File size: 30,715 Bytes
bf58ec3
 
 
 
 
0c9a731
 
ddcff6d
bf58ec3
 
 
fe7cf7b
bf58ec3
 
 
 
 
0c9a731
 
 
 
10ce80c
 
 
 
 
 
 
 
 
 
0c9a731
 
 
 
 
 
10ce80c
 
 
 
0c9a731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10ce80c
0c9a731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10ce80c
 
 
 
0c9a731
 
 
 
 
10ce80c
0c9a731
 
 
 
 
 
 
 
 
 
 
 
 
10ce80c
0c9a731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10ce80c
 
 
 
0c9a731
 
 
 
 
 
 
 
 
 
 
 
 
10ce80c
0c9a731
 
 
 
 
 
 
10ce80c
0c9a731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10ce80c
 
 
 
0c9a731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10ce80c
0c9a731
 
 
 
 
60e375f
 
10ce80c
 
 
 
0c9a731
 
 
 
 
10ce80c
 
 
 
 
 
 
 
 
 
0c9a731
 
 
 
 
 
10ce80c
 
 
 
 
 
 
0c9a731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10ce80c
 
 
 
 
 
 
0c9a731
 
10ce80c
 
 
0ad545d
 
 
 
 
 
 
 
 
 
60e375f
 
 
 
 
 
 
 
 
 
 
0c9a731
 
 
 
 
60e375f
0c9a731
 
60e375f
0c9a731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10ce80c
 
0c9a731
 
10ce80c
0c9a731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf58ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6239a6f
bf58ec3
ccc3110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf58ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
836171c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cef023
836171c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cef023
 
 
 
 
bf58ec3
 
 
 
1cef023
 
 
bf58ec3
 
 
e191d83
 
 
 
 
 
 
 
 
bf58ec3
 
1cef023
c70fbbb
e33b4b8
 
ccc3110
 
 
 
 
 
 
 
 
 
 
 
 
 
e33b4b8
 
 
 
 
 
 
 
 
 
 
 
037fdfd
e33b4b8
 
 
 
 
 
 
 
bf58ec3
c70fbbb
bf58ec3
 
 
 
 
38adbac
 
bf58ec3
 
ccc3110
bf58ec3
 
 
ccc3110
 
 
bf58ec3
 
e191d83
 
bb08fbf
e191d83
 
9099d46
 
 
 
 
 
 
e33b4b8
e191d83
e33b4b8
 
e191d83
 
 
 
 
 
 
 
 
9099d46
e191d83
 
 
 
 
 
 
bb08fbf
e191d83
 
9099d46
 
 
 
bb08fbf
e191d83
 
 
 
 
 
 
 
bf58ec3
 
 
 
 
 
 
 
 
 
6239a6f
bf58ec3
 
 
6239a6f
bf58ec3
 
 
6239a6f
bf58ec3
 
 
 
 
6239a6f
bf58ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6239a6f
bf58ec3
 
 
 
 
6239a6f
bf58ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38adbac
 
ccc3110
 
 
 
 
 
23bf6a3
bb08fbf
ccc3110
bb08fbf
b24e7e0
38adbac
 
e33b4b8
 
38adbac
e33b4b8
 
38adbac
 
 
e33b4b8
38adbac
 
 
 
