File size: 159,855 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 |
# File: segment-anything-2-coreml-conversion/coreml/export.py import argparse import os import enum from typing import List, Optional, Tuple import ast import torch import numpy as np from PIL import Image from PIL.Image import Resampling import coremltools as ct from coremltools.converters.mil._deployment_compatibility import AvailableTarget from coremltools import ComputeUnit from coremltools.converters.mil.mil.passes.defs.quantization import ComputePrecision from coremltools.converters.mil import register_torch_op from coremltools.converters.mil.mil import Builder as mb from sam2.sam2_image_predictor import SAM2ImagePredictor class SAM2Variant(enum.Enum): Tiny = 'tiny' Small = 'small' BasePlus = 'base-plus' Large = 'large' def fmt(self): if self == SAM2Variant.BasePlus: return 'BasePlus' return self.value.capitalize() SAM2_HW = (1024, 1024) def parse_args(parser: argparse.ArgumentParser) -> argparse.ArgumentParser: parser.add_argument('--output-dir', type=str, default='.', help='Provide location to save exported models.') parser.add_argument('--variant', type=lambda x: getattr(SAM2Variant, x), choices=[variant for variant in SAM2Variant], default=SAM2Variant.Small, help='SAM2 variant to export.') parser.add_argument('--points', type=str, help="List of 2D points, e.g., '[[10,20], [30,40]]'") parser.add_argument('--boxes', type=str, help="List of 2D bounding boxes, e.g., '[[10,20,30,40], [50,60,70,80]]'") parser.add_argument('--labels', type=str, help='List of binary labels for each points entry, denoting foreground (1) or background (0).') parser.add_argument('--min-deployment-target', type=lambda x: getattr(AvailableTarget, x), choices=[target for target in AvailableTarget], default=AvailableTarget.iOS17, help='Minimum deployment target for CoreML model.') parser.add_argument('--compute-units', type=lambda x: getattr(ComputeUnit, x), choices=[cu for cu in ComputeUnit], default=ComputeUnit.ALL, help='Which compute units to target for CoreML model.') parser.add_argument('--precision', type=lambda x: getattr(ComputePrecision, x), choices=[p for p in ComputePrecision], default=ComputePrecision.FLOAT16, help='Precision to use for quantization.') return parser @register_torch_op def upsample_bicubic2d(context, node): x = context[node.inputs[0]] output_size = context[node.inputs[1]].val scale_factor_height = output_size[0] / x.shape[2] scale_factor_width = output_size[1] / x.shape[3] align_corners = context[node.inputs[2]].val x = mb.upsample_bilinear(x=x, scale_factor_height=scale_factor_height, scale_factor_width=scale_factor_width, align_corners=align_corners, name=node.name) context.add(x) class SAM2ImageEncoder(torch.nn.Module): def __init__(self, model: SAM2ImagePredictor): super().__init__() self.model = model @torch.no_grad() def forward(self, image): (img_embedding, feats_s0, feats_s1) = self.model.encode_image_raw(image) return (img_embedding, feats_s0, feats_s1) def validate_image_encoder(model: ct.models.MLModel, ground_model: SAM2ImagePredictor, image: Image.Image): prepared_image = image.resize(SAM2_HW, Resampling.BILINEAR) predictions = model.predict({'image': prepared_image}) image = np.array(image.convert('RGB')) tch_image = ground_model._transforms(image) tch_image = tch_image[None, ...].to('cpu') (ground_embedding, ground_feats_s0, ground_feats_s1) = ground_model.encode_image_raw(tch_image) (ground_embedding, ground_feats_s0, ground_feats_s1) = (ground_embedding.numpy(), ground_feats_s0.numpy(), ground_feats_s1.numpy()) img_max_diff = np.max(np.abs(predictions['image_embedding'] - ground_embedding)) img_avg_diff = np.mean(np.abs(predictions['image_embedding'] - ground_embedding)) s0_max_diff = np.max(np.abs(predictions['feats_s0'] - ground_feats_s0)) s0_avg_diff = np.mean(np.abs(predictions['feats_s0'] - ground_feats_s0)) s1_max_diff = np.max(np.abs(predictions['feats_s1'] - ground_feats_s1)) s1_avg_diff = np.mean(np.abs(predictions['feats_s1'] - ground_feats_s1)) print(f'Image Embedding: Max Diff: {img_max_diff:.4f}, Avg Diff: {img_avg_diff:.4f}') print(f'Feats S0: Max Diff: {s0_max_diff:.4f}, Avg Diff: {s0_avg_diff:.4f}') print(f'Feats S1: Max Diff: {s1_max_diff:.4f}, Avg Diff: {s1_avg_diff:.4f}') def validate_prompt_encoder(model: ct.models.MLModel, ground_model: SAM2ImagePredictor, unnorm_coords, labels): predictions = model.predict({'points': unnorm_coords, 'labels': labels}) (ground_sparse, ground_dense) = ground_model.encode_points_raw(unnorm_coords, labels) ground_sparse = ground_sparse.numpy() ground_dense = ground_dense.numpy() sparse_max_diff = np.max(np.abs(predictions['sparse_embeddings'] - ground_sparse)) sparse_avg_diff = np.mean(np.abs(predictions['sparse_embeddings'] - ground_sparse)) dense_max_diff = np.max(np.abs(predictions['dense_embeddings'] - ground_dense)) dense_avg_diff = np.mean(np.abs(predictions['dense_embeddings'] - ground_dense)) print('Sparse Embeddings: Max Diff: {:.4f}, Avg Diff: {:.4f}'.format(sparse_max_diff, sparse_avg_diff)) print('Dense Embeddings: Max Diff: {:.4f}, Avg Diff: {:.4f}'.format(dense_max_diff, dense_avg_diff)) assert np.allclose(predictions['sparse_embeddings'], ground_sparse, atol=0.009) assert np.allclose(predictions['dense_embeddings'], ground_dense, atol=0.001) def validate_mask_decoder(model: ct.models.MLModel, ground_model: SAM2ImagePredictor, image_embedding, sparse_embedding, dense_embedding, feats_s0, feats_s1, precision: ComputePrecision): predictions = model.predict({'image_embedding': image_embedding, 'sparse_embedding': sparse_embedding, 'dense_embedding': dense_embedding, 'feats_s0': feats_s0, 'feats_s1': feats_s1}) (ground_masks, scores) = ground_model.decode_masks_raw(image_embedding, sparse_embedding, dense_embedding, [feats_s0, feats_s1]) ground_masks = ground_masks.numpy() masks_max_diff = np.max(np.abs(predictions['low_res_masks'] - ground_masks)) masks_avg_diff = np.mean(np.abs(predictions['low_res_masks'] - ground_masks)) print('Masks: Max Diff: {:.4f}, Avg Diff: {:.4f}'.format(masks_max_diff, masks_avg_diff)) atol = 0.07 if precision == ComputePrecision.FLOAT32 else 0.3 assert np.allclose(predictions['low_res_masks'], ground_masks, atol=atol) print(f"Scores: {predictions['scores']}, ground: {scores}") class SAM2PointsEncoder(torch.nn.Module): def __init__(self, model: SAM2ImagePredictor): super().__init__() self.model = model @torch.no_grad() def forward(self, points, labels): prompt_embedding = self.model.encode_points_raw(points, labels) return prompt_embedding class SAM2MaskDecoder(torch.nn.Module): def __init__(self, model: SAM2ImagePredictor): super().__init__() self.model = model @torch.no_grad() def forward(self, image_embedding, sparse_embedding, dense_embedding, feats_s0, feats_s1): (low_res_masks, iou_scores) = self.model.decode_masks_raw(image_embedding, sparse_embedding, dense_embedding, [feats_s0, feats_s1]) return (low_res_masks, iou_scores) def export_image_encoder(image_predictor: SAM2ImagePredictor, variant: SAM2Variant, output_dir: str, min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision) -> Tuple[int, int]: image = Image.open('../notebooks/images/truck.jpg') image = np.array(image.convert('RGB')) orig_hw = (image.shape[0], image.shape[1]) prepared_image = image_predictor._transforms(image) prepared_image = prepared_image[None, ...].to('cpu') traced_model = torch.jit.trace(SAM2ImageEncoder(image_predictor).eval(), prepared_image) scale = 1 / (0.226 * 255.0) bias = [-0.485 / 0.229, -0.456 / 0.224, -0.406 / 0.225] mlmodel = ct.convert(traced_model, inputs=[ct.ImageType(name='image', shape=(1, 3, SAM2_HW[0], SAM2_HW[1]), scale=scale, bias=bias)], outputs=[ct.TensorType(name='image_embedding'), ct.TensorType(name='feats_s0'), ct.TensorType(name='feats_s1')], minimum_deployment_target=min_target, compute_units=compute_units, compute_precision=precision) image = Image.open('../notebooks/images/truck.jpg') validate_image_encoder(mlmodel, image_predictor, image) output_path = os.path.join(output_dir, f'SAM2{variant.fmt()}ImageEncoder{precision.value.upper()}') mlmodel.save(output_path + '.mlpackage') return orig_hw def export_points_prompt_encoder(image_predictor: SAM2ImagePredictor, variant: SAM2Variant, input_points: List[List[float]], input_labels: List[int], orig_hw: tuple, output_dir: str, min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision): image_predictor.model.sam_prompt_encoder.eval() points = torch.tensor(input_points, dtype=torch.float32) labels = torch.tensor(input_labels, dtype=torch.int32) unnorm_coords = image_predictor._transforms.transform_coords(points, normalize=True, orig_hw=orig_hw) (unnorm_coords, labels) = (unnorm_coords[None, ...], labels[None, ...]) traced_model = torch.jit.trace(SAM2PointsEncoder(image_predictor), (unnorm_coords, labels)) points_shape = ct.Shape(shape=(1, ct.RangeDim(lower_bound=1, upper_bound=16), 2)) labels_shape = ct.Shape(shape=(1, ct.RangeDim(lower_bound=1, upper_bound=16))) mlmodel = ct.convert(traced_model, inputs=[ct.TensorType(name='points', shape=points_shape), ct.TensorType(name='labels', shape=labels_shape)], outputs=[ct.TensorType(name='sparse_embeddings'), ct.TensorType(name='dense_embeddings')], minimum_deployment_target=min_target, compute_units=compute_units, compute_precision=precision) validate_prompt_encoder(mlmodel, image_predictor, unnorm_coords, labels) output_path = os.path.join(output_dir, f'SAM2{variant.fmt()}PromptEncoder{precision.value.upper()}') mlmodel.save(output_path + '.mlpackage') def export_mask_decoder(image_predictor: SAM2ImagePredictor, variant: SAM2Variant, output_dir: str, min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision): image_predictor.model.sam_mask_decoder.eval() s0 = torch.randn(1, 32, 256, 256) s1 = torch.randn(1, 64, 128, 128) image_embedding = torch.randn(1, 256, 64, 64) sparse_embedding = torch.randn(1, 3, 256) dense_embedding = torch.randn(1, 256, 64, 64) traced_model = torch.jit.trace(SAM2MaskDecoder(image_predictor), (image_embedding, sparse_embedding, dense_embedding, s0, s1)) traced_model.eval() mlmodel = ct.convert(traced_model, inputs=[ct.TensorType(name='image_embedding', shape=[1, 256, 64, 64]), ct.TensorType(name='sparse_embedding', shape=ct.EnumeratedShapes(shapes=[[1, i, 256] for i in range(2, 16)])), ct.TensorType(name='dense_embedding', shape=[1, 256, 64, 64]), ct.TensorType(name='feats_s0', shape=[1, 32, 256, 256]), ct.TensorType(name='feats_s1', shape=[1, 64, 128, 128])], outputs=[ct.TensorType(name='low_res_masks'), ct.TensorType(name='scores')], minimum_deployment_target=min_target, compute_units=compute_units, compute_precision=precision) validate_mask_decoder(mlmodel, image_predictor, image_embedding, sparse_embedding, dense_embedding, s0, s1, precision) output_path = os.path.join(output_dir, f'SAM2{variant.fmt()}MaskDecoder{precision.value.upper()}') mlmodel.save(output_path + '.mlpackage') Point = Tuple[float, float] Box = Tuple[float, float, float, float] def export(output_dir: str, variant: SAM2Variant, points: Optional[List[Point]], boxes: Optional[List[Box]], labels: Optional[List[int]], min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision): os.makedirs(output_dir, exist_ok=True) device = torch.device('cpu') sam2_checkpoint = f'facebook/sam2-hiera-{variant.value}' with torch.no_grad(): img_predictor = SAM2ImagePredictor.from_pretrained(sam2_checkpoint, device=device) img_predictor.model.eval() orig_hw = export_image_encoder(img_predictor, variant, output_dir, min_target, compute_units, precision) if boxes is not None and points is None: raise ValueError('Boxes are not supported yet') else: export_points_prompt_encoder(img_predictor, variant, points, labels, orig_hw, output_dir, min_target, compute_units, precision) export_mask_decoder(img_predictor, variant, output_dir, min_target, compute_units, precision) if __name__ == '__main__': parser = argparse.ArgumentParser(description='SAM2 -> CoreML CLI') parser = parse_args(parser) args = parser.parse_args() (points, boxes, labels) = (None, None, None) if args.points: points = [tuple(p) for p in ast.literal_eval(args.points)] if args.boxes: boxes = [tuple(b) for b in ast.literal_eval(args.boxes)] if args.labels: labels = ast.literal_eval(args.labels) if boxes and points: raise ValueError('Cannot provide both points and boxes') if points: if not isinstance(points, list) or not all((isinstance(p, tuple) and len(p) == 2 for p in points)): raise ValueError('Points must be a tuple of 2D points') if labels: if not isinstance(labels, list) or not all((isinstance(l, int) and l in [0, 1] for l in labels)): raise ValueError('Labels must denote foreground (1) or background (0)') if points: if len(points) != len(labels): raise ValueError('Number of points must match the number of labels') if len(points) > 16: raise ValueError('Number of points must be less than or equal to 16') if boxes: if not isinstance(boxes, list) or not all((isinstance(b, tuple) and len(b) == 4 for b in boxes)): raise ValueError('Boxes must be a tuple of 4D bounding boxes') export(args.output_dir, args.variant, points, boxes, labels, args.min_deployment_target, args.compute_units, args.precision) # File: segment-anything-2-coreml-conversion/sam2/automatic_mask_generator.py from typing import Any, Dict, List, Optional, Tuple import numpy as np import torch from torchvision.ops.boxes import batched_nms, box_area from sam2.modeling.sam2_base import SAM2Base from sam2.sam2_image_predictor import SAM2ImagePredictor from sam2.utils.amg import area_from_rle, batch_iterator, batched_mask_to_box, box_xyxy_to_xywh, build_all_layer_point_grids, calculate_stability_score, coco_encode_rle, generate_crop_boxes, is_box_near_crop_edge, mask_to_rle_pytorch, MaskData, remove_small_regions, rle_to_mask, uncrop_boxes_xyxy, uncrop_masks, uncrop_points class SAM2AutomaticMaskGenerator: def __init__(self, model: SAM2Base, points_per_side: Optional[int]=32, points_per_batch: int=64, pred_iou_thresh: float=0.8, stability_score_thresh: float=0.95, stability_score_offset: float=1.0, mask_threshold: float=0.0, box_nms_thresh: float=0.7, crop_n_layers: int=0, crop_nms_thresh: float=0.7, crop_overlap_ratio: float=512 / 1500, crop_n_points_downscale_factor: int=1, point_grids: Optional[List[np.ndarray]]=None, min_mask_region_area: int=0, output_mode: str='binary_mask', use_m2m: bool=False, multimask_output: bool=True, **kwargs) -> None: assert (points_per_side is None) != (point_grids is None), 'Exactly one of points_per_side or point_grid must be provided.' if points_per_side is not None: self.point_grids = build_all_layer_point_grids(points_per_side, crop_n_layers, crop_n_points_downscale_factor) elif point_grids is not None: self.point_grids = point_grids else: raise ValueError("Can't have both points_per_side and point_grid be None.") assert output_mode in ['binary_mask', 'uncompressed_rle', 'coco_rle'], f'Unknown output_mode {output_mode}.' if output_mode == 'coco_rle': try: from pycocotools import mask as mask_utils except ImportError as e: print('Please install pycocotools') raise e self.predictor = SAM2ImagePredictor(model, max_hole_area=min_mask_region_area, max_sprinkle_area=min_mask_region_area) self.points_per_batch = points_per_batch self.pred_iou_thresh = pred_iou_thresh self.stability_score_thresh = stability_score_thresh self.stability_score_offset = stability_score_offset self.mask_threshold = mask_threshold self.box_nms_thresh = box_nms_thresh self.crop_n_layers = crop_n_layers self.crop_nms_thresh = crop_nms_thresh self.crop_overlap_ratio = crop_overlap_ratio self.crop_n_points_downscale_factor = crop_n_points_downscale_factor self.min_mask_region_area = min_mask_region_area self.output_mode = output_mode self.use_m2m = use_m2m self.multimask_output = multimask_output @classmethod def from_pretrained(cls, model_id: str, **kwargs) -> 'SAM2AutomaticMaskGenerator': from sam2.build_sam import build_sam2_hf sam_model = build_sam2_hf(model_id, **kwargs) return cls(sam_model, **kwargs) @torch.no_grad() def generate(self, image: np.ndarray) -> List[Dict[str, Any]]: mask_data = self._generate_masks(image) if self.output_mode == 'coco_rle': mask_data['segmentations'] = [coco_encode_rle(rle) for rle in mask_data['rles']] elif self.output_mode == 'binary_mask': mask_data['segmentations'] = [rle_to_mask(rle) for rle in mask_data['rles']] else: mask_data['segmentations'] = mask_data['rles'] curr_anns = [] for idx in range(len(mask_data['segmentations'])): ann = {'segmentation': mask_data['segmentations'][idx], 'area': area_from_rle(mask_data['rles'][idx]), 'bbox': box_xyxy_to_xywh(mask_data['boxes'][idx]).tolist(), 'predicted_iou': mask_data['iou_preds'][idx].item(), 'point_coords': [mask_data['points'][idx].tolist()], 'stability_score': mask_data['stability_score'][idx].item(), 'crop_box': box_xyxy_to_xywh(mask_data['crop_boxes'][idx]).tolist()} curr_anns.append(ann) return curr_anns def _generate_masks(self, image: np.ndarray) -> MaskData: orig_size = image.shape[:2] (crop_boxes, layer_idxs) = generate_crop_boxes(orig_size, self.crop_n_layers, self.crop_overlap_ratio) data = MaskData() for (crop_box, layer_idx) in zip(crop_boxes, layer_idxs): crop_data = self._process_crop(image, crop_box, layer_idx, orig_size) data.cat(crop_data) if len(crop_boxes) > 1: scores = 1 / box_area(data['crop_boxes']) scores = scores.to(data['boxes'].device) keep_by_nms = batched_nms(data['boxes'].float(), scores, torch.zeros_like(data['boxes'][:, 0]), iou_threshold=self.crop_nms_thresh) data.filter(keep_by_nms) data.to_numpy() return data def _process_crop(self, image: