daman1209arora
commited on
Commit
•
8ce189e
1
Parent(s):
1cabc3e
Upload 3 files
Browse files- compute_metrics.py +213 -0
- data.zip +3 -0
- inference.py +179 -0
compute_metrics.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import json
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
QUES_TYPES = ['MCQ','MCQ(multiple)','Integer','Numeric']
|
6 |
+
|
7 |
+
models = [
|
8 |
+
"Random",
|
9 |
+
"GPT3_normal",
|
10 |
+
"GPT3.5_normal",
|
11 |
+
"GPT4_normal",
|
12 |
+
"GPT4_CoT",
|
13 |
+
'GPT4_CoT_self_refine',
|
14 |
+
"GPT4_CoT+OneShot",
|
15 |
+
"GPT4_CoT+SC@8"
|
16 |
+
]
|
17 |
+
|
18 |
+
def get_aggregate(answers, question_type, single_threshold=None, multiple_threshold=None):
|
19 |
+
# Pass optional \tau_{single} and \tau_{multiple} parameters if needed for evaluation under risk.
|
20 |
+
if question_type == 'MCQ(multiple)' or question_type == 'MCQ':
|
21 |
+
letter_to_idx = {'A': 0, 'B': 1, 'C': 2, 'D': 3, 'None': 4}
|
22 |
+
idx_to_letter = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'None'}
|
23 |
+
abcd = [0,0,0,0,0]
|
24 |
+
for ans in answers:
|
25 |
+
if ans == 'None':
|
26 |
+
abcd[letter_to_idx[ans]] += 1
|
27 |
+
else:
|
28 |
+
for c in ans:
|
29 |
+
abcd[letter_to_idx[c]] += 1
|
30 |
+
if question_type == 'MCQ':
|
31 |
+
abcd = abcd[:-1]
|
32 |
+
answer = idx_to_letter[np.argmax(abcd)]
|
33 |
+
if single_threshold is not None:
|
34 |
+
answer = answer if abcd[np.argmax(abcd)]/len(answers) >= single_threshold else "None"
|
35 |
+
else:
|
36 |
+
if multiple_threshold is not None:
|
37 |
+
options_selected = [idx_to_letter[x] for x in range(len(abcd)) if abcd[x] >= len(answers)*multiple_threshold and idx_to_letter[x] != 'None']
|
38 |
+
else:
|
39 |
+
options_selected = [idx_to_letter[x] for x in range(len(abcd)) if abcd[x] >= len(answers)/2 and idx_to_letter[x] != 'None']
|
40 |
+
if len(options_selected) == 0:
|
41 |
+
answer = "None"
|
42 |
+
else:
|
43 |
+
answer = ''.join(sorted(options_selected))
|
44 |
+
else: # For integer and numeric answers, choose the most common response(other than None)
|
45 |
+
while "None" in answers:
|
46 |
+
answers.remove("None")
|
47 |
+
if len(answers) == 0:
|
48 |
+
answers = ["None"]
|
49 |
+
unique, counts = np.unique(answers, return_counts=True)
|
50 |
+
answer = unique[np.argmax(counts)]
|
51 |
+
return answer
|
52 |
+
|
53 |
+
|
54 |
+
def compute_score(gold, resp, question_type, year):
|
55 |
+
assert question_type in QUES_TYPES
|
56 |
+
if question_type == 'MCQ(multiple)':
|
57 |
+
gold = set([c for c in ['A', 'B', 'C', 'D'] if c in gold])
|
58 |
+
resp = set([c for c in ['A', 'B', 'C', 'D'] if c in resp])
|
59 |
+
if resp == gold :
|
60 |
+
return 1.0
|
61 |
+
else:
|
62 |
+
if len(resp-gold) == 0:
|
63 |
+
return 0.25*len(resp)
|
64 |
+
return 0.0 # If response contains something not in the gold set, give 0
|
65 |
+
elif question_type == 'MCQ':
|
66 |
+
gold = set([c for c in ['A', 'B', 'C', 'D'] if c in gold])
|
67 |
+
resp = set([c for c in ['A', 'B', 'C', 'D'] if c in resp])
|
68 |
+
return int(gold == resp)
|
69 |
+
else:
|
70 |
+
if resp == "None":
|
71 |
+
return 0.0
|
72 |
+
g, r = float(gold), float(resp)
|
73 |
+
return int(abs(g-r) <= 0.01)
|
74 |
+
|
75 |
+
|
76 |
+
def construct_responses_table():
|
77 |
+
responses = {}
|
78 |
+
for model in models:
|
79 |
+
if "SC@" in model:
|
80 |
+
pass
|
81 |
+
elif "Random" == model:
|
82 |
+
pass
|
83 |
+
else:
|
84 |
+
