import torch import torch.nn as nn class UpsampleBlock(nn.Module): def __init__( self, in_channels: int, out_channels: int, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.conv_in = nn.Sequential( nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1), nn.GELU() ) self.conv_up = nn.Sequential( nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2), nn.GELU() ) self.conv_out = nn.Sequential( nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) ) def forward(self, x): x = self.conv_in(x) x = self.conv_up(x) x = self.conv_out(x) return x class CLIPImagePreProcessor(nn.Module): def __init__( self, input_size=896, clip_input_size=224, downscale_factor: int = 16, ): super().__init__() # make sure they are evenly divisible assert input_size % clip_input_size == 0 in_channels = 3 self.input_size = input_size self.clip_input_size = clip_input_size self.downscale_factor = downscale_factor subpixel_channels = in_channels * downscale_factor ** 2 # 3 * 16 ** 2 = 768 channels = subpixel_channels upscale_factor = downscale_factor / int((input_size / clip_input_size)) # 16 / (896 / 224) = 4 num_upsample_blocks = int(upscale_factor // 2) # 4 // 2 = 2 # make the residual down up blocks self.upsample_blocks = nn.ModuleList() self.subpixel_blocks = nn.ModuleList() current_channels = channels current_downscale = downscale_factor for _ in range(num_upsample_blocks): # determine the reshuffled channel count for this dimension output_downscale = current_downscale // 2 out_channels = in_channels * output_downscale ** 2 # out_channels = current_channels // 2 self.upsample_blocks.append(UpsampleBlock(current_channels, out_channels)) current_channels = out_channels current_downscale = output_downscale self.subpixel_blocks.append(nn.PixelUnshuffle(current_downscale)) # (bs, 768, 56, 56) -> (bs, 192, 112, 112) # (bs, 192, 112, 112) -> (bs, 48, 224, 224) self.conv_out = nn.Conv2d( current_channels, out_channels=3, kernel_size=3, padding=1 ) # (bs, 48, 224, 224) -> (bs, 3, 224, 224) # do a pooling layer to downscale the input to 1/3 of the size # (bs, 3, 896, 896) -> (bs, 3, 224, 224) kernel_size = input_size // clip_input_size self.res_down = nn.AvgPool2d( kernel_size=kernel_size, stride=kernel_size ) # (bs, 3, 896, 896) -> (bs, 3, 224, 224) # make a blending for output residual with near 0 weight self.res_blend = nn.Parameter(torch.tensor(0.001)) # (bs, 3, 224, 224) -> (bs, 3, 224, 224) self.unshuffle = nn.PixelUnshuffle(downscale_factor) # (bs, 3, 896, 896) -> (bs, 768, 56, 56) self.conv_in = nn.Sequential( nn.Conv2d( subpixel_channels, channels, kernel_size=3, padding=1 ), nn.GELU() ) # (bs, 768, 56, 56) -> (bs, 768, 56, 56) # make 2 deep blocks def forward(self, x): inputs = x # resize to input_size x input_size x = nn.functional.interpolate(x, size=(self.input_size, self.input_size), mode='bicubic') res = self.res_down(inputs) x = self.unshuffle(x) x = self.conv_in(x) for up, subpixel in zip(self.upsample_blocks, self.subpixel_blocks): x = up(x) block_res = subpixel(inputs) x = x + block_res x = self.conv_out(x) # blend residual x = x * self.res_blend + res return x