np.ndarray, crop_box: List[int], crop_layer_idx: int, orig_size: Tuple[int, ...]) -> MaskData: (x0, y0, x1, y1) = crop_box cropped_im = image[y0:y1, x0:x1, :] cropped_im_size = cropped_im.shape[:2] self.predictor.set_image(cropped_im) points_scale = np.array(cropped_im_size)[None, ::-1] points_for_image = self.point_grids[crop_layer_idx] * points_scale data = MaskData() for (points,) in batch_iterator(self.points_per_batch, points_for_image): batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size, normalize=True) data.cat(batch_data) del batch_data self.predictor.reset_predictor() keep_by_nms = batched_nms(data['boxes'].float(), data['iou_preds'], torch.zeros_like(data['boxes'][:, 0]), iou_threshold=self.box_nms_thresh) data.filter(keep_by_nms) data['boxes'] = uncrop_boxes_xyxy(data['boxes'], crop_box) data['points'] = uncrop_points(data['points'], crop_box) data['crop_boxes'] = torch.tensor([crop_box for _ in range(len(data['rles']))]) return data def _process_batch(self, points: np.ndarray, im_size: Tuple[int, ...], crop_box: List[int], orig_size: Tuple[int, ...], normalize=False) -> MaskData: (orig_h, orig_w) = orig_size points = torch.as_tensor(points, dtype=torch.float32, device=self.predictor.device) in_points = self.predictor._transforms.transform_coords(points, normalize=normalize, orig_hw=im_size) in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device) (masks, iou_preds, low_res_masks) = self.predictor._predict(in_points[:, None, :], in_labels[:, None], multimask_output=self.multimask_output, return_logits=True) data = MaskData(masks=masks.flatten(0, 1), iou_preds=iou_preds.flatten(0, 1), points=points.repeat_interleave(masks.shape[1], dim=0), low_res_masks=low_res_masks.flatten(0, 1)) del masks if not self.use_m2m: if self.pred_iou_thresh > 0.0: keep_mask = data['iou_preds'] > self.pred_iou_thresh data.filter(keep_mask) data['stability_score'] = calculate_stability_score(data['masks'], self.mask_threshold, self.stability_score_offset) if self.stability_score_thresh > 0.0: keep_mask = data['stability_score'] >= self.stability_score_thresh data.filter(keep_mask) else: in_points = self.predictor._transforms.transform_coords(data['points'], normalize=normalize, orig_hw=im_size) labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device) (masks, ious) = self.refine_with_m2m(in_points, labels, data['low_res_masks'], self.points_per_batch) data['masks'] = masks.squeeze(1) data['iou_preds'] = ious.squeeze(1) if self.pred_iou_thresh > 0.0: keep_mask = data['iou_preds'] > self.pred_iou_thresh data.filter(keep_mask) data['stability_score'] = calculate_stability_score(data['masks'], self.mask_threshold, self.stability_score_offset) if self.stability_score_thresh > 0.0: keep_mask = data['stability_score'] >= self.stability_score_thresh data.filter(keep_mask) data['masks'] = data['masks'] > self.mask_threshold data['boxes'] = batched_mask_to_box(data['masks']) keep_mask = ~is_box_near_crop_edge(data['boxes'], crop_box, [0, 0, orig_w, orig_h]) if not torch.all(keep_mask): data.filter(keep_mask) data['masks'] = uncrop_masks(data['masks'], crop_box, orig_h, orig_w) data['rles'] = mask_to_rle_pytorch(data['masks']) del data['masks'] return data @staticmethod def postprocess_small_regions(mask_data: MaskData, min_area: int, nms_thresh: float) -> MaskData: if len(mask_data['rles']) == 0: return mask_data new_masks = [] scores = [] for rle in mask_data['rles']: mask = rle_to_mask(rle) (mask, changed) = remove_small_regions(mask, min_area, mode='holes') unchanged = not changed (mask, changed) = remove_small_regions(mask, min_area, mode='islands') unchanged = unchanged and (not changed) new_masks.append(torch.as_tensor(mask).unsqueeze(0)) scores.append(float(unchanged)) masks = torch.cat(new_masks, dim=0) boxes = batched_mask_to_box(masks) keep_by_nms = batched_nms(boxes.float(), torch.as_tensor(scores), torch.zeros_like(boxes[:, 0]), iou_threshold=nms_thresh) for i_mask in keep_by_nms: if scores[i_mask] == 0.0: mask_torch = masks[i_mask].unsqueeze(0) mask_data['rles'][i_mask] = mask_to_rle_pytorch(mask_torch)[0] mask_data['boxes'][i_mask] = boxes[i_mask] mask_data.filter(keep_by_nms) return mask_data def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch): new_masks = [] new_iou_preds = [] for (cur_points, cur_point_labels, low_res_mask) in batch_iterator(points_per_batch, points, point_labels, low_res_masks): (best_masks, best_iou_preds, _) = self.predictor._predict(cur_points[:, None, :], cur_point_labels[:, None], mask_input=low_res_mask[:, None, :], multimask_output=False, return_logits=True) new_masks.append(best_masks) new_iou_preds.append(best_iou_preds) masks = torch.cat(new_masks, dim=0) return (masks, torch.cat(new_iou_preds, dim=0)) # File: segment-anything-2-coreml-conversion/sam2/build_sam.py import logging import torch from hydra import compose from hydra.utils import instantiate from omegaconf import OmegaConf def build_sam2(config_file, ckpt_path=None, device='cuda', mode='eval', hydra_overrides_extra=[], apply_postprocessing=True, **kwargs): if apply_postprocessing: hydra_overrides_extra = hydra_overrides_extra.copy() hydra_overrides_extra += ['++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98'] cfg = compose(config_name=config_file, overrides=hydra_overrides_extra) OmegaConf.resolve(cfg) model = instantiate(cfg.model, _recursive_=True) _load_checkpoint(model, ckpt_path) model = model.to(device) if mode == 'eval': model.eval() return model def build_sam2_video_predictor(config_file, ckpt_path=None, device='cuda', mode='eval', hydra_overrides_extra=[], apply_postprocessing=True, **kwargs): hydra_overrides = ['++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor'] if apply_postprocessing: hydra_overrides_extra = hydra_overrides_extra.copy() hydra_overrides_extra += ['++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98', '++model.binarize_mask_from_pts_for_mem_enc=true', '++model.fill_hole_area=8'] hydra_overrides.extend(hydra_overrides_extra) cfg = compose(config_name=config_file, overrides=hydra_overrides) OmegaConf.resolve(cfg) model = instantiate(cfg.model, _recursive_=True) _load_checkpoint(model, ckpt_path) model = model.to(device) if mode == 'eval': model.eval() return model def build_sam2_hf(model_id, **kwargs): from huggingface_hub import hf_hub_download model_id_to_filenames = {'facebook/sam2-hiera-tiny': ('sam2_hiera_t.yaml', 'sam2_hiera_tiny.pt'), 'facebook/sam2-hiera-small': ('sam2_hiera_s.yaml', 'sam2_hiera_small.pt'), 'facebook/sam2-hiera-base-plus': ('sam2_hiera_b+.yaml', 'sam2_hiera_base_plus.pt'), 'facebook/sam2-hiera-large': ('sam2_hiera_l.yaml', 'sam2_hiera_large.pt')} (config_name, checkpoint_name) = model_id_to_filenames[model_id] ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name) return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs) def build_sam2_video_predictor_hf(model_id, **kwargs): from huggingface_hub import hf_hub_download model_id_to_filenames = {'facebook/sam2-hiera-tiny': ('sam2_hiera_t.yaml', 'sam2_hiera_tiny.pt'), 'facebook/sam2-hiera-small': ('sam2_hiera_s.yaml', 'sam2_hiera_small.pt'), 'facebook/sam2-hiera-base-plus': ('sam2_hiera_b+.yaml', 'sam2_hiera_base_plus.pt'), 'facebook/sam2-hiera-large': ('sam2_hiera_l.yaml', 'sam2_hiera_large.pt')} (config_name, checkpoint_name) = model_id_to_filenames[model_id] ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name) return build_sam2_video_predictor(config_file=config_name, ckpt_path=ckpt_path, **kwargs) def _load_checkpoint(model, ckpt_path): if ckpt_path is not None: sd = torch.load(ckpt_path, map_location='cpu')['model'] (missing_keys, unexpected_keys) = model.load_state_dict(sd) if missing_keys: logging.error(missing_keys) raise RuntimeError() if unexpected_keys: logging.error(unexpected_keys) raise RuntimeError() logging.info('Loaded checkpoint sucessfully') # File: segment-anything-2-coreml-conversion/sam2/modeling/backbones/hieradet.py from functools import partial from typing import List, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from sam2.modeling.backbones.utils import PatchEmbed, window_partition, window_unpartition from sam2.modeling.sam2_utils import DropPath, MLP def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module=None) -> torch.Tensor: if pool is None: return x x = x.permute(0, 3, 1, 2) x = pool(x) x = x.permute(0, 2, 3, 1) if norm: x = norm(x) return x class MultiScaleAttention(nn.Module): def __init__(self, dim: int, dim_out: int, num_heads: int, q_pool: nn.Module=None): super().__init__() self.dim = dim self.dim_out = dim_out self.num_heads = num_heads self.q_pool = q_pool self.qkv = nn.Linear(dim, dim_out * 3) self.proj = nn.Linear(dim_out, dim_out) def forward(self, x: torch.Tensor) -> torch.Tensor: (B, H, W, _) = x.shape qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) (q, k, v) = torch.unbind(qkv, 2) if self.q_pool: q = do_pool(q.reshape(B, H, W, -1), self.q_pool) (H, W) = q.shape[1:3] q = q.reshape(B, H * W, self.num_heads, -1) x = F.