from typing import TYPE_CHECKING from toolkit.config_modules import NetworkConfig from toolkit.lora_special import LoRASpecialNetwork from safetensors.torch import load_file if TYPE_CHECKING: from toolkit.stable_diffusion_model import StableDiffusion def load_assistant_lora_from_path(adapter_path, sd: 'StableDiffusion') -> LoRASpecialNetwork: if not sd.is_flux: raise ValueError("Only Flux models can load assistant adapters currently.") pipe = sd.pipeline print(f"Loading assistant adapter from {adapter_path}") adapter_name = adapter_path.split("/")[-1].split(".")[0] lora_state_dict = load_file(adapter_path) linear_dim = int(lora_state_dict['transformer.single_transformer_blocks.0.attn.to_k.lora_A.weight'].shape[0]) # linear_alpha = int(lora_state_dict['lora_transformer_single_transformer_blocks_0_attn_to_k.alpha'].item()) linear_alpha = linear_dim transformer_only = 'transformer.proj_out.alpha' not in lora_state_dict # get dim and scale network_config = NetworkConfig( linear=linear_dim, linear_alpha=linear_alpha, transformer_only=transformer_only, ) network = LoRASpecialNetwork( text_encoder=pipe.text_encoder, unet=pipe.transformer, lora_dim=network_config.linear, multiplier=1.0, alpha=network_config.linear_alpha, train_unet=True, train_text_encoder=False, is_flux=True, network_config=network_config, network_type=network_config.type, transformer_only=network_config.transformer_only, is_assistant_adapter=True ) network.apply_to( pipe.text_encoder, pipe.transformer, apply_text_encoder=False, apply_unet=True ) network.force_to(sd.device_torch, dtype=sd.torch_dtype) network.eval() network._update_torch_multiplier() network.load_weights(lora_state_dict) network.is_active = True return network