isinstance(self.sd.text_encoder, list): for encoder in self.sd.text_encoder: encoder.to("cpu") else: self.sd.text_encoder.to("cpu") self.prompt_cache = cache self.prompt_pairs = prompt_pairs self.anchor_pairs = anchor_pairs flush() # end hook_before_train_loop def hook_train_loop(self, batch): dtype = get_torch_dtype(self.train_config.dtype) # get a random pair prompt_pair: EncodedPromptPair = self.prompt_pairs[ torch.randint(0, len(self.prompt_pairs), (1,)).item() ] height = prompt_pair.height width = prompt_pair.width target_class = prompt_pair.target_class neutral = prompt_pair.neutral negative = prompt_pair.negative positive = prompt_pair.positive weight = prompt_pair.weight multiplier = prompt_pair.multiplier unet = self.sd.unet noise_scheduler = self.sd.noise_scheduler optimizer = self.optimizer lr_scheduler = self.lr_scheduler loss_function = torch.nn.MSELoss() def get_noise_pred(p, n, gs, cts, dn): return self.sd.predict_noise( latents=dn, text_embeddings=train_tools.concat_prompt_embeddings( p, # unconditional n, # positive self.train_config.batch_size, ), timestep=cts, guidance_scale=gs, ) # set network multiplier self.network.multiplier = multiplier with torch.no_grad(): self.sd.noise_scheduler.set_timesteps( self.train_config.max_denoising_steps, device=self.device_torch ) self.optimizer.zero_grad() # ger a random number of steps timesteps_to = torch.randint( 1, self.train_config.max_denoising_steps, (1,) ).item() # get noise noise = self.sd.get_latent_noise( pixel_height=height, pixel_width=width, batch_size=self.train_config.batch_size, noise_offset=self.train_config.noise_offset, ).to(self.device_torch, dtype=dtype) # get latents latents = noise * self.sd.noise_scheduler.init_noise_sigma latents = latents.to(self.device_torch, dtype=dtype) with self.network: assert self.network.is_active self.network.multiplier = multiplier denoised_latents = self.sd.diffuse_some_steps( latents, # pass simple noise latents train_tools.concat_prompt_embeddings( positive, # unconditional target_class, # target self.train_config.batch_size, ), start_timesteps=0, total_timesteps=timesteps_to, guidance_scale=3, ) noise_scheduler.set_timesteps(1000) current_timestep = noise_scheduler.timesteps[ int(timesteps_to * 1000 / self.train_config.max_denoising_steps) ] positive_latents = get_noise_pred( positive, negative, 1, current_timestep, denoised_latents ).to("cpu", dtype=torch.float32) neutral_latents = get_noise_pred( positive, neutral, 1, current_timestep, denoised_latents ).to("cpu", dtype=torch.float32) unconditional_latents = get_noise_pred( positive, positive, 1, current_timestep, denoised_latents ).to("cpu", dtype=torch.float32) anchor_loss = None if len(self.anchor_pairs) > 0: # get a random anchor pair anchor: EncodedAnchor = self.anchor_pairs[ torch.randint(0, len(self.anchor_pairs), (1,)).item() ] with torch.no_grad(): anchor_target_noise = get_noise_pred( anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents ).to("cpu", dtype=torch.float32) with self.network: # anchor whatever weight prompt pair is using pos_nem_mult = 1.0 if prompt_pair.multiplier > 0 else -1.0 self.network.multiplier = anchor.multiplier * pos_nem_mult anchor_pred_noise = get_noise_pred( anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents ).to("cpu", dtype=torch.float32) self.network.multiplier = prompt_pair.multiplier with self.network: self.network.multiplier = prompt_pair.multiplier target_latents = get_noise_pred( positive, target_class, 1, current_timestep, denoised_latents ).to("cpu", dtype=torch.float32) # if self.logging_config.verbose: # self.print("target_latents:", target_latents[0, 0, :5, :5]) positive_latents.requires_grad = False neutral_latents.requires_grad = False unconditional_latents.requires_grad = False if len(self.anchor_pairs) > 0: anchor_target_noise.requires_grad = False anchor_loss = loss_function( anchor_target_noise, anchor_pred_noise, ) erase = prompt_pair.action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE guidance_scale = 1.0 offset = guidance_scale * (positive_latents - unconditional_latents) offset_neutral = neutral_latents if erase: offset_neutral -= offset else: # enhance offset_neutral += offset loss = loss_function( target_latents, offset_neutral, ) * weight loss_slide = loss.item() if anchor_loss is not None: loss += anchor_loss loss_float = loss.item() loss = loss.to(self.device_torch) loss.backward() optimizer.step() lr_scheduler.step() del ( positive_latents, neutral_latents, unconditional_latents, target_latents, latents, ) flush() # reset network self.network.multiplier = 1.0 loss_dict = OrderedDict( {'loss': loss_float}, ) if anchor_loss is not None: loss_dict['sl_l'] = loss_slide loss_dict['an_l'] = anchor_loss.item() return loss_dict # end hook_train_loop