 
bf58ec3
 
fe7cf7b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
license: cdla-permissive-2.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- unconditional-image-generation
task_ids: []
pretty_name: crello
tags:
- graphic design
- design templates
dataset_info:
  features:
  - name: id
    dtype: string
  - name: length
    dtype: int64
  - name: group
    dtype:
      class_label:
        names:
          '0': SM
          '1': HC
          '2': MM
          '3': SMA
          '4': EO
          '5': BG
  - name: format
    dtype:
      class_label:
        names:
          '0': Instagram Story
          '1': Instagram
          '2': Facebook
          '3': Facebook cover
          '4': Twitter
          '5': Facebook AD
          '6': Poster
          '7': Instagram AD
          '8': Tumblr
          '9': Image
          '10': Pinterest
          '11': Flayer
          '12': FB event cover
          '13': Postcard
          '14': Invitation
          '15': Youtube
          '16': Email header
          '17': Medium Rectangle
          '18': Poster US
          '19': Graphic
          '20': Large Rectangle
          '21': Card
          '22': Logo
          '23': Title
          '24': Skyscraper
          '25': Leaderboard
          '26': Presentation
          '27': Gift Certificate
          '28': VK Universal Post
          '29': Youtube Thumbnail
          '30': Business card
          '31': Book Cover
          '32': Presentation Wide
          '33': VK Community Cover
          '34': Certificate
          '35': Zoom Background
          '36': VK Post with Button
          '37': T-Shirt
          '38': Instagram Highlight Cover
          '39': Coupon
          '40': Letterhead
          '41': IGTV Cover
          '42': Schedule Planner
          '43': Album Cover
          '44': LinkedIn Cover
          '45': Storyboard
          '46': Recipe Card
          '47': Invoice
          '48': Resume
          '49': Menu
          '50': Mood Board
          '51': Mind Map
          '52': Label
          '53': Newsletter
          '54': Brochure
          '55': Ticket
          '56': Proposal
          '57': Snapchat Geofilter
          '58': Snapchat Moment Filter
          '59': Twitch Offline Banner
          '60': Twitch Profile Banner
          '61': Infographic
          '62': Mobile Presentation
          '63': Photo Book
          '64': Web Banner
          '65': Gallery Image
          '66': Calendar
  - name: canvas_width
    dtype:
      class_label:
        names:
          '0': '1080'
          '1': '1200'
          '2': '940'
          '3': '851'
          '4': '360'
          '5': '1190'
          '6': '1920'
          '7': '419'
          '8': '1024'
          '9': '600'
          '10': '1600'
          '11': '735'
          '12': '595'
          '13': '3000'
          '14': '2560'
          '15': '1500'
          '16': '300'
          '17': '540'
          '18': '1296'
          '19': '336'
          '20': '500'
          '21': '432'
          '22': '560'
          '23': '160'
          '24': '1280'
          '25': '728'
          '26': '1000'
          '27': '241'
          '28': '1590'
          '29': '792'
          '30': '576'
          '31': '537'
          '32': '1008'
          '33': '420'
          '34': '1128'
          '35': '396'
          '36': '841'
          '37': '800'
          '38': '635'
          '39': '240'
          '40': '842'
  - name: canvas_height
    dtype:
      class_label:
        names:
          '0': '1080'
          '1': '1920'
          '2': '315'
          '3': '788'
          '4': '628'
          '5': '600'
          '6': '504'
          '7': '1683'
          '8': '298'
          '9': '500'
          '10': '512'
          '11': '1102'
          '12': '1440'
          '13': '200'
          '14': '400'
          '15': '250'
          '16': '810'
          '17': '1728'
          '18': '1200'
          '19': '280'
          '20': '841'
          '21': '288'
          '22': '90'
          '23': '1055'
          '24': '720'
          '25': '768'
          '26': '700'
          '27': '142'
          '28': '612'
          '29': '2560'
          '30': '2000'
          '31': '240'
          '32': '216'
          '33': '842'
          '34': '1296'
          '35': '2340'
          '36': '654'
          '37': '191'
          '38': '1600'
          '39': '297'
          '40': '595'
          '41': '480'
          '42': '576'
          '43': '320'
          '44': '380'
          '45': '141'
  - name: category
    dtype:
      class_label:
        names:
          '0': holidaysCelebration
          '1': foodDrinks
          '2': fashionStyle
          '3': businessFinance
          '4': homeStuff
          '5': handcraftArt
          '6': beauty
          '7': leisureEntertainment
          '8': natureWildlife
          '9': educationScience
          '10': technology
          '11': medical
          '12': socialActivityCharity
          '13': realEstateBuilding