responses[model] = json.load(open(f"data/responses/{model}_responses/responses.json"))
|
85 |
+
dataset = json.load(open('data/dataset.json'))
|
86 |
+
extracts = {
|
87 |
+
"Type": [],
|
88 |
+
"Index": [],
|
89 |
+
"Description": [],
|
90 |
+
"Subject": [],
|
91 |
+
"Gold": [],
|
92 |
+
}
|
93 |
+
for model in models:
|
94 |
+
if "Random" == model:
|
95 |
+
continue
|
96 |
+
else:
|
97 |
+
extracts[f'{model}'] = []
|
98 |
+
|
99 |
+
|
100 |
+
for i, q in enumerate(dataset):
|
101 |
+
extracts['Type'].append(q['type'])
|
102 |
+
extracts['Index'].append(q['index'])
|
103 |
+
extracts['Description'].append(q['description'])
|
104 |
+
extracts['Subject'].append(q['subject'])
|
105 |
+
extracts['Gold'].append(q['gold'])
|
106 |
+
|
107 |
+
for model in models:
|
108 |
+
if "SC@" in model:
|
109 |
+
continue
|
110 |
+
elif "Random" == model:
|
111 |
+
continue
|
112 |
+
else:
|
113 |
+
try:
|
114 |
+
assert q['question'] == responses[model][i]['question']
|
115 |
+
except:
|
116 |
+
|
117 |
+
print(q['question'])
|
118 |
+
breakpoint()
|
119 |
+
print(responses[model][i]['question'])
|
120 |
+
breakpoint()
|
121 |
+
try:
|
122 |
+
extracts[f'{model}'].append(responses[model][i]['extract'])
|
123 |
+
except:
|
124 |
+
print(extracts)
|
125 |
+
|
126 |
+
if "GPT4_CoT+SC" in model:
|
127 |
+
num_responses = int(model.split("@")[1])
|
128 |
+
for i, q in enumerate(dataset):
|
129 |
+
sc_responses = json.load(open('data/responses/GPT4_CoT+SC_responses/responses.json'))
|
130 |
+
resp = sc_responses[i]
|
131 |
+
answers = [resp['GPT4_CoT+SC_response']['choices'][k]['extract'] for k in range(num_responses)]
|
132 |
+
answer = get_aggregate(answers, resp['type'])
|
133 |
+
|
134 |
+
extracts[f'{model}'].append(answer)
|
135 |
+
pd.DataFrame(extracts).to_csv('results/extracts.csv', index=False)
|
136 |
+
|
137 |
+
return pd.read_csv('results/extracts.csv',dtype=str)
|
138 |
+
|
139 |
+
|
140 |
+
responses = construct_responses_table()
|
141 |
+
output = []
|
142 |
+
for i, response in responses.iterrows():
|
143 |
+
out = {}
|
144 |
+
out["Type"] = response["Type"]
|
145 |
+
out["Index"] = response["Index"]
|
146 |
+
out["Description"] = response["Description"]
|
147 |
+
out["Subject"] = response["Subject"]
|
148 |
+
gold = response["Gold"]
|
149 |
+
out["Gold"] = gold
|
150 |
+
if response["Type"] == "MCQ":
|
151 |
+
out["Random"] = 0.25
|
152 |
+
elif response["Type"] == "MCQ(multiple)":
|
153 |
+
num_ans = len(gold)
|
154 |
+
if num_ans == 1:
|
155 |
+
out["Random"] = 0.0625
|
156 |
+
elif num_ans == 2:
|
157 |
+
out["Random"] = 0.09375
|
158 |
+
elif num_ans == 3:
|
159 |
+
out["Random"] = 0.203125
|
160 |
+
elif num_ans == 4:
|
161 |
+
out["Random"] = 0.5
|
162 |
+
else:
|
163 |
+
out["Random"] = 0
|
164 |
+
|
165 |
+
for model in models:
|
166 |
+
if model == "Random":
|
167 |
+
continue
|
168 |
+
resp = response[f"{model}"]
|
169 |
+
if not isinstance(resp, str):
|
170 |
+
resp = "None"
|
171 |
+
out[f"{model}"] = resp
|
172 |
+
out[f'{model}'] = compute_score(gold,resp,out["Type"],out["Description"])
|
173 |
+
out[f'Max'] = 1
|
174 |
+
output.append(out)
|
175 |
+
|
176 |
+
df = pd.DataFrame()
|
177 |
+
df['Type'] = [x['Type'] for x in output]
|
178 |
+
df['Index'] = [x['Index'] for x in output]
|
179 |
+
df['Description'] = [x['Description'] for x in output]
|
180 |
+
df['Subject'] = [x['Subject'] for x in output]
|
181 |
+
df['Gold'] = [x['Gold'] for x in output]
|
182 |
+
df['Random'] = [x['Random'] for x in output]