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)) x = x.transpose(1, 2) x = x.reshape(B, H, W, -1) x = self.proj(x) return x class MultiScaleBlock(nn.Module): def __init__(self, dim: int, dim_out: int, num_heads: int, mlp_ratio: float=4.0, drop_path: float=0.0, norm_layer: Union[nn.Module, str]='LayerNorm', q_stride: Tuple[int, int]=None, act_layer: nn.Module=nn.GELU, window_size: int=0): super().__init__() if isinstance(norm_layer, str): norm_layer = partial(getattr(nn, norm_layer), eps=1e-06) self.dim = dim self.dim_out = dim_out self.norm1 = norm_layer(dim) self.window_size = window_size (self.pool, self.q_stride) = (None, q_stride) if self.q_stride: self.pool = nn.MaxPool2d(kernel_size=q_stride, stride=q_stride, ceil_mode=False) self.attn = MultiScaleAttention(dim, dim_out, num_heads=num_heads, q_pool=self.pool) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim_out) self.mlp = MLP(dim_out, int(dim_out * mlp_ratio), dim_out, num_layers=2, activation=act_layer) if dim != dim_out: self.proj = nn.Linear(dim, dim_out) def forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x x = self.norm1(x) if self.dim != self.dim_out: shortcut = do_pool(self.proj(x), self.pool) window_size = self.window_size if window_size > 0: (H, W) = (x.shape[1], x.shape[2]) (x, pad_hw) = window_partition(x, window_size) x = self.attn(x) if self.q_stride: window_size = self.window_size // self.q_stride[0] (H, W) = shortcut.shape[1:3] pad_h = (window_size - H % window_size) % window_size pad_w = (window_size - W % window_size) % window_size pad_hw = (H + pad_h, W + pad_w) if self.window_size > 0: x = window_unpartition(x, window_size, pad_hw, (H, W)) x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class Hiera(nn.Module): def __init__(self, embed_dim: int=96, num_heads: int=1, drop_path_rate: float=0.0, q_pool: int=3, q_stride: Tuple[int, int]=(2, 2), stages: Tuple[int, ...]=(2, 3, 16, 3), dim_mul: float=2.0, head_mul: float=2.0, window_pos_embed_bkg_spatial_size: Tuple[int, int]=(14, 14), window_spec: Tuple[int, ...]=(8, 4, 14, 7), global_att_blocks: Tuple[int, ...]=(12, 16, 20), return_interm_layers=True): super().__init__() assert len(stages) == len(window_spec) self.window_spec = window_spec depth = sum(stages) self.q_stride = q_stride self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] assert 0 <= q_pool <= len(self.stage_ends[:-1]) self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] self.return_interm_layers = return_interm_layers self.patch_embed = PatchEmbed(embed_dim=embed_dim) self.global_att_blocks = global_att_blocks self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)) self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] cur_stage = 1 self.blocks = nn.ModuleList() for i in range(depth): dim_out = embed_dim window_size = self.window_spec[cur_stage - 1] if self.global_att_blocks is not None: window_size = 0 if i in self.global_att_blocks else window_size if i - 1 in self.stage_ends: dim_out = int(embed_dim * dim_mul) num_heads = int(num_heads * head_mul) cur_stage += 1 block = MultiScaleBlock(dim=embed_dim, dim_out=dim_out, num_heads=num_heads, drop_path=dpr[i], q_stride=self.q_stride if i in self.q_pool_blocks else None, window_size=window_size) embed_dim = dim_out self.blocks.append(block) self.channel_list = [self.blocks[i].dim_out for i in self.stage_ends[::-1]] if return_interm_layers else [self.blocks[-1].dim_out] def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor: (h, w) = hw window_embed = self.pos_embed_window pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode='bicubic') tiles = [x // y for (x, y) in zip(pos_embed.shape, window_embed.shape)] pos_embed = pos_embed + window_embed.tile(tiles) pos_embed = pos_embed.permute(0, 2, 3, 1) return pos_embed def forward(self, x: torch.Tensor) -> List[torch.Tensor]: x = self.patch_embed(x) x = x + self._get_pos_embed(x.shape[1:3]) outputs = [] for (i, blk) in enumerate(self.blocks): x = blk(x) if i == self.stage_ends[-1] or (i in self.stage_ends and self.return_interm_layers): feats = x.permute(0, 3, 1, 2) outputs.append(feats) return outputs # File: segment-anything-2-coreml-conversion/sam2/modeling/backbones/image_encoder.py from typing import List, Optional import torch import torch.nn as nn import torch.nn.functional as F class ImageEncoder(nn.Module): def __init__(self, trunk: nn.Module, neck: nn.Module, scalp: int=0): super().__init__() self.trunk = trunk self.neck = neck self.scalp = scalp assert self.trunk.channel_list == self.neck.backbone_channel_list, f'Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}' def forward(self, sample: torch.Tensor): (features, pos) = self.neck(self.trunk(sample)) if self.scalp > 0: (features, pos) = (features[:-self.scalp], pos[:-self.scalp]) src = features[-1] output = {'vision_features': src, 'vision_pos_enc': pos, 'backbone_fpn': features} return output class FpnNeck(nn.Module): def __init__(self, position_encoding: nn.Module, d_model: int, backbone_channel_list: List[int], kernel_size: int=1, stride: int=1, padding: int=0, fpn_interp_model: str='bilinear', fuse_type: str='sum', fpn_top_down_levels: Optional[List[int]]=None): super().__init__() self.position_encoding = position_encoding self.convs = nn.ModuleList() self.backbone_channel_list = backbone_channel_list for dim in backbone_channel_list: current = nn.Sequential() current.add_module('conv', nn.Conv2d(in_channels=dim, out_channels=d_model, kernel_size=kernel_size, stride=stride, padding=padding)) self.convs.append(current) self.fpn_interp_model = fpn_interp_model assert fuse_type in ['sum', 'avg'] self.fuse_type = fuse_type if fpn_top_down_levels is None: fpn_top_down_levels = range(len(self.convs)) self.fpn_top_down_levels = list(fpn_top_down_levels) def forward(self, xs: List[torch.Tensor]): out = [None] * len(self.convs) pos = [None] * len(self.convs) assert len(xs) == len(self.convs) prev_features = None n = len(self.convs) - 1 for i in range(n, -1, -1): x = xs[i] lateral_features = self.convs[n - i](x) if i in self.fpn_top_down_levels and prev_features is not None: top_down_features = F.interpolate(prev_features.to(dtype=torch.float32), scale_factor=2.0, mode=self.fpn_interp_model, align_corners=None if self.fpn_interp_model == 'nearest' else False, antialias=False) prev_features = lateral_features + top_down_features if self.fuse_type == 'avg': prev_features /= 2 else: prev_features = lateral_features x_out = prev_features out[i] = x_out pos[i] = self.position_encoding(x_out).to(x_out.dtype) return (out, pos) # File: segment-anything-2-coreml-conversion/sam2/modeling/backbones/utils.py """""" from typing import Tuple import torch import torch.nn as nn import torch.nn.functional as F def window_partition(x, window_size): (B, H, W, C) = x.shape pad_h = (window_size - H % window_size) % window_size pad_w = (window_size - W % window_size) % window_size if pad_h > 0 or pad_w > 0: x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) (Hp, Wp) = (H + pad_h, W + pad_w) x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return (windows, (Hp, Wp)) def window_unpartition(windows, window_size, pad_hw, hw): (Hp, Wp) = pad_hw (H, W) = hw B = windows.shape[0] // (Hp * Wp // window_size // window_size) x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) if Hp > H or Wp > W: x = x[:, :H, :W, :].contiguous() return x class PatchEmbed(nn.Module): def __init__(self, kernel_size: Tuple[int, ...]=(7, 7), stride: Tuple[int, ...]=(4, 4), padding: Tuple[int, ...]=(3, 3), in_chans: int=3, embed_dim: int=768): super().__init__() self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.proj(x) x = x.permute(0, 2, 3, 1) return x # File: segment-anything-2-coreml-conversion/sam2/modeling/memory_attention.py from typing import Optional import torch from torch import nn, Tensor from sam2.modeling.sam.transformer import RoPEAttention from sam2.modeling.sam2_utils import get_activation_fn, get_clones class MemoryAttentionLayer(nn.Module): def __init__(self, activation: str, cross_attention: nn.Module, d_model: int, dim_feedforward: int, dropout: float, pos_enc_at_attn: bool, pos_enc_at_cross_attn_keys: bool, pos_enc_at_cross_attn_queries: bool, self_attention: nn.Module): super().