          '14': sportExtreme
          '15': travelsVacations
          '16': pets
          '17': religions
          '18': citiesPlaces
          '19': industry
          '20': transportation
          '21': kidsParents
          '22': all
  - name: title
    dtype: string
  - name: type
    sequence:
      class_label:
        names:
          '0': svgElement
          '1': textElement
          '2': imageElement
          '3': coloredBackground
          '4': maskElement
  - name: left
    sequence: float32
  - name: top
    sequence: float32
  - name: width
    sequence: float32
  - name: height
    sequence: float32
  - name: opacity
    sequence: float32
  - name: color
    sequence:
      sequence: float32
      length: 3
  - name: image
    sequence: image
  - name: text
    sequence: string
  - name: font
    sequence:
      class_label:
        names:
          '0': ''
          '1': Montserrat
          '2': Bebas Neue
          '3': Raleway
          '4': Josefin Sans
          '5': Cantarell
          '6': Playfair Display
          '7': Oswald
          '8': Blogger
          '9': Abril Fatface
          '10': Prompt
          '11': Comfortaa
          '12': Rubik
          '13': Open Sans
          '14': Roboto
          '15': Libre Baskerville
          '16': Quicksand
          '17': Dosis
          '18': Podkova
          '19': Lato
          '20': Cormorant Infant
          '21': Amatic Sc
          '22': Fjalla One
          '23': Playlist Script
          '24': Arapey
          '25': Baloo Tamma
          '26': Graduate
          '27': Titillium Web
          '28': Kreon
          '29': Nunito
          '30': Rammetto One
          '31': Anton
          '32': Poiret One
          '33': Alfa Slab One
          '34': Righteous
          '35': Play
          '36': Space Mono
          '37': Frank Ruhl Libre
          '38': Yanone Kaffeesatz
          '39': Pacifico
          '40': Bangers
          '41': Yellowtail
          '42': Droid Serif
          '43': Racing Sans One
          '44': Merriweather
          '45': Miriam Libre
          '46': Crete Round
          '47': Rubik One
          '48': Bungee
          '49': Sansita One
          '50': Patua One
          '51': Economica
          '52': Caveat
          '53': Philosopher
          '54': Limelight
          '55': Breathe
          '56': Rokkitt
          '57': Russo One
          '58': Noticia Text
          '59': Tinos
          '60': Oleo Script
          '61': Josefin Slab
          '62': Arima Madurai
          '63': Brusher Free Font
          '64': Old Standard Tt
          '65': Kalam
          '66': Patrick Hand
          '67': Playball
          '68': Six Caps
          '69': Bad Script
          '70': Orbitron
          '71': Contrail One
          '72': Selima Script
          '73': Gravitas One
          '74': El Messiri
          '75': Bubbler One
          '76': Italiana
          '77': Pompiere
          '78': Lemon Tuesday
          '79': Vast Shadow
          '80': Sunday
          '81': Cookie
          '82': Exo 2
          '83': Barrio
          '84': Radley
          '85': Mrs Sheppards
          '86': Grand Hotel
          '87': Great Vibes
          '88': Maven Pro
          '89': Knewave
          '90': Damion
          '91': Tulpen One
          '92': Parisienne
          '93': Superclarendon Regular
          '94': Oxygen
          '95': Nixie One
          '96': Permanent Marker
          '97': Medula One
          '98': Cabin Sketch
          '99': Vollkorn
          '100': Yeseva One
          '101': Montserrat Alternates
          '102': Satisfy
          '103': Sacramento
          '104': Carter One
          '105': Glass Antiqua
          '106': Mr Dafoe
          '107': Lauren
          '108': Oranienbaum
          '109': Scope One
          '110': Mr De Haviland
          '111': Pirou
          '112': Rise
          '113': Sensei
          '114': Yesteryear
          '115': Delius
          '116': Sue Ellen Francisco
          '117': Copse
          '118': Kaushan Script
          '119': Monda
          '120': Pattaya
          '121': Dancing Script
          '122': Reem Kufi
          '123': Playlist Caps
          '124': Beacon
          '125': Reenie Beanie
          '126': Overlock
          '127': Mrs Saint Delafield
          '128': Open Sans Condensed
          '129': Covered By Your Grace
          '130': Varela Round
          '131': Allura
          '132': Buda
          '133': Mikodacs
          '134': Arkana Script
          '135': Nothing You Could Do
          '136': Rochester
          '137': Fredericka The Great
          '138': Port Lligat Slab
          '139': Heebo
          '140': Arimo
          '141': Dawning Of A New Day
          '142': Aldrich
          '143': Neucha
          '144': Source Serif Pro
          '145': Shadows Into Light Two
          '146': Armata
          '147': Cutive Mono
          '148': Merienda One
          '149': Rissa Typeface