|
183 |
+
for model in models:
|
184 |
+
df[f"{model}"] = [
|
185 |
+
x.get(f"{model}", "None") for x in output]
|
186 |
+
df[f"{model}"] = [x.get(f"{model}", 0) for x in output]
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
df.to_csv(f"results/scores.csv", index=False)
|
191 |
+
|
192 |
+
modes = ['overall', 'type_wise', 'subject_wise']
|
193 |
+
for mode in modes:
|
194 |
+
col_dict = {}
|
195 |
+
for model in models:
|
196 |
+
col_dict[f'{model}'] = ['mean']
|
197 |
+
|
198 |
+
if mode != 'overall':
|
199 |
+
col_dict[f'{models[0]}'].insert(0,'count')
|
200 |
+
|
201 |
+
if mode == 'overall':
|
202 |
+
grouped_multiple = df.agg(col_dict)
|
203 |
+
elif mode == 'type_wise':
|
204 |
+
grouped_multiple = df.groupby(['Type']).agg(col_dict)
|
205 |
+
elif mode == 'subject_wise':
|
206 |
+
grouped_multiple = df.groupby(['Subject']).agg(col_dict)
|
207 |
+
|
208 |
+
if mode != 'overall':
|
209 |
+
grouped_multiple.columns = ['count'] + models
|
210 |
+
grouped_multiple = grouped_multiple.reset_index()
|
211 |
+
grouped_multiple = grouped_multiple.round(3)
|
212 |
+
grouped_multiple.to_csv(f"results/aggregated_scores_{mode}.csv", index=False)
|
213 |
+
print("Done!")
|
data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9db3aa734a3e5b7e02cead16c17b6687ff363d8a4d1015395f04f28ace33a07a
|
3 |
+
size 8069293
|
inference.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from tqdm import tqdm
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import openai
|
6 |
+
from tqdm import tqdm
|
7 |
+
import argparse
|
8 |
+
import multiprocessing
|
9 |
+
from copy import deepcopy
|
10 |
+
from functools import partial
|
11 |
+
|
12 |
+
prompt_library = {
|
13 |
+
"MCQ": "In this problem, only one option will be correct. Give a detailed solution and end the solution with the final answer.",
|
14 |
+
"MCQ(multiple)": "In this problem, multiple options can be correct. Give a detailed solution and end the solution with the final answer.",
|
15 |
+
"Integer": "In this problem, the final answer will be a non-negative integer. Give a detailed solution and end the solution with the final answer.",
|
16 |
+
"Numeric": "In this problem, the final will be a numeric value. Give the numerical answer correct upto the 2nd decimal digit. Give a detailed solution and end the solution with the final answer.",
|
17 |
+
}
|
18 |
+
|
19 |
+
few_shot_examples = json.load(open('data/few_shot_examples.json'))
|
20 |
+
|
21 |
+
|
22 |
+
def write_in_file(response_file, response_dict, question, mode, model_nickname):
|
23 |
+
if os.path.exists(response_file):
|
24 |
+
with open(response_file, 'r') as infile:
|
25 |
+
responses = json.load(infile)
|
26 |
+
else:
|
27 |
+
responses = []
|
28 |
+
|
29 |
+
found = False
|
30 |
+
for i, old_resp in enumerate(responses):
|
31 |
+
if old_resp['description'] == question['description'] and old_resp['index'] == question['index']:
|
32 |
+
responses[i][f"{model_nickname}_{mode}_response" ] = response_dict[f"{model_nickname}_{mode}_response"]
|
33 |
+
found = True
|
34 |
+
break
|
35 |
+
|
36 |
+
if not found:
|
37 |
+
responses.append(response_dict)
|
38 |
+
|
39 |
+
json.dump(sorted(responses, key=lambda elem: (elem['description'], elem['index'])), open(response_file, 'w'), indent=4)
|
40 |
+
print(f"####UPDATED {response_file}, Current size : {len(responses)}####")
|
41 |
+
|
42 |
+
|
43 |
+
def get_response(question,model, model_nickname, mode, response_file, lock):
