import torch from typing import Optional from diffusers.optimization import SchedulerType, TYPE_TO_SCHEDULER_FUNCTION, get_constant_schedule_with_warmup def get_lr_scheduler( name: Optional[str], optimizer: torch.optim.Optimizer, **kwargs, ): if name == "cosine": if 'total_iters' in kwargs: kwargs['T_max'] = kwargs.pop('total_iters') return torch.optim.lr_scheduler.CosineAnnealingLR( optimizer, **kwargs ) elif name == "cosine_with_restarts": if 'total_iters' in kwargs: kwargs['T_0'] = kwargs.pop('total_iters') return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts( optimizer, **kwargs ) elif name == "step": return torch.optim.lr_scheduler.StepLR( optimizer, **kwargs ) elif name == "constant": if 'factor' not in kwargs: kwargs['factor'] = 1.0 return torch.optim.lr_scheduler.ConstantLR(optimizer, **kwargs) elif name == "linear": return torch.optim.lr_scheduler.LinearLR( optimizer, **kwargs ) elif name == 'constant_with_warmup': # see if num_warmup_steps is in kwargs if 'num_warmup_steps' not in kwargs: print(f"WARNING: num_warmup_steps not in kwargs. Using default value of 1000") kwargs['num_warmup_steps'] = 1000 del kwargs['total_iters'] return get_constant_schedule_with_warmup(optimizer, **kwargs) else: # try to use a diffusers scheduler print(f"Trying to use diffusers scheduler {name}") try: name = SchedulerType(name) schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name] return schedule_func(optimizer, **kwargs) except Exception as e: print(e) pass raise ValueError( "Scheduler must be cosine, cosine_with_restarts, step, linear or constant" )