          '150': Stalemate
          '151': Assistant
          '152': Pathway Gothic One
          '153': Breathe Press
          '154': Suez One
          '155': Berkshire Swash
          '156': Rakkas
          '157': Pinyon Script
          '158': Pt Sans
          '159': Delius Swash Caps
          '160': Kurale
          '161': Offside
          '162': Clicker Script
          '163': Mate
          '164': Bentham
          '165': Rye
          '166': Lalezar
          '167': Julius Sans One
          '168': Quattrocento
          '169': V T323
          '170': Finger Paint
          '171': La Belle Aurore
          '172': Inconsolata
          '173': Press Start 2P
          '174': Junge
          '175': Iceberg
          '176': Kelly Slab
          '177': Handlee
          '178': Rosario
          '179': Gaegu
          '180': Homemade Apple
          '181': Londrina Shadow
          '182': Meddon
          '183': Elsie Swash Caps
          '184': Share Tech Mono
          '185': Black Ops One
          '186': Fauna One
          '187': Alice
          '188': Arizonia
          '189': Text Me One
          '190': Nova Square
          '191': Bungee Shade
          '192': Just Me Again Down Here
          '193': Jacques Francois Shadow
          '194': Cousine
          '195': Forum
          '196': Architects Daughter
          '197': Cedarville Cursive
          '198': Elsie
          '199': Sirin Stencil
          '200': Vampiro One
          '201': Dorsa
          '202': Marcellus Sc
          '203': Kumar One
          '204': Allerta Stencil
          '205': Courgette
          '206': Rationale
          '207': Gluk Znikomitno25
          '208': Happy Monkey
          '209': Stint Ultra Expanded
          '210': Rock Salt
          '211': Im Fell Dw Pica Sc
          '212': Faster One
          '213': Bellefair
          '214': Wire One
          '215': Geo
          '216': Farsan
          '217': League Script
          '218': Chathura
          '219': Euphoria Script
          '220': Zeyada
          '221': Jura
          '222': Loved By The King
          '223': Give You Glory
          '224': Znikomitno24
          '225': Gluk Glametrix
          '226': Alegreya Sans
          '227': Kristi
          '228': Knewave Outline
          '229': Pangolin
          '230': Okolaks
          '231': Seymour One
          '232': Didact Gothic
          '233': Kavivanar
          '234': Underdog
          '235': Alef
          '236': Italianno
          '237': Londrina Sketch
          '238': Secular One
          '239': Katibeh
          '240': Caesar Dressing
          '241': Lovers Quarrel
          '242': Iceland
          '243': Im Fell
          '244': Waiting For The Sunrise
          '245': David Libre
          '246': Marck Script
          '247': Kumar One Outline
          '248': Znikomit
          '249': Monsieur La Doulaise
          '250': Gruppo
          '251': Monofett
          '252': Gfs Didot
          '253': Petit Formal Script
          '254': Dukomdesign Constantine
          '255': Brusher
          '256': Eb Garamond
          '257': Ewert
          '258': Bilbo
          '259': Raleway Dots
          '260': Gabriela
          '261': Ruslan Display
  - name: font_size
    sequence: float32
  - name: text_align
    sequence:
      class_label:
        names:
          '0': ''
          '1': left
          '2': center
          '3': right
  - name: angle
    sequence: float32
  - name: capitalize
    sequence:
      class_label:
        names:
          '0': 'false'
          '1': 'true'
  - name: line_height
    sequence: float32
  - name: letter_spacing
    sequence: float32
  - name: suitability
    sequence:
      class_label:
        names:
          '0': mobile
  - name: keywords
    sequence: string
  - name: industries
    sequence:
      class_label:
        names:
          '0': marketingAds
          '1': entertainmentLeisure
          '2': services
          '3': retail
          '4': businessFinance
          '5': educationTraining
          '6': foodBeverages
          '7': artCrafts
          '8': fashionStyle
          '9': healthWellness
          '10': ecologyNature
          '11': nonProfitCharity
          '12': techGadgets
          '13': beautyCosmetics
          '14': homeLiving
          '15': familyKids
          '16': travelTourism
          '17': sportFitness
          '18': corporate
          '19': petsAnimals
          '20': realEstateConstruction
          '21': transportDelivery
          '22': religionFaith
          '23': hrRecruitment
  - name: preview
    dtype: image
  - name: cluster_index
    dtype: int64
  splits:
  - name: train
    num_bytes: 5058614277.34
    num_examples: 19095
  - name: validation
    num_bytes: 538185754.149
    num_examples: 1951
  - name: test
    num_bytes: 649876234.375
    num_examples: 2375
  download_size: 6188050025
  dataset_size: 6246676265.864
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
---

