import math from typing import Union from diffusers import FlowMatchEulerDiscreteScheduler import torch class CustomFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.init_noise_sigma = 1.0 with torch.no_grad(): # create weights for timesteps num_timesteps = 1000 # Bell-Shaped Mean-Normalized Timestep Weighting # bsmntw? need a better name x = torch.arange(num_timesteps, dtype=torch.float32) y = torch.exp(-2 * ((x - num_timesteps / 2) / num_timesteps) ** 2) # Shift minimum to 0 y_shifted = y - y.min() # Scale to make mean 1 bsmntw_weighing = y_shifted * (num_timesteps / y_shifted.sum()) # only do half bell hbsmntw_weighing = y_shifted * (num_timesteps / y_shifted.sum()) # flatten second half to max hbsmntw_weighing[num_timesteps // 2:] = hbsmntw_weighing[num_timesteps // 2:].max() # Create linear timesteps from 1000 to 0 timesteps = torch.linspace(1000, 0, num_timesteps, device='cpu') self.linear_timesteps = timesteps self.linear_timesteps_weights = bsmntw_weighing self.linear_timesteps_weights2 = hbsmntw_weighing pass def get_weights_for_timesteps(self, timesteps: torch.Tensor, v2=False) -> torch.Tensor: # Get the indices of the timesteps step_indices = [(self.timesteps == t).nonzero().item() for t in timesteps] # Get the weights for the timesteps if v2: weights = self.linear_timesteps_weights2[step_indices].flatten() else: weights = self.linear_timesteps_weights[step_indices].flatten() return weights def get_sigmas(self, timesteps: torch.Tensor, n_dim, dtype, device) -> torch.Tensor: sigmas = self.sigmas.to(device=device, dtype=dtype) schedule_timesteps = self.timesteps.to(device) timesteps = timesteps.to(device) step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < n_dim: sigma = sigma.unsqueeze(-1) return sigma def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor, ) -> torch.Tensor: ## ref https://github.com/huggingface/diffusers/blob/fbe29c62984c33c6cf9cf7ad120a992fe6d20854/examples/dreambooth/train_dreambooth_sd3.py#L1578 ## Add noise according to flow matching. ## zt = (1 - texp) * x + texp * z1 # sigmas = get_sigmas(timesteps, n_dim=model_input.ndim, dtype=model_input.dtype) # noisy_model_input = (1.0 - sigmas) * model_input + sigmas * noise # timestep needs to be in [0, 1], we store them in [0, 1000] # noisy_sample = (1 - timestep) * latent + timestep * noise t_01 = (timesteps / 1000).to(original_samples.device) noisy_model_input = (1 - t_01) * original_samples + t_01 * noise # n_dim = original_samples.ndim # sigmas = self.get_sigmas(timesteps, n_dim, original_samples.dtype, original_samples.device) # noisy_model_input = (1.0 - sigmas) * original_samples + sigmas * noise return noisy_model_input def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: return sample def set_train_timesteps(self, num_timesteps, device, linear=False): if linear: timesteps = torch.linspace(1000, 0, num_timesteps, device=device) self.timesteps = timesteps return timesteps else: # distribute them closer to center. Inference distributes them as a bias toward first # Generate values from 0 to 1 t = torch.sigmoid(torch.randn((num_timesteps,), device=device)) # Scale and reverse the values to go from 1000 to 0 timesteps = ((1 - t) * 1000) # Sort the timesteps in descending order timesteps, _ = torch.sort(timesteps, descending=True) self.timesteps = timesteps.to(device=device) return timesteps