from typing import TYPE_CHECKING, Mapping, Any import torch import weakref from toolkit.config_modules import AdapterConfig from toolkit.models.clip_fusion import ZipperBlock from toolkit.models.zipper_resampler import ZipperModule from toolkit.prompt_utils import PromptEmbeds from toolkit.train_tools import get_torch_dtype if TYPE_CHECKING: from toolkit.stable_diffusion_model import StableDiffusion from transformers import ( CLIPImageProcessor, CLIPVisionModelWithProjection, CLIPVisionModel ) from toolkit.resampler import Resampler import torch.nn as nn class Embedder(nn.Module): def __init__( self, num_input_tokens: int = 1, input_dim: int = 1024, num_output_tokens: int = 8, output_dim: int = 768, mid_dim: int = 1024 ): super(Embedder, self).__init__() self.num_output_tokens = num_output_tokens self.num_input_tokens = num_input_tokens self.input_dim = input_dim self.output_dim = output_dim self.layer_norm = nn.LayerNorm(input_dim) self.fc1 = nn.Linear(input_dim, mid_dim) self.gelu = nn.GELU() # self.fc2 = nn.Linear(mid_dim, mid_dim) self.fc2 = nn.Linear(mid_dim, mid_dim) self.fc2.weight.data.zero_() self.layer_norm2 = nn.LayerNorm(mid_dim) self.fc3 = nn.Linear(mid_dim, mid_dim) self.gelu2 = nn.GELU() self.fc4 = nn.Linear(mid_dim, output_dim * num_output_tokens) # set the weights to 0 self.fc3.weight.data.zero_() self.fc4.weight.data.zero_() # self.static_tokens = nn.Parameter(torch.zeros(num_output_tokens, output_dim)) # self.scaler = nn.Parameter(torch.zeros(num_output_tokens, output_dim)) def forward(self, x): if len(x.shape) == 2: x = x.unsqueeze(1) x = self.layer_norm(x) x = self.fc1(x) x = self.gelu(x) x = self.fc2(x) x = self.layer_norm2(x) x = self.fc3(x) x = self.gelu2(x) x = self.fc4(x) x = x.view(-1, self.num_output_tokens, self.output_dim) return x class ClipVisionAdapter(torch.nn.Module): def __init__(self, sd: 'StableDiffusion', adapter_config: AdapterConfig): super().__init__() self.config = adapter_config self.trigger = adapter_config.trigger self.trigger_class_name = adapter_config.trigger_class_name self.sd_ref: weakref.ref = weakref.ref(sd) # embedding stuff self.text_encoder_list = sd.text_encoder if isinstance(sd.text_encoder, list) else [sd.text_encoder] self.tokenizer_list = sd.tokenizer if isinstance(sd.tokenizer, list) else [sd.tokenizer] placeholder_tokens = [self.trigger] # add dummy tokens for multi-vector additional_tokens = [] for i in range(1, self.config.num_tokens): additional_tokens.append(f"{self.trigger}_{i}") placeholder_tokens += additional_tokens # handle dual tokenizer self.tokenizer_list = self.sd_ref().tokenizer if isinstance(self.sd_ref().tokenizer, list) else [ self.sd_ref().tokenizer] self.text_encoder_list = self.sd_ref().text_encoder if isinstance(self.sd_ref().text_encoder, list) else [ self.sd_ref().text_encoder] self.placeholder_token_ids = [] self.embedding_tokens = [] print(f"Adding {placeholder_tokens} tokens to tokenizer") print(f"Adding {self.config.num_tokens} tokens to tokenizer") for text_encoder, tokenizer in zip(self.text_encoder_list, self.tokenizer_list): num_added_tokens = tokenizer.add_tokens(placeholder_tokens) if num_added_tokens != self.config.num_tokens: raise ValueError( f"The tokenizer already contains the token {self.trigger}. Please pass a different" f" `placeholder_token` that is not already in the tokenizer. Only added {num_added_tokens}" ) # Convert the initializer_token, placeholder_token to ids init_token_ids = tokenizer.encode(self.config.trigger_class_name, add_special_tokens=False) # if length of token ids is more than number of orm embedding tokens fill with * if len(init_token_ids) > self.config.num_tokens: init_token_ids = init_token_ids[:self.config.num_tokens] elif len(init_token_ids) < self.config.num_tokens: pad_token_id = tokenizer.encode(["*"], add_special_tokens=False) init_token_ids += pad_token_id * (self.config.num_tokens - len(init_token_ids)) placeholder_token_ids = tokenizer.encode(placeholder_tokens, add_special_tokens=False) self.placeholder_token_ids.append(placeholder_token_ids) # Resize the token embeddings as we are adding new special tokens to the tokenizer text_encoder.resize_token_embeddings(len(tokenizer)) # Initialise the newly added placeholder token with the embeddings of the initializer token token_embeds = text_encoder.get_input_embeddings().weight.data with torch.no_grad(): for initializer_token_id, token_id in zip(init_token_ids, placeholder_token_ids): token_embeds[token_id] = token_embeds[initializer_token_id].clone() # replace "[name] with this. on training. This is automatically generated in pipeline on inference self.embedding_tokens.append(" ".join(tokenizer.convert_ids_to_tokens(placeholder_token_ids))) # backup text encoder embeddings self.orig_embeds_params = [x.get_input_embeddings().weight.data.clone() for x in self.text_encoder_list] try: self.clip_image_processor = CLIPImageProcessor.from_pretrained(self.config.image_encoder_path) except EnvironmentError: self.clip_image_processor = CLIPImageProcessor() self.device = self.sd_ref().unet.device self.image_encoder = CLIPVisionModelWithProjection.from_pretrained( self.config.image_encoder_path, ignore_mismatched_sizes=True ).