import torch import torch.nn as nn class ContextualAlphaMask(nn.Module): def __init__( self, dim: int = 768, ): super(ContextualAlphaMask, self).__init__() self.dim = dim half_dim = dim // 2 quarter_dim = dim // 4 self.fc1 = nn.Linear(self.dim, self.dim) self.fc2 = nn.Linear(self.dim, half_dim) self.norm1 = nn.LayerNorm(half_dim) self.fc3 = nn.Linear(half_dim, half_dim) self.fc4 = nn.Linear(half_dim, quarter_dim) self.norm2 = nn.LayerNorm(quarter_dim) self.fc5 = nn.Linear(quarter_dim, quarter_dim) self.fc6 = nn.Linear(quarter_dim, 1) # set fc6 weights to near zero self.fc6.weight.data.normal_(mean=0.0, std=0.0001) self.act_fn = nn.GELU() def forward(self, x): # x = (batch_size, 77, 768) x = self.fc1(x) x = self.act_fn(x) x = self.fc2(x) x = self.norm1(x) x = self.act_fn(x) x = self.fc3(x) x = self.act_fn(x) x = self.fc4(x) x = self.norm2(x) x = self.act_fn(x) x = self.fc5(x) x = self.act_fn(x) x = self.fc6(x) x = torch.sigmoid(x) return x class ZipperModule(nn.Module): def __init__( self, in_size, in_tokens, out_size, out_tokens, hidden_size, hidden_tokens, use_residual=False, ): super().__init__() self.in_size = in_size self.in_tokens = in_tokens self.out_size = out_size self.out_tokens = out_tokens self.hidden_size = hidden_size self.hidden_tokens = hidden_tokens self.use_residual = use_residual self.act_fn = nn.GELU() self.layernorm = nn.LayerNorm(self.in_size) self.conv1 = nn.Conv1d(self.in_tokens, self.hidden_tokens, 1) # act self.fc1 = nn.Linear(self.in_size, self.hidden_size) # act self.conv2 = nn.Conv1d(self.hidden_tokens, self.out_tokens, 1) # act self.fc2 = nn.Linear(self.hidden_size, self.out_size) def forward(self, x): residual = x x = self.layernorm(x) x = self.conv1(x) x = self.act_fn(x) x = self.fc1(x) x = self.act_fn(x) x = self.conv2(x) x = self.act_fn(x) x = self.fc2(x) if self.use_residual: x = x + residual return x class ZipperResampler(nn.Module): def __init__( self, in_size, in_tokens, out_size, out_tokens, hidden_size, hidden_tokens, num_blocks=1, is_conv_input=False, ): super().__init__() self.is_conv_input = is_conv_input module_list = [] for i in range(num_blocks): this_in_size = in_size this_in_tokens = in_tokens this_out_size = out_size this_out_tokens = out_tokens this_hidden_size = hidden_size this_hidden_tokens = hidden_tokens use_residual = False # maintain middle sizes as hidden_size if i == 0: # first block this_in_size = in_size this_in_tokens = in_tokens if num_blocks == 1: this_out_size = out_size this_out_tokens = out_tokens else: this_out_size = hidden_size this_out_tokens = hidden_tokens elif i == num_blocks - 1: # last block this_out_size = out_size this_out_tokens = out_tokens if num_blocks == 1: this_in_size = in_size this_in_tokens = in_tokens else: this_in_size = hidden_size this_in_tokens = hidden_tokens else: # middle blocks this_out_size = hidden_size this_out_tokens = hidden_tokens this_in_size = hidden_size this_in_tokens = hidden_tokens use_residual = True module_list.append(ZipperModule( in_size=this_in_size, in_tokens=this_in_tokens, out_size=this_out_size, out_tokens=this_out_tokens, hidden_size=this_hidden_size, hidden_tokens=this_hidden_tokens, use_residual=use_residual )) self.blocks = nn.ModuleList(module_list) self.ctx_alpha = ContextualAlphaMask( dim=out_size, ) def forward(self, x): if self.is_conv_input: # flatten x = x.view(x.size(0), x.size(1), -1) # rearrange to (batch, tokens, size) x = x.permute(0, 2, 1) for block in self.blocks: x = block(x) alpha = self.ctx_alpha(x) return x * alpha