|
44 |
+
|
45 |
+
response_dict = deepcopy(question)
|
46 |
+
prefix_prompt = prompt_library[question['type']]
|
47 |
+
suffix_prompt = ""
|
48 |
+
|
49 |
+
if mode in ['CoT', 'CoT+SC', 'CoT+Exam'] :
|
50 |
+
suffix_prompt = "Let's think step by step.\n"
|
51 |
+
|
52 |
+
ques = question["question"]
|
53 |
+
stripped_ques = ques.replace("\n\n", "\n").strip()
|
54 |
+
if mode in ['CoT+OneShot', 'CoT', 'CoT+SC', 'CoT+Exam']:
|
55 |
+
if mode == 'CoT+Exam':
|
56 |
+
if response_dict['type'] in ['MCQ', 'MCQ(multiple)']:
|
57 |
+
if response_dict['type'] == 'MCQ':
|
58 |
+
exam_prompt = "If the answer is wrong, you'll be given -1 marks. If the answer is correct, you'll be given +3 marks. If you're unsure of the answer, you can skip the question, and you'll be given 0 marks."
|
59 |
+
else:
|
60 |
+
exam_prompt = "If any of the options in the final answer is wrong, you'll be given -2 marks. If all the options are correct, you'll be given +4 marks. If some of the options are correct, you'll be given +1 for each correct option. If you're unsure of the answer, you can skip the question, and you'll be given 0 marks."
|
61 |
+
prompt = prefix_prompt + " " + exam_prompt + "\n\n" + "Problem: " + stripped_ques + "\nSolution: " + suffix_prompt
|
62 |
+
else:
|
63 |
+
print("No point doing this for Numeric/Integer questions since there is no negative marking...")
|
64 |
+
breakpoint()
|
65 |
+
else:
|
66 |
+
if mode == 'CoT+OneShot':
|
67 |
+
ex = few_shot_examples[question['subject']][question['type']]
|
68 |
+
prompt = prefix_prompt + "\n\n" + "Problem: " + ex['problem'] + "\nSolution: " + ex['solution'] + "\n\n" + "Problem: " + stripped_ques + "\nSolution: "
|
69 |
+
else:
|
70 |
+
prompt = prefix_prompt + "\n\n" + "Problem: " + stripped_ques + "\nSolution: " + suffix_prompt
|
71 |
+
else:
|
72 |
+
prompt = prefix_prompt + "\n\n" + "Problem: " + stripped_ques + suffix_prompt
|
73 |
+
prompt = prompt.strip()
|
74 |
+
response_dict[f"prompt"] = prompt
|
75 |
+
num_retries = 0
|
76 |
+
print(f'Question: {question["description"]}, Index: {question["index"]}, Model: {model_nickname}, Mode: {mode}, query begins')
|
77 |
+
|
78 |
+
while True:
|
79 |
+
try:
|
80 |
+
if model in ["text-davinci-003", "text-davinci-002", 'davinci-002']:
|
81 |
+
response = openai.Completion.create(
|
82 |
+
model=model,
|
83 |
+
prompt=prompt,
|
84 |
+
max_tokens=2048,
|
85 |
+
temperature=0 if mode in ['CoT', 'normal', 'CoT+Exam'] else 0.5,
|
86 |
+
n=1 if mode in ['CoT', 'normal', 'CoT+Exam'] else 3
|
87 |
+
)
|
88 |
+
else:
|
89 |
+
response = openai.ChatCompletion.create(
|
90 |
+
model=model,
|
91 |
+
messages=[
|
92 |
+
{"role": "system", "content": ""},
|
93 |
+
{"role": "user", "content": prompt}
|
94 |
+
],
|
95 |
+
max_tokens=2048,
|
96 |
+
temperature=0 if mode in ['CoT+OneShot', 'CoT', 'normal', 'CoT+Exam'] else 0.5,
|
97 |
+
n=1 if mode in ['CoT+OneShot', 'CoT', 'normal', 'CoT+Exam'] else 8
|
98 |
+
)
|
99 |
+
|
100 |
+
lock.acquire()
|
101 |
+
response_dict[f"{model_nickname}_{mode}_response"] = response
|
102 |
+
write_in_file(response_file, response_dict, question, mode, model_nickname)
|
103 |
+
lock.release()
|
104 |
+
break
|
105 |
+
|
106 |
+
except Exception as e:
|
107 |
+
num_retries += 1
|
108 |
+
print("Failure!", e)
|
109 |
+
return
|
110 |
+
|
111 |
+
def main():
|
112 |
+
'''
|
113 |
+
The code can restart from the already done questions in case there is a failure midpoint.