# Dataset Card for Crello

## Table of Contents
- [Dataset Card for Crello](#dataset-card-for-crello)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [CanvasVAE github](https://github.com/CyberAgentAILab/canvas-vae)
- **Repository:**
- **Paper:** [CanvasVAE: Learning to Generate Vector Graphic Documents](https://arxiv.org/abs/2108.01249)
- **Leaderboard:**
- **Point of Contact:** [Kota Yamaguchi](https://github.com/kyamagu)

### Dataset Summary

The Crello dataset is compiled for the study of vector graphic documents. The dataset contains document meta-data such as canvas size and pre-rendered elements such as images or text boxes. The original templates were collected from [crello.com](https://crello.com) (now [create.vista.com](https://create.vista.com/)) and converted to a low-resolution format suitable for machine learning analysis.

### Usage

```python
import datasets

dataset = datasets.load_dataset("cyberagent/crello")
```

Old revision is available via `revision` option.

```python
import datasets

dataset = datasets.load_dataset("cyberagent/crello", revision="3.1")
```

### Supported Tasks and Leaderboards

[CanvasVAE](https://arxiv.org/abs/2108.01249) studies unsupervised document generation.

### Languages

Almost all design templates use English.

## Dataset Structure

### Data Instances

Each instance has scalar attributes (canvas) and sequence attributes (elements). Categorical values are stored as integer values. Check `ClassLabel` features of the dataset for the list of categorical labels.

```
{'id': '592d6c2c95a7a863ddcda140',
 'length': 8,
 'group': 4,
 'format': 20,
 'canvas_width': 3,
 'canvas_height': 1,
 'category': 0,
 'title': 'Beauty Blog Ad Woman with Unusual Hairstyle',
 'type': [1, 3, 3, 3, 3, 4, 4, 4],
 'left': [0.0,
  -0.0009259259095415473,
  0.24444444477558136,
  0.5712962746620178,
  0.2657407522201538,
  0.369228333234787,
  0.2739444375038147,
  0.44776931405067444],
 'top': [0.0,
  -0.0009259259095415473,
  0.37037035822868347,
  0.41296297311782837,
  0.41296297311782837,
  0.8946287035942078,
  0.4549448788166046,
  0.40591198205947876],
 'width': [1.0,
  1.0018517971038818,
  0.510185182094574,
  0.16296295821666718,
  0.16296295821666718,
  0.30000001192092896,
  0.4990740716457367,
  0.11388888955116272],
 'height': [1.0,
  1.0018517971038818,
  0.25833332538604736,
  0.004629629664123058,
  0.004629629664123058,
  0.016611294820904732,
  0.12458471953868866,
  0.02657807245850563],
 'opacity': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
 'text': ['', '', '', '', '', 'STAY WITH US', 'FOLLOW', 'PRESS'],
 'font': [0, 0, 0, 0, 0, 152, 172, 152],
 'font_size': [0.0, 0.0, 0.0, 0.0, 0.0, 18.0, 135.0, 30.0],
 'text_align': [0, 0, 0, 0, 0, 2, 2, 2],
 'angle': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
 'capitalize': [0, 0, 0, 0, 0, 0, 0, 0],
 'line_height': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
 'letter_spacing': [0.0, 0.0, 0.0, 0.0, 0.0, 14.0, 12.55813980102539, 3.0],
 'suitability': [0],
 'keywords': ['beautiful',
  'beauty',
  'blog',
  'blogging',
  'caucasian',
  'cute',
  'elegance',
  'elegant',
  'fashion',
  'fashionable',
  'femininity',
  'glamour',
  'hairstyle',
  'luxury',
  'model',
  'stylish',
  'vogue',
  'website',
  'woman',
  'post',
  'instagram',
  'ig',
  'insta',
  'fashion',
  'purple'],
 'industries': [1, 8, 13],
 'color': [[153.0, 118.0, 96.0],
  [34.0, 23.0, 61.0],
  [34.0, 23.0, 61.0],
  [255.0, 255.0, 255.0],
  [255.0, 255.0, 255.0],
  [255.0, 255.0, 255.0],
  [255.0, 255.0, 255.0],
  [255.0, 255.0, 255.0]],
 'image': [<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
  <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
  <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
  <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
  <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
  <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
  <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
  <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>]}
```

To get a label for categorical values, use the `int2str` method:

```python
key = "font"
example = dataset[0]

dataset.features[key].int2str(example[key])
```

### Data Fields

In the following, categorical fields are shown as `categorical` type, but the actual storage is `int64`.

