import json import os from collections import OrderedDict from typing import TYPE_CHECKING, Literal, Optional, Union import torch from safetensors.torch import load_file, save_file from toolkit.train_tools import get_torch_dtype from toolkit.paths import KEYMAPS_ROOT if TYPE_CHECKING: from toolkit.stable_diffusion_model import StableDiffusion def get_slices_from_string(s: str) -> tuple: slice_strings = s.split(',') slices = [eval(f"slice({component.strip()})") for component in slice_strings] return tuple(slices) def convert_state_dict_to_ldm_with_mapping( diffusers_state_dict: 'OrderedDict', mapping_path: str, base_path: Union[str, None] = None, device: str = 'cpu', dtype: torch.dtype = torch.float32 ) -> 'OrderedDict': converted_state_dict = OrderedDict() # load mapping with open(mapping_path, 'r') as f: mapping = json.load(f, object_pairs_hook=OrderedDict) # keep track of keys not matched ldm_matched_keys = [] diffusers_matched_keys = [] ldm_diffusers_keymap = mapping['ldm_diffusers_keymap'] ldm_diffusers_shape_map = mapping['ldm_diffusers_shape_map'] ldm_diffusers_operator_map = mapping['ldm_diffusers_operator_map'] # load base if it exists # the base just has come keys like timing ids and stuff diffusers doesn't have or they don't match if base_path is not None: converted_state_dict = load_file(base_path, device) # convert to the right dtype for key in converted_state_dict: converted_state_dict[key] = converted_state_dict[key].to(device, dtype=dtype) # process operators first for ldm_key in ldm_diffusers_operator_map: # if the key cat is in the ldm key, we need to process it if 'cat' in ldm_diffusers_operator_map[ldm_key]: cat_list = [] for diffusers_key in ldm_diffusers_operator_map[ldm_key]['cat']: cat_list.append(diffusers_state_dict[diffusers_key].detach()) converted_state_dict[ldm_key] = torch.cat(cat_list, dim=0).to(device, dtype=dtype) diffusers_matched_keys.extend(ldm_diffusers_operator_map[ldm_key]['cat']) ldm_matched_keys.append(ldm_key) if 'slice' in ldm_diffusers_operator_map[ldm_key]: tensor_to_slice = diffusers_state_dict[ldm_diffusers_operator_map[ldm_key]['slice'][0]] slice_text = diffusers_state_dict[ldm_diffusers_operator_map[ldm_key]['slice'][1]] converted_state_dict[ldm_key] = tensor_to_slice[get_slices_from_string(slice_text)].detach().to(device, dtype=dtype) diffusers_matched_keys.extend(ldm_diffusers_operator_map[ldm_key]['slice']) ldm_matched_keys.append(ldm_key) # process the rest of the keys for ldm_key in ldm_diffusers_keymap: # if the key is in the ldm key, we need to process it if ldm_diffusers_keymap[ldm_key] in diffusers_state_dict: tensor = diffusers_state_dict[ldm_diffusers_keymap[ldm_key]].detach().to(device, dtype=dtype) # see if we need to reshape if ldm_key in ldm_diffusers_shape_map: tensor = tensor.view(ldm_diffusers_shape_map[ldm_key][0]) converted_state_dict[ldm_key] = tensor diffusers_matched_keys.append(ldm_diffusers_keymap[ldm_key]) ldm_matched_keys.append(ldm_key) # see if any are missing from know mapping mapped_diffusers_keys = list(ldm_diffusers_keymap.values()) mapped_ldm_keys = list(ldm_diffusers_keymap.keys()) missing_diffusers_keys = [x for x in mapped_diffusers_keys if x not in diffusers_matched_keys] missing_ldm_keys = [x for x in mapped_ldm_keys if x not in ldm_matched_keys] if len(missing_diffusers_keys) > 0: print(f"WARNING!!!! Missing {len(missing_diffusers_keys)} diffusers keys") print(missing_diffusers_keys) if len(missing_ldm_keys) > 0: print(f"WARNING!!!! Missing {len(missing_ldm_keys)} ldm keys") print(missing_ldm_keys) return converted_state_dict def get_ldm_state_dict_from_diffusers( state_dict: 'OrderedDict', sd_version: Literal['1', '2', 'sdxl', 'ssd', 'vega', 'sdxl_refiner'] = '2', device='cpu', dtype=get_torch_dtype('fp32'), ): if sd_version == '1': base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd1_ldm_base.safetensors') mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd1.json') elif sd_version == '2': base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd2_ldm_base.safetensors') mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd2.json') elif sd_version == 'sdxl': # load our base base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl_ldm_base.safetensors') mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl.json') elif sd_version == 'ssd': # load our base base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_ssd_ldm_base.safetensors') mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_ssd.json') elif sd_version == 'vega': # load our base base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_vega_ldm_base.safetensors') mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_vega.json') elif sd_version == 'sdxl_refiner': # load our base base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_refiner_ldm_base.safetensors') mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_refiner.json') else: raise ValueError(f"Invalid sd_version {sd_version}") # convert the state dict return convert_state_dict_to_ldm_with_mapping( state_dict, mapping_path, base_path, device=device, dtype=dtype ) def save_ldm_model_from_diffusers( sd: 'StableDiffusion', output_file: str, meta: 'OrderedDict', save_dtype=get_torch_dtype('fp16'), sd_version: Literal['1', '2', 'sdxl', 'ssd', 'vega'] = '2' ): converted_state_dict = get_ldm_state_dict_from_diffusers( sd.state_dict(), sd_version, device='cpu', dtype=save_dtype ) # make sure parent folder exists os.makedirs(os.path.dirname(output_file), exist_ok=True) save_file(converted_state_dict, output_file, metadata=meta) def