__init__() self.d_model = d_model self.dim_feedforward = dim_feedforward self.dropout_value = dropout self.self_attn = self_attention self.cross_attn_image = cross_attention self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation_str = activation self.activation = get_activation_fn(activation) self.pos_enc_at_attn = pos_enc_at_attn self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys def _forward_sa(self, tgt, query_pos): tgt2 = self.norm1(tgt) q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2 tgt2 = self.self_attn(q, k, v=tgt2) tgt = tgt + self.dropout1(tgt2) return tgt def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0): kwds = {} if num_k_exclude_rope > 0: assert isinstance(self.cross_attn_image, RoPEAttention) kwds = {'num_k_exclude_rope': num_k_exclude_rope} tgt2 = self.norm2(tgt) tgt2 = self.cross_attn_image(q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2, k=memory + pos if self.pos_enc_at_cross_attn_keys else memory, v=memory, **kwds) tgt = tgt + self.dropout2(tgt2) return tgt def forward(self, tgt, memory, pos: Optional[Tensor]=None, query_pos: Optional[Tensor]=None, num_k_exclude_rope: int=0) -> torch.Tensor: tgt = self._forward_sa(tgt, query_pos) tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope) tgt2 = self.norm3(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout3(tgt2) return tgt class MemoryAttention(nn.Module): def __init__(self, d_model: int, pos_enc_at_input: bool, layer: nn.Module, num_layers: int, batch_first: bool=True): super().__init__() self.d_model = d_model self.layers = get_clones(layer, num_layers) self.num_layers = num_layers self.norm = nn.LayerNorm(d_model) self.pos_enc_at_input = pos_enc_at_input self.batch_first = batch_first def forward(self, curr: torch.Tensor, memory: torch.Tensor, curr_pos: Optional[Tensor]=None, memory_pos: Optional[Tensor]=None, num_obj_ptr_tokens: int=0): if isinstance(curr, list): assert isinstance(curr_pos, list) assert len(curr) == len(curr_pos) == 1 (curr, curr_pos) = (curr[0], curr_pos[0]) assert curr.shape[1] == memory.shape[1], 'Batch size must be the same for curr and memory' output = curr if self.pos_enc_at_input and curr_pos is not None: output = output + 0.1 * curr_pos if self.batch_first: output = output.transpose(0, 1) curr_pos = curr_pos.transpose(0, 1) memory = memory.transpose(0, 1) memory_pos = memory_pos.transpose(0, 1) for layer in self.layers: kwds = {} if isinstance(layer.cross_attn_image, RoPEAttention): kwds = {'num_k_exclude_rope': num_obj_ptr_tokens} output = layer(tgt=output, memory=memory, pos=memory_pos, query_pos=curr_pos, **kwds) normed_output = self.norm(output) if self.batch_first: normed_output = normed_output.transpose(0, 1) curr_pos = curr_pos.transpose(0, 1) return normed_output # File: segment-anything-2-coreml-conversion/sam2/modeling/memory_encoder.py import math from typing import Tuple import torch import torch.nn as nn import torch.nn.functional as F from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d class MaskDownSampler(nn.Module): def __init__(self, embed_dim=256, kernel_size=4, stride=4, padding=0, total_stride=16, activation=nn.GELU): super().__init__() num_layers = int(math.log2(total_stride) // math.log2(stride)) assert stride ** num_layers == total_stride self.encoder = nn.Sequential() (mask_in_chans, mask_out_chans) = (1, 1) for _ in range(num_layers): mask_out_chans = mask_in_chans * stride ** 2 self.encoder.append(nn.Conv2d(mask_in_chans, mask_out_chans, kernel_size=kernel_size, stride=stride, padding=padding)) self.encoder.append(LayerNorm2d(mask_out_chans)) self.encoder.append(activation()) mask_in_chans = mask_out_chans self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1)) def forward(self, x): return self.encoder(x) class CXBlock(nn.Module): def __init__(self, dim, kernel_size=7, padding=3, drop_path=0.0, layer_scale_init_value=1e-06, use_dwconv=True): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size=kernel_size, padding=padding, groups=dim if use_dwconv else 1) self.norm = LayerNorm2d(dim, eps=1e-06) self.pwconv1 = nn.Linear(dim, 4 * dim) self.act = nn.GELU() self.pwconv2 = nn.Linear(4 * dim, dim) self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) if layer_scale_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, x): input = x x = self.dwconv(x) x = self.norm(x) x = x.permute(0, 2, 3, 1) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 3, 1, 2) x = input + self.drop_path(x) return x class Fuser(nn.Module): def __init__(self, layer, num_layers, dim=None, input_projection=False): super().__init__() self.proj = nn.Identity() self.layers = get_clones(layer, num_layers) if input_projection: assert dim is not None self.proj = nn.Conv2d(dim, dim, kernel_size=1) def forward(self, x): x = self.proj(x) for layer in self.layers: x = layer(x) return x class MemoryEncoder(nn.Module): def __init__(self, out_dim, mask_downsampler, fuser, position_encoding, in_dim=256): super().__init__() self.mask_downsampler = mask_downsampler self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1) self.fuser = fuser self.position_encoding = position_encoding self.out_proj = nn.Identity() if out_dim != in_dim: self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1) def forward(self, pix_feat: torch.Tensor, masks: torch.Tensor, skip_mask_sigmoid: bool=False) -> Tuple[torch.Tensor, torch.Tensor]: if not skip_mask_sigmoid: masks = F.sigmoid(masks) masks = self.mask_downsampler(masks) pix_feat = pix_feat.to(masks.device) x = self.pix_feat_proj(pix_feat) x = x + masks x = self.fuser(x) x = self.out_proj(x) pos = self.position_encoding(x).to(x.dtype) return {'vision_features': x, 'vision_pos_enc': [pos]} # File: segment-anything-2-coreml-conversion/sam2/modeling/position_encoding.py import math from typing import Any, Optional, Tuple import numpy as np import torch from torch import nn class PositionEmbeddingSine(nn.Module): def __init__(self, num_pos_feats, temperature: int=10000, normalize: bool=True, scale: Optional[float]=None): super().__init__() assert num_pos_feats % 2 == 0, 'Expecting even model width' self.num_pos_feats = num_pos_feats // 2 self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError('normalize should be True if scale is passed') if scale is None: scale = 2 * math.pi self.scale = scale self.cache = {} def _encode_xy(self, x, y): assert len(x) == len(y) and x.ndim == y.ndim == 1 x_embed = x * self.scale y_embed = y * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, None] / dim_t pos_y = y_embed[:, None] / dim_t pos_x = torch.stack((pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2).flatten(1) pos_y = torch.stack((pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2).flatten(1) return (pos_x, pos_y) @torch.no_grad() def encode_boxes(self, x, y, w, h): (pos_x, pos_y) = self._encode_xy(x, y) pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1) return pos encode = encode_boxes @torch.no_grad() def encode_points(self, x, y, labels): ((bx, nx), (by, ny), (bl, nl)) = (x.shape, y.shape, labels.shape) assert bx == by and nx == ny and (bx == bl) and (nx == nl) (pos_x, pos_y) = self._encode_xy(x.flatten(), y.flatten()) (pos_x, pos_y) = (pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)) pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2) return pos @torch.no_grad() def forward(self, x: torch.Tensor): cache_key = (x.shape[-2], x.shape[-1]) if cache_key in self.cache: return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1) y_embed = torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device).view(1, -1, 1).repeat(x.shape[0], 1, x.shape[-1]) x_embed = torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device).view(1, 1, -1).repeat(x.shape[0], x.shape[-2], 1) if self.normalize: eps = 1e-06 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) self.cache[cache_key] = pos[0] return pos class PositionEmbeddingRandom(nn.Module): def __init__(self, num_pos_feats: int=64, scale: Optional[float]=None) -> None: super().