|
114 |
+
'''
|
115 |
+
args = argparse.ArgumentParser()
|
116 |
+
args.add_argument('--model', default='gpt-3.5-turbo')
|
117 |
+
args.add_argument('--data', default='data/dataset.json')
|
118 |
+
args.add_argument('--mode', default='normal')
|
119 |
+
args.add_argument('--num_procs', default=1, type=int)
|
120 |
+
args.add_argument('--max_questions', default=1, type=int)
|
121 |
+
args = args.parse_args()
|
122 |
+
|
123 |
+
openai.organization = os.getenv("OPENAI_ORG")
|
124 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
125 |
+
|
126 |
+
model_nickname = {
|
127 |
+
"davinci-002": "davinci-002",
|
128 |
+
"text-davinci-003": "GPT3",
|
129 |
+
"gpt-3.5-turbo": "GPT3.5",
|
130 |
+
"gpt-4-0613": "GPT4_0613",
|
131 |
+
"gpt-4-0314": "GPT4"
|
132 |
+
}
|
133 |
+
assert args.model in model_nickname.keys()
|
134 |
+
assert args.mode in ['normal', 'CoT', 'CoT+OneShot', 'CoT+Exam', 'CoT+SC']
|
135 |
+
|
136 |
+
out_file_dir = f'responses/{model_nickname[args.model]}_{args.mode}_responses'
|
137 |
+
out_file = os.path.join(out_file_dir, 'responses.json')
|
138 |
+
questions = json.load(open(args.data))
|
139 |
+
|
140 |
+
rem_ques = []
|
141 |
+
|
142 |
+
if os.path.exists(out_file):
|
143 |
+
|
144 |
+
for question in tqdm(questions[:args.max_questions]):
|
145 |
+
if os.path.exists(out_file):
|
146 |
+
with open(out_file, 'r') as infile:
|
147 |
+
responses = json.load(infile)
|
148 |
+
found = False
|
149 |
+
|
150 |
+
for i, old_resp in enumerate(responses):
|
151 |
+
if question['type'] in ['Numeric', 'Integer'] and args.mode == 'CoT+Exam':
|
152 |
+
found = True
|
153 |
+
if old_resp['description'] == question['description'] and old_resp['index'] == question['index']:
|
154 |
+
|
155 |
+
found = all([old_resp.get(
|
156 |
+
f"{model_nickname[args.model]}_{args.mode}_response", False) for model in [args.model]])
|
157 |
+
if found:
|
158 |
+
print("This question has already been done")
|
159 |
+
else:
|
160 |
+
rem_ques.append(question)
|
161 |
+
else:
|
162 |
+
os.makedirs(out_file_dir, exist_ok=True)
|
163 |
+
if args.mode == 'CoT+Exam':
|
164 |
+
rem_ques = []
|
165 |
+
for q in questions:
|
166 |
+
if q['type'] in ['MCQ', 'MCQ(multiple)']:
|
167 |
+
rem_ques.append(q)
|
168 |
+
else:
|
169 |
+
rem_ques = questions[:args.max_questions]
|
170 |
+
print(f"There are {len(rem_ques)} problems remaining")
|
171 |
+
|
172 |
+
manager = multiprocessing.Manager()
|
173 |
+
lock = manager.Lock()
|
174 |
+
pool = multiprocessing.Pool(args.num_procs)
|
175 |
+
f = partial(get_response, model=args.model, model_nickname=model_nickname[args.model], mode=args.mode, response_file=out_file, lock=lock)
|
176 |
+
pool.map(f, rem_ques)
|
177 |
+
|
178 |
+
if __name__ == '__main__':
|
179 |
+
main()
|