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) if self.config.train_image_encoder: self.image_encoder.train() else: self.image_encoder.eval() # max_seq_len = CLIP tokens + CLS token image_encoder_state_dict = self.image_encoder.state_dict() in_tokens = 257 if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict: # clip in_tokens = int(image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0]) if hasattr(self.image_encoder.config, 'hidden_sizes'): embedding_dim = self.image_encoder.config.hidden_sizes[-1] else: embedding_dim = self.image_encoder.config.target_hidden_size if self.config.clip_layer == 'image_embeds': in_tokens = 1 embedding_dim = self.image_encoder.config.projection_dim self.embedder = Embedder( num_output_tokens=self.config.num_tokens, num_input_tokens=in_tokens, input_dim=embedding_dim, output_dim=self.sd_ref().unet.config['cross_attention_dim'], mid_dim=embedding_dim * self.config.num_tokens, ).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) self.embedder.train() def state_dict(self, *args, destination=None, prefix='', keep_vars=False): state_dict = { 'embedder': self.embedder.state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars) } if self.config.train_image_encoder: state_dict['image_encoder'] = self.image_encoder.state_dict( *args, destination=destination, prefix=prefix, keep_vars=keep_vars) return state_dict def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True): self.embedder.load_state_dict(state_dict["embedder"], strict=strict) if self.config.train_image_encoder and 'image_encoder' in state_dict: self.image_encoder.load_state_dict(state_dict["image_encoder"], strict=strict) def parameters(self, *args, **kwargs): yield from self.embedder.parameters(*args, **kwargs) def named_parameters(self, *args, **kwargs): yield from self.embedder.named_parameters(*args, **kwargs) def get_clip_image_embeds_from_tensors( self, tensors_0_1: torch.Tensor, drop=False, is_training=False, has_been_preprocessed=False ) -> torch.Tensor: with torch.no_grad(): if not has_been_preprocessed: # tensors should be 0-1 if tensors_0_1.ndim == 3: tensors_0_1 = tensors_0_1.unsqueeze(0) # training tensors are 0 - 1 tensors_0_1 = tensors_0_1.to(self.device, dtype=torch.float16) # if images are out of this range throw error if tensors_0_1.min() < -0.3 or tensors_0_1.max() > 1.3: raise ValueError("image tensor values must be between 0 and 1. Got min: {}, max: {}".format( tensors_0_1.min(), tensors_0_1.max() )) # unconditional if drop: if self.clip_noise_zero: tensors_0_1 = torch.rand_like(tensors_0_1).detach() noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) tensors_0_1 = tensors_0_1 * noise_scale else: tensors_0_1 = torch.zeros_like(tensors_0_1).detach() # tensors_0_1 = tensors_0_1 * 0 clip_image = self.clip_image_processor( images=tensors_0_1, return_tensors="pt", do_resize=True, do_rescale=False, ).pixel_values else: if drop: # scale the noise down if self.clip_noise_zero: tensors_0_1 = torch.rand_like(tensors_0_1).detach() noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) tensors_0_1 = tensors_0_1 * noise_scale else: tensors_0_1 = torch.zeros_like(tensors_0_1).detach() # tensors_0_1 = tensors_0_1 * 0 mean = torch.tensor(self.clip_image_processor.image_mean).to( self.device, dtype=get_torch_dtype(self.sd_ref().dtype) ).detach() std = torch.tensor(self.clip_image_processor.image_std).to( self.device, dtype=get_torch_dtype(self.sd_ref().dtype) ).detach() tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0 clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1]) else: clip_image = tensors_0_1 clip_image = clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)).detach() with torch.set_grad_enabled(is_training): if is_training: self.image_encoder.train() else: self.image_encoder.eval() clip_output = self.image_encoder(clip_image, output_hidden_states=True) if self.config.clip_layer == 'penultimate_hidden_states': # they skip last layer for ip+ # https://github.com/tencent-ailab/IP-Adapter/blob/f4b6742db35ea6d81c7b829a55b0a312c7f5a677/tutorial_train_plus.py#L403C26-L403C26 