__init__() if scale is None or scale <= 0.0: scale = 1.0 self.register_buffer('positional_encoding_gaussian_matrix', scale * torch.randn((2, num_pos_feats))) def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: coords = 2 * coords - 1 coords = coords @ self.positional_encoding_gaussian_matrix coords = 2 * np.pi * coords return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) def forward(self, size: Tuple[int, int]) -> torch.Tensor: (h, w) = size device: Any = self.positional_encoding_gaussian_matrix.device grid = torch.ones((h, w), device=device, dtype=torch.float32) y_embed = grid.cumsum(dim=0) - 0.5 x_embed = grid.cumsum(dim=1) - 0.5 y_embed = y_embed / h x_embed = x_embed / w pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) return pe.permute(2, 0, 1) def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor: coords = coords_input.clone() coords[:, :, 0] = coords[:, :, 0] / image_size[1] coords[:, :, 1] = coords[:, :, 1] / image_size[0] return self._pe_encoding(coords.to(torch.float)) def init_t_xy(end_x: int, end_y: int): t = torch.arange(end_x * end_y, dtype=torch.float32) t_x = (t % end_x).float() t_y = torch.div(t, end_x, rounding_mode='floor').float() return (t_x, t_y) def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float=10000.0): freqs_x = 1.0 / theta ** (torch.arange(0, dim, 4)[:dim // 4].float() / dim) freqs_y = 1.0 / theta ** (torch.arange(0, dim, 4)[:dim // 4].float() / dim) (t_x, t_y) = init_t_xy(end_x, end_y) freqs_x = torch.outer(t_x, freqs_x) freqs_y = torch.outer(t_y, freqs_y) freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x) freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y) return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1) def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): ndim = x.ndim assert 0 <= 1 < ndim assert freqs_cis.shape == (x.shape[-2], x.shape[-1]) shape = [d if i >= ndim - 2 else 1 for (i, d) in enumerate(x.shape)] return freqs_cis.view(*shape) def apply_rotary_enc(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor, repeat_freqs_k: bool=False): xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) if xk.shape[-2] != 0 else None freqs_cis = reshape_for_broadcast(freqs_cis, xq_) xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) if xk_ is None: return (xq_out.type_as(xq).to(xq.device), xk) if repeat_freqs_k: r = xk_.shape[-2] // xq_.shape[-2] if freqs_cis.is_cuda: freqs_cis = freqs_cis.repeat(*[1] * (freqs_cis.ndim - 2), r, 1) else: freqs_cis = freqs_cis.unsqueeze(2).expand(-1, -1, r, -1, -1).flatten(2, 3) xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) return (xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)) # File: segment-anything-2-coreml-conversion/sam2/modeling/sam/mask_decoder.py from typing import List, Optional, Tuple, Type import torch from torch import nn from sam2.modeling.sam2_utils import LayerNorm2d, MLP class MaskDecoder(nn.Module): def __init__(self, *, transformer_dim: int, transformer: nn.Module, num_multimask_outputs: int=3, activation: Type[nn.Module]=nn.GELU, iou_head_depth: int=3, iou_head_hidden_dim: int=256, use_high_res_features: bool=False, iou_prediction_use_sigmoid=False, dynamic_multimask_via_stability=False, dynamic_multimask_stability_delta=0.05, dynamic_multimask_stability_thresh=0.98, pred_obj_scores: bool=False, pred_obj_scores_mlp: bool=False, use_multimask_token_for_obj_ptr: bool=False) -> None: super().__init__() self.transformer_dim = transformer_dim self.transformer = transformer self.num_multimask_outputs = num_multimask_outputs self.iou_token = nn.Embedding(1, transformer_dim) self.num_mask_tokens = num_multimask_outputs + 1 self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) self.pred_obj_scores = pred_obj_scores if self.pred_obj_scores: self.obj_score_token = nn.Embedding(1, transformer_dim) self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr self.output_upscaling = nn.Sequential(nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), LayerNorm2d(transformer_dim // 4), activation(), nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), activation()) self.use_high_res_features = use_high_res_features if use_high_res_features: self.conv_s0 = nn.Conv2d(transformer_dim, transformer_dim // 8, kernel_size=1, stride=1) self.conv_s1 = nn.Conv2d(transformer_dim, transformer_dim // 4, kernel_size=1, stride=1) self.output_hypernetworks_mlps = nn.ModuleList([MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens)]) self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth, sigmoid_output=iou_prediction_use_sigmoid) if self.pred_obj_scores: self.pred_obj_score_head = nn.Linear(transformer_dim, 1) if pred_obj_scores_mlp: self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3) self.dynamic_multimask_via_stability = dynamic_multimask_via_stability self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh def forward(self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, multimask_output: bool, repeat_image: bool, high_res_features: Optional[List[torch.Tensor]]=None) -> Tuple[torch.Tensor, torch.Tensor]: (masks, iou_pred, mask_tokens_out, object_score_logits) = self.predict_masks(image_embeddings=image_embeddings, image_pe=image_pe, sparse_prompt_embeddings=sparse_prompt_embeddings, dense_prompt_embeddings=dense_prompt_embeddings, repeat_image=repeat_image, high_res_features=high_res_features) if multimask_output: masks = masks[:, 1:, :, :] iou_pred = iou_pred[:, 1:] elif self.dynamic_multimask_via_stability and (not self.training): (masks, iou_pred) = self._dynamic_multimask_via_stability(masks, iou_pred) else: masks = masks[:, 0:1, :, :] iou_pred = iou_pred[:, 0:1] if multimask_output and self.use_multimask_token_for_obj_ptr: sam_tokens_out = mask_tokens_out[:, 1:] else: sam_tokens_out = mask_tokens_out[:, 0:1] return (masks, iou_pred, sam_tokens_out, object_score_logits) def predict_masks(self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, repeat_image: bool, high_res_features: Optional[List[torch.Tensor]]=None) -> Tuple[torch.Tensor, torch.Tensor]: s = 0 if self.pred_obj_scores: output_tokens = torch.cat([self.obj_score_token.weight, self.iou_token.weight, self.mask_tokens.weight], dim=0) s = 1 else: output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) if repeat_image: src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) else: assert image_embeddings.shape[0] == tokens.shape[0] src = image_embeddings src = src + dense_prompt_embeddings assert image_pe.size(0) == 1, 'image_pe should have size 1 in batch dim (from `get_dense_pe()`)' pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) (b, c, h, w) = src.shape (hs, src) = self.transformer(src, pos_src, tokens) iou_token_out = hs[:, s, :] mask_tokens_out = hs[:, s + 1:s + 1 + self.num_mask_tokens, :] src = src.transpose(1, 2).view(b, c, h, w) if not self.use_high_res_features: upscaled_embedding = self.output_upscaling(src) else: (dc1, ln1, act1, dc2, act2) = self.output_upscaling (feat_s0, feat_s1) = high_res_features upscaled_embedding = act1(ln1(dc1(src) + feat_s1)) upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0) hyper_in_list: List[torch.Tensor] = [] for i in range(self.num_mask_tokens): hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) hyper_in = torch.stack(hyper_in_list, dim=1) (b, c, h, w) = upscaled_embedding.shape masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) iou_pred = self.iou_prediction_head(iou_token_out) if self.pred_obj_scores: assert s == 1 object_score_logits = self.pred_obj_score_head(hs[:, 0, :]) else: object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1) return (masks, iou_pred, mask_tokens_out, object_score_logits) def _get_stability_scores(self, mask_logits): mask_logits = mask_logits.flatten(-2) stability_delta = self.dynamic_multimask_stability_delta area_i = torch.sum(mask_logits > stability_delta, dim=-1).float() area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float() stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0) return stability_scores def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores): multimask_logits = all_mask_logits[:, 1:, :, :] multimask_iou_scores = all_iou_scores[:, 1:] best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1) batch_inds = torch.arange(multimask_iou_scores.size(0), device=all_iou_scores.device) best_multimask_logits = multimask_logits[batch_inds, best_scores_inds] best_multimask_logits = best_multimask_logits.unsqueeze(1) best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds] best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1) singlemask_logits = all_mask_logits[:, 0:1, :, :] singlemask_iou_scores = all_iou_scores[:, 0:1] stability_scores = self._get_stability_scores(singlemask_logits) is_stable = stability_scores >= self.dynamic_multimask_stability_thresh mask_logits_out = torch.where(is_stable[..., None, None].expand_as(singlemask_logits), singlemask_logits, best_multimask_logits) iou_scores_out = torch.where(is_stable.expand_as(singlemask_iou_scores), singlemask_iou_scores, best_multimask_iou_scores) return (mask_logits_out, iou_scores_out) # File: segment-anything-2-coreml-conversion/sam2/modeling/sam/prompt_encoder.py from typing import Optional, Tuple, Type import torch from torch import nn from sam2.modeling.position_encoding import PositionEmbeddingRandom from sam2.modeling.sam2_utils import LayerNorm2d class PromptEncoder(nn.Module): def __init__(self, embed_dim: int, image_embedding_size: Tuple[int, int], input_image_size: Tuple[int, int], mask_in_chans: int, activation: Type[nn.Module]=nn.GELU) -> None: super().