''' ostris/ai-toolkit on https://modal.com Run training with the following command: modal run run_modal.py --config-file-list-str=/root/ai-toolkit/config/whatever_you_want.yml ''' import os os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" import sys import modal from dotenv import load_dotenv # Load the .env file if it exists load_dotenv() sys.path.insert(0, "/root/ai-toolkit") # must come before ANY torch or fastai imports # import toolkit.cuda_malloc # turn off diffusers telemetry until I can figure out how to make it opt-in os.environ['DISABLE_TELEMETRY'] = 'YES' # define the volume for storing model outputs, using "creating volumes lazily": https://modal.com/docs/guide/volumes # you will find your model, samples and optimizer stored in: https://modal.com/storage/your-username/main/flux-lora-models model_volume = modal.Volume.from_name("flux-lora-models", create_if_missing=True) # modal_output, due to "cannot mount volume on non-empty path" requirement MOUNT_DIR = "/root/ai-toolkit/modal_output" # modal_output, due to "cannot mount volume on non-empty path" requirement # define modal app image = ( modal.Image.debian_slim(python_version="3.11") # install required system and pip packages, more about this modal approach: https://modal.com/docs/examples/dreambooth_app .apt_install("libgl1", "libglib2.0-0") .pip_install( "python-dotenv", "torch", "diffusers[torch]", "transformers", "ftfy", "torchvision", "oyaml", "opencv-python", "albumentations", "safetensors", "lycoris-lora==1.8.3", "flatten_json", "pyyaml", "tensorboard", "kornia", "invisible-watermark", "einops", "accelerate", "toml", "pydantic", "omegaconf", "k-diffusion", "open_clip_torch", "timm", "prodigyopt", "controlnet_aux==0.0.7", "bitsandbytes", "hf_transfer", "lpips", "pytorch_fid", "optimum-quanto", "sentencepiece", "huggingface_hub", "peft" ) ) # mount for the entire ai-toolkit directory # example: "/Users/username/ai-toolkit" is the local directory, "/root/ai-toolkit" is the remote directory code_mount = modal.Mount.from_local_dir("/Users/username/ai-toolkit", remote_path="/root/ai-toolkit") # create the Modal app with the necessary mounts and volumes app = modal.App(name="flux-lora-training", image=image, mounts=[code_mount], volumes={MOUNT_DIR: model_volume}) # Check if we have DEBUG_TOOLKIT in env if os.environ.get("DEBUG_TOOLKIT", "0") == "1": # Set torch to trace mode import torch torch.autograd.set_detect_anomaly(True) import argparse from toolkit.job import get_job def print_end_message(jobs_completed, jobs_failed): failure_string = f"{jobs_failed} failure{'' if jobs_failed == 1 else 's'}" if jobs_failed > 0 else "" completed_string = f"{jobs_completed} completed job{'' if jobs_completed == 1 else 's'}" print("") print("========================================") print("Result:") if len(completed_string) > 0: print(f" - {completed_string}") if len(failure_string) > 0: print(f" - {failure_string}") print("========================================") @app.function( # request a GPU with at least 24GB VRAM # more about modal GPU's: https://modal.com/docs/guide/gpu gpu="A100", # gpu="H100" # more about modal timeouts: https://modal.com/docs/guide/timeouts timeout=7200 # 2 hours, increase or decrease if needed ) def main(config_file_list_str: str, recover: bool = False, name: str = None): # convert the config file list from a string to a list config_file_list = config_file_list_str.split(",") jobs_completed = 0 jobs_failed = 0 print(f"Running {len(config_file_list)} job{'' if len(config_file_list) == 1 else 's'}") for config_file in config_file_list: try: job = get_job(config_file, name) job.config['process'][0]['training_folder'] = MOUNT_DIR os.makedirs(MOUNT_DIR, exist_ok=True) print(f"Training outputs will be saved to: {MOUNT_DIR}") # run the job job.run() # commit the volume after training model_volume.commit() job.cleanup() jobs_completed += 1 except Exception as e: print(f"Error running job: {e}") jobs_failed += 1 if not recover: print_end_message(jobs_completed, jobs_failed) raise e print_end_message(jobs_completed, jobs_failed) if __name__ == "__main__": parser = argparse.ArgumentParser() # require at least one config file parser.add_argument( 'config_file_list', nargs='+', type=str, help='Name of config file (eg: person_v1 for config/person_v1.json/yaml), or full path if it is not in config folder, you can pass multiple config files and run them all sequentially' ) # flag to continue if a job fails parser.add_argument( '-r', '--recover', action='store_true', help='Continue running additional jobs even if a job fails' ) # optional name replacement for config file parser.add_argument( '-n', '--name', type=str, default=None, help='Name to replace [name] tag in config file, useful for shared config file' ) args = parser.parse_args() # convert list of config files to a comma-separated string for Modal compatibility config_file_list_str = ",".join(args.config_file_list) main.call(config_file_list_str=config_file_list_str, recover=args.recover, name=args.name)