# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import json import datasets from dataclasses import dataclass _CITATION = ''' @article{mrtydi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } ''' _DESCRIPTION = 'dataset load script for Mr. TyDi' _DATASET_URLS = { 'train': f'https://huggingface.co/datasets/castorini/mr-tydi-corpus/resolve/main/mrtydi-v1.1-english/corpus.jsonl.gz', } class XorTyDiCorpus(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig( version=datasets.Version('1.1.0'), description=f'Same with English Mr TyDi dataset.' ), ] def _info(self): features = datasets.Features({ 'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string'), }) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, # Homepage of the dataset for documentation homepage='https://github.com/Tevatron/xor-tydi-corpus', # License for the dataset if available license='', # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_DATASET_URLS) splits = [ datasets.SplitGenerator( name='train', gen_kwargs={ 'filepath': downloaded_files['train'], }, ), ] return splits def _generate_examples(self, filepath): with open(filepath, encoding="utf-8") as f: for line in f: data = json.loads(line) yield data['docid'], data