__init__() self.embed_dim = embed_dim self.input_image_size = input_image_size self.image_embedding_size = image_embedding_size self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) self.num_point_embeddings: int = 4 point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)] self.point_embeddings = nn.ModuleList(point_embeddings) self.not_a_point_embed = nn.Embedding(1, embed_dim) self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1]) self.mask_downscaling = nn.Sequential(nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans // 4), activation(), nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans), activation(), nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1)) self.no_mask_embed = nn.Embedding(1, embed_dim) def get_dense_pe(self) -> torch.Tensor: return self.pe_layer(self.image_embedding_size).unsqueeze(0) def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor: points = points + 0.5 if pad: padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) points = torch.cat([points, padding_point], dim=1) labels = torch.cat([labels, padding_label], dim=1) point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) mask_not_a_point = (labels == -1).float().unsqueeze(-1) mask_label_0 = (labels == 0).float().unsqueeze(-1) mask_label_1 = (labels == 1).float().unsqueeze(-1) mask_label_2 = (labels == 2).float().unsqueeze(-1) mask_label_3 = (labels == 3).float().unsqueeze(-1) point_embedding = point_embedding * (1 - mask_not_a_point) + self.not_a_point_embed.weight * mask_not_a_point + self.point_embeddings[0].weight * mask_label_0 + self.point_embeddings[1].weight * mask_label_1 + self.point_embeddings[2].weight * mask_label_2 + self.point_embeddings[3].weight * mask_label_3 return point_embedding def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: boxes = boxes + 0.5 coords = boxes.reshape(-1, 2, 2) corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) corner_embedding[:, 0, :] += self.point_embeddings[2].weight corner_embedding[:, 1, :] += self.point_embeddings[3].weight return corner_embedding def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: mask_embedding = self.mask_downscaling(masks) return mask_embedding def _get_batch_size(self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor]) -> int: if points is not None: return points[0].shape[0] elif boxes is not None: return boxes.shape[0] elif masks is not None: return masks.shape[0] else: return 1 def _get_device(self) -> torch.device: return self.point_embeddings[0].weight.device def forward(self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: bs = self._get_batch_size(points, boxes, masks) sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) if points is not None: (coords, labels) = points point_embeddings = self._embed_points(coords, labels, pad=boxes is None) sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) if boxes is not None: box_embeddings = self._embed_boxes(boxes) sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) if masks is not None: dense_embeddings = self._embed_masks(masks) else: dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]) return (sparse_embeddings, dense_embeddings) def points_only(self, points: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: (coords, labels) = points sparse_embeddings = self._embed_points(coords, labels, pad=True) bs = points[0].shape[0] dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]) return (sparse_embeddings, dense_embeddings) # File: segment-anything-2-coreml-conversion/sam2/modeling/sam/transformer.py import contextlib import math import warnings from functools import partial from typing import Tuple, Type import torch import torch.nn.functional as F from torch import nn, Tensor from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis from sam2.modeling.sam2_utils import MLP from sam2.utils.misc import get_sdpa_settings warnings.simplefilter(action='ignore', category=FutureWarning) (OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON) = get_sdpa_settings() ALLOW_ALL_KERNELS = False def sdp_kernel_context(dropout_p): if ALLOW_ALL_KERNELS: return contextlib.nullcontext() return torch.backends.cuda.sdp_kernel(enable_flash=USE_FLASH_ATTN, enable_math=OLD_GPU and dropout_p > 0.0 or MATH_KERNEL_ON, enable_mem_efficient=OLD_GPU) class TwoWayTransformer(nn.Module): def __init__(self, depth: int, embedding_dim: int, num_heads: int, mlp_dim: int, activation: Type[nn.Module]=nn.ReLU, attention_downsample_rate: int=2) -> None: super().__init__() self.depth = depth self.embedding_dim = embedding_dim self.num_heads = num_heads self.mlp_dim = mlp_dim self.layers = nn.ModuleList() for i in range(depth): self.layers.append(TwoWayAttentionBlock(embedding_dim=embedding_dim, num_heads=num_heads, mlp_dim=mlp_dim, activation=activation, attention_downsample_rate=attention_downsample_rate, skip_first_layer_pe=i == 0)) self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) self.norm_final_attn = nn.LayerNorm(embedding_dim) def forward(self, image_embedding: Tensor, image_pe: Tensor, point_embedding: Tensor) -> Tuple[Tensor, Tensor]: (bs, c, h, w) = image_embedding.shape image_embedding = image_embedding.flatten(2).permute(0, 2, 1) image_pe = image_pe.flatten(2).permute(0, 2, 1) queries = point_embedding keys = image_embedding for layer in self.layers: (queries, keys) = layer(queries=queries, keys=keys, query_pe=point_embedding, key_pe=image_pe) q = queries + point_embedding k = keys + image_pe attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) queries = queries + attn_out queries = self.norm_final_attn(queries) return (queries, keys) class TwoWayAttentionBlock(nn.Module): def __init__(self, embedding_dim: int, num_heads: int, mlp_dim: int=2048, activation: Type[nn.Module]=nn.ReLU, attention_downsample_rate: int=2, skip_first_layer_pe: bool=False) -> None: super().__init__() self.self_attn = Attention(embedding_dim, num_heads) self.norm1 = nn.LayerNorm(embedding_dim) self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) self.norm2 = nn.LayerNorm(embedding_dim) self.mlp = MLP(embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation) self.norm3 = nn.LayerNorm(embedding_dim) self.norm4 = nn.LayerNorm(embedding_dim) self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) self.skip_first_layer_pe = skip_first_layer_pe def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]: if self.skip_first_layer_pe: queries = self.self_attn(q=queries, k=queries, v=queries) else: q = queries + query_pe attn_out = self.self_attn(q=q, k=q, v=queries) queries = queries + attn_out queries = self.norm1(queries) q = queries + query_pe k = keys + key_pe attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) queries = queries + attn_out queries = self.norm2(queries) mlp_out = self.mlp(queries) queries = queries + mlp_out queries = self.norm3(queries) q = queries + query_pe k = keys + key_pe attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) keys = keys + attn_out keys = self.norm4(keys) return (queries, keys) class Attention(nn.Module): def __init__(self, embedding_dim: int, num_heads: int, downsample_rate: int=1, dropout: float=0.0, kv_in_dim: int=None) -> None: super().__init__() self.embedding_dim = embedding_dim self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim self.internal_dim = embedding_dim // downsample_rate self.num_heads = num_heads assert self.internal_dim % num_heads == 0, 'num_heads must divide embedding_dim.' self.q_proj = nn.Linear(embedding_dim, self.internal_dim) self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim) self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim) self.out_proj = nn.Linear(self.internal_dim, embedding_dim) self.dropout_p = dropout def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: (b, n, c) = x.shape x = x.reshape(b, n, num_heads, c // num_heads) return x.transpose(1, 2) def _recombine_heads(self, x: Tensor) -> Tensor: (b, n_heads, n_tokens, c_per_head) = x.shape x = x.transpose(1, 2) return x.reshape(b, n_tokens, n_heads * c_per_head) def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: q = self.q_proj(q) k = self.k_proj(k) v = self.v_proj(v) q = self._separate_heads(q, self.num_heads) k = self._separate_heads(k, self.num_heads) v = self._separate_heads(v, self.num_heads) dropout_p = self.dropout_p if self.training else 0.0 try: with sdp_kernel_context(dropout_p): out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) except Exception as e: warnings.warn(f'Flash Attention kernel failed due to: {e}\nFalling back to all available kernels for scaled_dot_product_attention (which may have a slower speed).', category=UserWarning, stacklevel=2) global ALLOW_ALL_KERNELS ALLOW_ALL_KERNELS = True out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) out = self._recombine_heads(out) out = self.out_proj(out) return out class RoPEAttention(Attention): def __init__(self, *args, rope_theta=10000.0, rope_k_repeat=False, feat_sizes=(32, 32), **kwargs): super().