clip_image_embeds = clip_output.hidden_states[-2] elif self.config.clip_layer == 'last_hidden_state': clip_image_embeds = clip_output.hidden_states[-1] else: clip_image_embeds = clip_output.image_embeds return clip_image_embeds import torch def set_vec(self, new_vector, text_encoder_idx=0): # Get the embedding layer embedding_layer = self.text_encoder_list[text_encoder_idx].get_input_embeddings() # Indices to replace in the embeddings indices_to_replace = self.placeholder_token_ids[text_encoder_idx] # Replace the specified embeddings with new_vector for idx in indices_to_replace: vector_idx = idx - indices_to_replace[0] embedding_layer.weight[idx] = new_vector[vector_idx] # adds it to the tokenizer def forward(self, clip_image_embeds: torch.Tensor) -> PromptEmbeds: clip_image_embeds = clip_image_embeds.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) if clip_image_embeds.ndim == 2: # expand the token dimension clip_image_embeds = clip_image_embeds.unsqueeze(1) image_prompt_embeds = self.embedder(clip_image_embeds) # todo add support for multiple batch sizes if image_prompt_embeds.shape[0] != 1: raise ValueError("Batch size must be 1 for embedder for now") # output on sd1.5 is bs, num_tokens, 768 if len(self.text_encoder_list) == 1: # add it to the text encoder self.set_vec(image_prompt_embeds[0], text_encoder_idx=0) elif len(self.text_encoder_list) == 2: if self.text_encoder_list[0].config.target_hidden_size + self.text_encoder_list[1].config.target_hidden_size != \ image_prompt_embeds.shape[2]: raise ValueError("Something went wrong. The embeddings do not match the text encoder sizes") # sdxl variants # image_prompt_embeds = 2048 # te1 = 768 # te2 = 1280 te1_embeds = image_prompt_embeds[:, :, :self.text_encoder_list[0].config.target_hidden_size] te2_embeds = image_prompt_embeds[:, :, self.text_encoder_list[0].config.target_hidden_size:] self.set_vec(te1_embeds[0], text_encoder_idx=0) self.set_vec(te2_embeds[0], text_encoder_idx=1) else: raise ValueError("Unsupported number of text encoders") # just a place to put a breakpoint pass def restore_embeddings(self): # Let's make sure we don't update any embedding weights besides the newly added token for text_encoder, tokenizer, orig_embeds, placeholder_token_ids in zip( self.text_encoder_list, self.tokenizer_list, self.orig_embeds_params, self.placeholder_token_ids ): index_no_updates = torch.ones((len(tokenizer),), dtype=torch.bool) index_no_updates[ min(placeholder_token_ids): max(placeholder_token_ids) + 1] = False with torch.no_grad(): text_encoder.get_input_embeddings().weight[ index_no_updates ] = orig_embeds[index_no_updates] # detach it all text_encoder.get_input_embeddings().weight.detach_() def enable_gradient_checkpointing(self): self.image_encoder.gradient_checkpointing = True def inject_trigger_into_prompt(self, prompt, expand_token=False, to_replace_list=None, add_if_not_present=True): output_prompt = prompt embedding_tokens = self.embedding_tokens[0] # shoudl be the same default_replacements = ["[name]", "[trigger]"] replace_with = embedding_tokens if expand_token else self.trigger if to_replace_list is None: to_replace_list = default_replacements else: to_replace_list += default_replacements # remove duplicates to_replace_list = list(set(to_replace_list)) # replace them all for to_replace in to_replace_list: # replace it output_prompt = output_prompt.replace(to_replace, replace_with) # see how many times replace_with is in the prompt num_instances = output_prompt.count(replace_with) if num_instances == 0 and add_if_not_present: # add it to the beginning of the prompt output_prompt = replace_with + " " + output_prompt if num_instances > 1: print( f"Warning: {replace_with} token appears {num_instances} times in prompt {output_prompt}. This may cause issues.") return output_prompt # reverses injection with class name. useful for normalizations def inject_trigger_class_name_into_prompt(self, prompt): output_prompt = prompt embedding_tokens = self.embedding_tokens[0] # shoudl be the same default_replacements = ["[name]", "[trigger]", embedding_tokens, self.trigger] replace_with = self.config.trigger_class_name to_replace_list = default_replacements # remove duplicates to_replace_list = list(set(to_replace_list)) # replace them all for to_replace in to_replace_list: # replace it output_prompt = output_prompt.replace(to_replace, replace_with) # see how many times replace_with is in the prompt num_instances = output_prompt.count(replace_with) if num_instances > 1: print( f"Warning: {replace_with} token appears {num_instances} times in prompt {output_prompt}. This may cause issues.") return output_prompt