import copy import math from diffusers import ( DDPMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, LMSDiscreteScheduler, PNDMScheduler, DDIMScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, KDPM2DiscreteScheduler, KDPM2AncestralDiscreteScheduler, LCMScheduler, FlowMatchEulerDiscreteScheduler, ) from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler from k_diffusion.external import CompVisDenoiser from toolkit.samplers.custom_lcm_scheduler import CustomLCMScheduler # scheduler: SCHEDULER_LINEAR_START = 0.00085 SCHEDULER_LINEAR_END = 0.0120 SCHEDULER_TIMESTEPS = 1000 SCHEDLER_SCHEDULE = "scaled_linear" sd_config = { "_class_name": "EulerAncestralDiscreteScheduler", "_diffusers_version": "0.24.0.dev0", "beta_end": 0.012, "beta_schedule": "scaled_linear", "beta_start": 0.00085, "clip_sample": False, "interpolation_type": "linear", "num_train_timesteps": 1000, "prediction_type": "epsilon", "sample_max_value": 1.0, "set_alpha_to_one": False, # "skip_prk_steps": False, # for training "skip_prk_steps": True, # "steps_offset": 1, "steps_offset": 0, # "timestep_spacing": "trailing", # for training "timestep_spacing": "leading", "trained_betas": None } pixart_config = { "_class_name": "DPMSolverMultistepScheduler", "_diffusers_version": "0.22.0.dev0", "algorithm_type": "dpmsolver++", "beta_end": 0.02, "beta_schedule": "linear", "beta_start": 0.0001, "dynamic_thresholding_ratio": 0.995, "euler_at_final": False, # "lambda_min_clipped": -Infinity, "lambda_min_clipped": -math.inf, "lower_order_final": True, "num_train_timesteps": 1000, "prediction_type": "epsilon", "sample_max_value": 1.0, "solver_order": 2, "solver_type": "midpoint", "steps_offset": 0, "thresholding": False, "timestep_spacing": "linspace", "trained_betas": None, "use_karras_sigmas": False, "use_lu_lambdas": False, "variance_type": None } def get_sampler( sampler: str, kwargs: dict = None, arch: str = "sd" ): sched_init_args = {} if kwargs is not None: sched_init_args.update(kwargs) config_to_use = copy.deepcopy(sd_config) if arch == "sd" else copy.deepcopy(pixart_config) if sampler.startswith("k_"): sched_init_args["use_karras_sigmas"] = True if sampler == "ddim": scheduler_cls = DDIMScheduler elif sampler == "ddpm": # ddpm is not supported ? scheduler_cls = DDPMScheduler elif sampler == "pndm": scheduler_cls = PNDMScheduler elif sampler == "lms" or sampler == "k_lms": scheduler_cls = LMSDiscreteScheduler elif sampler == "euler" or sampler == "k_euler": scheduler_cls = EulerDiscreteScheduler elif sampler == "euler_a": scheduler_cls = EulerAncestralDiscreteScheduler elif sampler == "dpmsolver" or sampler == "dpmsolver++" or sampler == "k_dpmsolver" or sampler == "k_dpmsolver++": scheduler_cls = DPMSolverMultistepScheduler sched_init_args["algorithm_type"] = sampler.replace("k_", "") elif sampler == "dpmsingle": scheduler_cls = DPMSolverSinglestepScheduler elif sampler == "heun": scheduler_cls = HeunDiscreteScheduler elif sampler == "dpm_2": scheduler_cls = KDPM2DiscreteScheduler elif sampler == "dpm_2_a": scheduler_cls = KDPM2AncestralDiscreteScheduler elif sampler == "lcm": scheduler_cls = LCMScheduler elif sampler == "custom_lcm": scheduler_cls = CustomLCMScheduler elif sampler == "flowmatch": scheduler_cls = CustomFlowMatchEulerDiscreteScheduler config_to_use = { "_class_name": "FlowMatchEulerDiscreteScheduler", "_diffusers_version": "0.29.0.dev0", "num_train_timesteps": 1000, "shift": 3.0 } else: raise ValueError(f"Sampler {sampler} not supported") config = copy.deepcopy(config_to_use) config.update(sched_init_args) scheduler = scheduler_cls.from_config(config) return scheduler # testing if __name__ == "__main__": from diffusers import DiffusionPipeline from diffusers import StableDiffusionKDiffusionPipeline import torch import os inference_steps = 25 pipe = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") pipe = pipe.to("cuda") k_diffusion_model = CompVisDenoiser(model) pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion") pipe = pipe.to("cuda") prompt = "an astronaut riding a horse on mars" pipe.set_scheduler("sample_heun") generator = torch.Generator(device="cuda").manual_seed(seed) image = pipe(prompt, generator=generator, num_inference_steps=20).images[0] image.save("./astronaut_heun_k_diffusion.png")