**Canvas attributes**

| Field         | Type        | Shape   | Description                                                       |
| ------------- | ----------- | ------- | ----------------------------------------------------------------- |
| id            | string      | ()      | Template ID from crello.com                                       |
| group         | categorical | ()      | Broad design groups, such as social media posts or blog headers   |
| format        | categorical | ()      | Detailed design formats, such as Instagram post or postcard       |
| category      | categorical | ()      | Topic category of the design, such as holiday celebration         |
| canvas_width  | categorical | ()      | Canvas pixel width                                                |
| canvas_height | categorical | ()      | Canvas pixel height                                               |
| length        | int64       | ()      | Length of elements                                                |
| suitability   | categorical | (None,) | List of display tags, only `mobile` tag exists                    |
| keywords      | string      | (None,) | List of keywords associated to this template                      |
| industries    | categorical | (None,) | List of industry tags like `marketingAds`                         |
| preview       | image       | ()      | Preview image of the template for convenience; only for debugging |
| cluster_index | int64       | ()      | Cluster index used to split the dataset; only for debugging       |

**Element attributes**

| Field          | Type        | Shape     | Description                                                          |
| -------------- | ----------- | --------- | -------------------------------------------------------------------- |
| type           | categorical | (None,)   | Element type, such as vector shape, image, or text                   |
| left           | float32     | (None,)   | Element left position normalized to [0, 1] range w.r.t. canvas_width |
| top            | float32     | (None,)   | Element top position normalized to [0, 1] range w.r.t. canvas_height |
| width          | float32     | (None,)   | Element width normalized to [0, 1] range w.r.t. canvas_width         |
| height         | float32     | (None,)   | Element height normalized to [0, 1] range w.r.t. canvas_height       |
| color          | int64       | (None, 3) | Extracted main RGB color of the element                              |
| opacity        | float32     | (None,)   | Opacity in [0, 1] range                                              |
| image          | image       | (None,)   | Pre-rendered 256x256 preview of the element encoded in PNG format    |
| text           | string      | (None,)   | Text content in UTF-8 encoding for text element                      |
| font           | categorical | (None,)   | Font family name for text element                                    |
| font_size      | float32     | (None,)   | Font size (height) in pixels                                         |
| text_align     | categorical | (None,)   | Horizontal text alignment, left, center, right for text element      |
| angle          | float32     | (None,)   | Element rotation angle (radian) w.r.t. the center of the element     |
| capitalize     | categorical | (None,)   | Binary flag to capitalize letters                                    |
| line_height    | float32     | (None,)   | Scaling parameter to line height, default is 1.0                     |
| letter_spacing | float32     | (None,)   | Adjustment parameter for letter spacing, default is 0.0              |

Note that the color and pre-rendered images do not necessarily accurately reproduce the original design templates. The original template is accessible at the following URL if still available.

```
https://create.vista.com/artboard/?template=<template_id>
```

`left` and `top` can be negative because elements can be bigger than the canvas size.

### Data Splits

The Crello dataset has 3 splits: train, validation, and test. The current split is generated based on appearance-based clustering.

| Split     | Count |
| --------- | ----- |
| train     | 19095 |
| validaton | 1951  |
| test      | 2375  |