save_lora_from_diffusers( lora_state_dict: 'OrderedDict', output_file: str, meta: 'OrderedDict', save_dtype=get_torch_dtype('fp16'), sd_version: Literal['1', '2', 'sdxl', 'ssd', 'vega'] = '2' ): converted_state_dict = OrderedDict() # only handle sxdxl for now if sd_version != 'sdxl' and sd_version != 'ssd' and sd_version != 'vega': raise ValueError(f"Invalid sd_version {sd_version}") for key, value in lora_state_dict.items(): # todo verify if this works with ssd # test encoders share keys for some reason if key.begins_with('lora_te'): converted_state_dict[key] = value.detach().to('cpu', dtype=save_dtype) else: converted_key = key # make sure parent folder exists os.makedirs(os.path.dirname(output_file), exist_ok=True) save_file(converted_state_dict, output_file, metadata=meta) def save_t2i_from_diffusers( t2i_state_dict: 'OrderedDict', output_file: str, meta: 'OrderedDict', dtype=get_torch_dtype('fp16'), ): # todo: test compatibility with non diffusers converted_state_dict = OrderedDict() for key, value in t2i_state_dict.items(): converted_state_dict[key] = value.detach().to('cpu', dtype=dtype) # make sure parent folder exists os.makedirs(os.path.dirname(output_file), exist_ok=True) save_file(converted_state_dict, output_file, metadata=meta) def load_t2i_model( path_to_file, device: Union[str] = 'cpu', dtype: torch.dtype = torch.float32 ): raw_state_dict = load_file(path_to_file, device) converted_state_dict = OrderedDict() for key, value in raw_state_dict.items(): # todo see if we need to convert dict converted_state_dict[key] = value.detach().to(device, dtype=dtype) return converted_state_dict def save_ip_adapter_from_diffusers( combined_state_dict: 'OrderedDict', output_file: str, meta: 'OrderedDict', dtype=get_torch_dtype('fp16'), direct_save: bool = False ): # todo: test compatibility with non diffusers converted_state_dict = OrderedDict() for module_name, state_dict in combined_state_dict.items(): if direct_save: converted_state_dict[module_name] = state_dict.detach().to('cpu', dtype=dtype) else: for key, value in state_dict.items(): converted_state_dict[f"{module_name}.{key}"] = value.detach().to('cpu', dtype=dtype) # make sure parent folder exists os.makedirs(os.path.dirname(output_file), exist_ok=True) save_file(converted_state_dict, output_file, metadata=meta) def load_ip_adapter_model( path_to_file, device: Union[str] = 'cpu', dtype: torch.dtype = torch.float32, direct_load: bool = False ): # check if it is safetensors or checkpoint if path_to_file.endswith('.safetensors'): raw_state_dict = load_file(path_to_file, device) combined_state_dict = OrderedDict() if direct_load: return raw_state_dict for combo_key, value in raw_state_dict.items(): key_split = combo_key.split('.') module_name = key_split.pop(0) if module_name not in combined_state_dict: combined_state_dict[module_name] = OrderedDict() combined_state_dict[module_name]['.'.join(key_split)] = value.detach().to(device, dtype=dtype) return combined_state_dict else: return torch.load(path_to_file, map_location=device) def load_custom_adapter_model( path_to_file, device: Union[str] = 'cpu', dtype: torch.dtype = torch.float32 ): # check if it is safetensors or checkpoint if path_to_file.endswith('.safetensors'): raw_state_dict = load_file(path_to_file, device) combined_state_dict = OrderedDict() device = device if isinstance(device, torch.device) else torch.device(device) dtype = dtype if isinstance(dtype, torch.dtype) else get_torch_dtype(dtype) for combo_key, value in raw_state_dict.items(): key_split = combo_key.split('.') module_name = key_split.pop(0) if module_name not in combined_state_dict: combined_state_dict[module_name] = OrderedDict() combined_state_dict[module_name]['.'.join(key_split)] = value.detach().to(device, dtype=dtype) return combined_state_dict else: return torch.load(path_to_file, map_location=device) def get_lora_keymap_from_model_keymap(model_keymap: 'OrderedDict') -> 'OrderedDict': lora_keymap = OrderedDict() # see if we have dual text encoders " a key that starts with conditioner.embedders.1 has_dual_text_encoders = False for key in model_keymap: if key.startswith('conditioner.embedders.1'): has_dual_text_encoders = True break # map through the keys and values for key, value in model_keymap.items(): # ignore bias weights if key.endswith('bias'): continue if key.endswith('.weight'): # remove the .weight key = key[:-7] if value.endswith(".weight"): # remove the .weight value = value[:-7] # unet for all key = key.replace('model.diffusion_model', 'lora_unet') if value.startswith('unet'): value = f"lora_{value}" # text encoder if has_dual_text_encoders: key = key.replace('conditioner.embedders.0', 'lora_te1') key = key.replace('conditioner.embedders.1', 'lora_te2') if value.startswith('te0') or value.startswith('te1'): value = f"lora_{value}" value.replace('lora_te1', 'lora_te2') value.replace('lora_te0', 'lora_te1') key = key.replace('cond_stage_model.transformer', 'lora_te') if value.startswith('te_'): value = f"lora_{value}" # replace periods with underscores key = key.replace('.', '_') value = value.replace('.', '_') # add all the weights lora_keymap[f"{key}.lora_down.weight"] = f"{value}.lora_down.weight" lora_keymap[f"{key}.lora_down.bias"] = f"{value}.lora_down.bias" lora_keymap[f"{key}.lora_up.weight"] = f"{value}.lora_up.weight" lora_keymap[f"{key}.lora_up.bias"] = f"{value}.lora_up.bias" lora_keymap[f"{key}.alpha"] = f"{value}.alpha" return lora_keymap