### Visualization

Each example can be visualized in the following approach using [`skia-python`](https://kyamagu.github.io/skia-python/). Note the following does not guarantee a similar appearance to the original template. Currently, the quality of text rendering is far from perfect.

```python
import io
from typing import Any, Dict

import numpy as np
import skia


def render(features: datasets.Features, example: Dict[str, Any], max_size: float=512.) -> bytes:
    """Render parsed sequence example onto an image and return as PNG bytes."""
    canvas_width = int(features["canvas_width"].int2str(example["canvas_width"]))
    canvas_height = int(features["canvas_height"].int2str(example["canvas_height"]))

    scale = min(1.0, max_size / canvas_width, max_size / canvas_height)

    surface = skia.Surface(int(scale * canvas_width), int(scale * canvas_height))
    with surface as canvas:
        canvas.scale(scale, scale)
        for index in range(example["length"]):
            pil_image = example["image"][index]
            image = skia.Image.frombytes(
                pil_image.convert('RGBA').tobytes(),
                pil_image.size,
                skia.kRGBA_8888_ColorType)
            left = example["left"][index] * canvas_width
            top = example["top"][index] * canvas_height
            width = example["width"][index] * canvas_width
            height = example["height"][index] * canvas_height
            rect = skia.Rect.MakeXYWH(left, top, width, height)
            paint = skia.Paint(Alphaf=example["opacity"][index], AntiAlias=True)

            angle = example["angle"][index]
            with skia.AutoCanvasRestore(canvas):
                if angle != 0:
                    degree = 180. * angle / np.pi
                    canvas.rotate(degree, left + width / 2., top + height / 2.)
                canvas.drawImageRect(image, rect, paint=paint)

    image = surface.makeImageSnapshot()
    with io.BytesIO() as f:
        image.save(f, skia.kPNG)
        return f.getvalue()
```


## Dataset Creation

### Curation Rationale

The Crello dataset is compiled for the general study of vector graphic documents, with the goal of producing a dataset that offers complete vector graphic information suitable for neural methodologies.

### Source Data

#### Initial Data Collection and Normalization

The dataset is initially scraped from the former `crello.com` and pre-processed to the above format.

#### Who are the source language producers?

While [create.vista.com](https://create.vista.com/) owns those templates, the templates seem to be originally created by a specific group of design studios.

### Personal and Sensitive Information

The dataset does not contain any personal information about the creator but may contain a picture of people in the design template.

## Considerations for Using the Data

### Social Impact of Dataset

This dataset was developed for advancing the general study of vector graphic documents, especially for generative systems of graphic design. Successful utilization might enable the automation of creative workflow that human designers get involved in.

### Discussion of Biases

The templates contained in the dataset reflect the biases appearing in the source data, which could present gender biases in specific design categories.

### Other Known Limitations

Due to the unknown data specification of the source data, the color and pre-rendered images do not necessarily accurately reproduce the original design templates. The original template is accessible at the following URL if still available.

    https://create.vista.com/artboard/?template=<template_id>

## Additional Information

### Dataset Curators

The Crello dataset was developed by [Kota Yamaguchi](https://github.com/kyamagu).

### Licensing Information

The origin of the dataset is [create.vista.com](https://create.vista.com) (formally, `crello.com`).
The distributor ("We") do not own the copyrights of the original design templates.
By using the Crello dataset, the user of this dataset ("You") must agree to the
[VistaCreate License Agreements](https://create.vista.com/faq/legal/licensing/license_agreements/).

The dataset is distributed under [CDLA-Permissive-2.0 license](https://cdla.dev/permissive-2-0/).

**Note**

We do not re-distribute the original files as we are not allowed by terms.

### Citation Information

    @article{yamaguchi2021canvasvae,
      title={CanvasVAE: Learning to Generate Vector Graphic Documents},
      author={Yamaguchi, Kota},
      journal={ICCV},
      year={2021}
    }

### Releases

4.0.0: v4 release (Dec 5, 2023)

- Change the dataset split based on the template appearance to avoid near-duplicates: no compatibility with v3.
- Class labels have been reordered: no compabilitity with v3.
- Small improvement to font rendering.

3.1: bugfix release (Feb 16, 2023)

- Fix a bug that ignores newline characters in some of the texts.

3.0: v3 release (Feb 13, 2023)

- Migrate to Hugging Face Hub.
- Fix various text rendering bugs.
- Change split generation criteria for avoiding near-duplicates: no compatibility with v2 splits.
- Incorporate a motion picture thumbnail in templates.
- Add `title`, `keywords`, `suitability`, and `industries` canvas attributes.
- Add `capitalize`, `line_height`, and `letter_spacing` element attributes.

2.0: v2 release (May 26, 2022)

- Add `text`, `font`, `font_size`, `text_align`, and `angle` element attributes.
- Include rendered text element in `image_bytes`.

1.0: v1 release (Aug 24, 2021)


### Contributions

Thanks to [@kyamagu](https://github.com/kyamagu) for adding this dataset.