__init__(*args, **kwargs) self.compute_cis = partial(compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta) freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1]) self.freqs_cis = freqs_cis self.rope_k_repeat = rope_k_repeat def forward(self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int=0) -> Tensor: q = self.q_proj(q) k = self.k_proj(k) v = self.v_proj(v) q = self._separate_heads(q, self.num_heads) k = self._separate_heads(k, self.num_heads) v = self._separate_heads(v, self.num_heads) w = h = math.sqrt(q.shape[-2]) self.freqs_cis = self.freqs_cis.to(q.device) if self.freqs_cis.shape[0] != q.shape[-2]: self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device) if q.shape[-2] != k.shape[-2]: assert self.rope_k_repeat num_k_rope = k.size(-2) - num_k_exclude_rope (q, k[:, :, :num_k_rope]) = apply_rotary_enc(q, k[:, :, :num_k_rope], freqs_cis=self.freqs_cis, repeat_freqs_k=self.rope_k_repeat) dropout_p = self.dropout_p if self.training else 0.0 try: with sdp_kernel_context(dropout_p): out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) except Exception as e: warnings.warn(f'Flash Attention kernel failed due to: {e}\nFalling back to all available kernels for scaled_dot_product_attention (which may have a slower speed).', category=UserWarning, stacklevel=2) global ALLOW_ALL_KERNELS ALLOW_ALL_KERNELS = True out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) out = self._recombine_heads(out) out = self.out_proj(out) return out # File: segment-anything-2-coreml-conversion/sam2/modeling/sam2_base.py import torch import torch.distributed import torch.nn.functional as F from torch.nn.init import trunc_normal_ from sam2.modeling.sam.mask_decoder import MaskDecoder from sam2.modeling.sam.prompt_encoder import PromptEncoder from sam2.modeling.sam.transformer import TwoWayTransformer from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames NO_OBJ_SCORE = -1024.0 class SAM2Base(torch.nn.Module): def __init__(self, image_encoder, memory_attention, memory_encoder, num_maskmem=7, image_size=512, backbone_stride=16, sigmoid_scale_for_mem_enc=1.0, sigmoid_bias_for_mem_enc=0.0, binarize_mask_from_pts_for_mem_enc=False, use_mask_input_as_output_without_sam=False, max_cond_frames_in_attn=-1, directly_add_no_mem_embed=False, use_high_res_features_in_sam=False, multimask_output_in_sam=False, multimask_min_pt_num=1, multimask_max_pt_num=1, multimask_output_for_tracking=False, use_multimask_token_for_obj_ptr: bool=False, iou_prediction_use_sigmoid=False, memory_temporal_stride_for_eval=1, add_all_frames_to_correct_as_cond=False, non_overlap_masks_for_mem_enc=False, use_obj_ptrs_in_encoder=False, max_obj_ptrs_in_encoder=16, add_tpos_enc_to_obj_ptrs=True, proj_tpos_enc_in_obj_ptrs=False, only_obj_ptrs_in_the_past_for_eval=False, pred_obj_scores: bool=False, pred_obj_scores_mlp: bool=False, fixed_no_obj_ptr: bool=False, soft_no_obj_ptr: bool=False, use_mlp_for_obj_ptr_proj: bool=False, sam_mask_decoder_extra_args=None, compile_image_encoder: bool=False): super().__init__() self.image_encoder = image_encoder self.use_high_res_features_in_sam = use_high_res_features_in_sam self.num_feature_levels = 3 if use_high_res_features_in_sam else 1 self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder if use_obj_ptrs_in_encoder: self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4) self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs if proj_tpos_enc_in_obj_ptrs: assert add_tpos_enc_to_obj_ptrs self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval self.memory_attention = memory_attention self.hidden_dim = memory_attention.d_model self.memory_encoder = memory_encoder self.mem_dim = self.hidden_dim if hasattr(self.memory_encoder, 'out_proj') and hasattr(self.memory_encoder.out_proj, 'weight'): self.mem_dim = self.memory_encoder.out_proj.weight.shape[0] self.num_maskmem = num_maskmem self.maskmem_tpos_enc = torch.nn.Parameter(torch.zeros(num_maskmem, 1, 1, self.mem_dim)) trunc_normal_(self.maskmem_tpos_enc, std=0.02) self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) trunc_normal_(self.no_mem_embed, std=0.02) trunc_normal_(self.no_mem_pos_enc, std=0.02) self.directly_add_no_mem_embed = directly_add_no_mem_embed self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam self.multimask_output_in_sam = multimask_output_in_sam self.multimask_min_pt_num = multimask_min_pt_num self.multimask_max_pt_num = multimask_max_pt_num self.multimask_output_for_tracking = multimask_output_for_tracking self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid self.image_size = image_size self.backbone_stride = backbone_stride self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args self.pred_obj_scores = pred_obj_scores self.pred_obj_scores_mlp = pred_obj_scores_mlp self.fixed_no_obj_ptr = fixed_no_obj_ptr self.soft_no_obj_ptr = soft_no_obj_ptr if self.fixed_no_obj_ptr: assert self.pred_obj_scores assert self.use_obj_ptrs_in_encoder if self.pred_obj_scores and self.use_obj_ptrs_in_encoder: self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim)) trunc_normal_(self.no_obj_ptr, std=0.02) self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj self._build_sam_heads() self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond self.max_cond_frames_in_attn = max_cond_frames_in_attn if compile_image_encoder: print('Image encoder compilation is enabled. First forward pass will be slow.') self.image_encoder.forward = torch.compile(self.image_encoder.forward, mode='max-autotune', fullgraph=True, dynamic=False) @property def device(self): return next(self.parameters()).device def forward(self, *args, **kwargs): raise NotImplementedError('Please use the corresponding methods in SAM2VideoPredictor for inference.See notebooks/video_predictor_example.ipynb for an example.') def _build_sam_heads(self): self.sam_prompt_embed_dim = self.hidden_dim self.sam_image_embedding_size = self.image_size // self.backbone_stride self.sam_prompt_encoder = PromptEncoder(embed_dim=self.sam_prompt_embed_dim, image_embedding_size=(self.sam_image_embedding_size, self.sam_image_embedding_size), input_image_size=(self.image_size, self.image_size), mask_in_chans=16) self.sam_mask_decoder = MaskDecoder(num_multimask_outputs=3, transformer=TwoWayTransformer(depth=2, embedding_dim=self.sam_prompt_embed_dim, mlp_dim=2048, num_heads=8), transformer_dim=self.sam_prompt_embed_dim, iou_head_depth=3, iou_head_hidden_dim=256, use_high_res_features=self.use_high_res_features_in_sam, iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid, pred_obj_scores=self.pred_obj_scores, pred_obj_scores_mlp=self.pred_obj_scores_mlp, use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr, **self.sam_mask_decoder_extra_args or {}) if self.use_obj_ptrs_in_encoder: self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim) if self.use_mlp_for_obj_ptr_proj: self.obj_ptr_proj = MLP(self.hidden_dim, self.hidden_dim, self.hidden_dim, 3) else: self.obj_ptr_proj = torch.nn.Identity() if self.proj_tpos_enc_in_obj_ptrs: self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim) else: self.obj_ptr_tpos_proj = torch.nn.Identity() def _forward_sam_heads(self, backbone_features, point_inputs=None, mask_inputs=None, high_res_features=None, multimask_output=False): B = backbone_features.size(0) device = backbone_features.device assert backbone_features.size(1) == self.sam_prompt_embed_dim assert backbone_features.size(2) == self.sam_image_embedding_size assert backbone_features.size(3) == self.sam_image_embedding_size if point_inputs is not None: sam_point_coords = point_inputs['point_coords'] sam_point_labels = point_inputs['point_labels'] assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B else: sam_point_coords = torch.zeros(B, 1, 2, device=device) sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device) if mask_inputs is not None: assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1) if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size: sam_mask_prompt = F.interpolate(mask_inputs.float(), size=self.sam_prompt_encoder.mask_input_size, align_corners=False, mode='bilinear', antialias=True) else: sam_mask_prompt = mask_inputs else: sam_mask_prompt = None (sparse_embeddings, dense_embeddings) = self.sam_prompt_encoder(points=(sam_point_coords, sam_point_labels), boxes=None, masks=sam_mask_prompt) (low_res_multimasks, ious, sam_output_tokens, object_score_logits) = self.sam_mask_decoder(image_embeddings=backbone_features, image_pe=self.sam_prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, repeat_image=False, high_res_features=high_res_features) if self.pred_obj_scores: is_obj_appearing = object_score_logits > 0 low_res_multimasks = torch.where(is_obj_appearing[:, None, None], low_res_multimasks, NO_OBJ_SCORE) low_res_multimasks = low_res_multimasks.float() high_res_multimasks = F.interpolate(low_res_multimasks, size=(self.image_size, self.image_size), mode='bilinear', align_corners=False) sam_output_token = sam_output_tokens[:, 0] if multimask_output: best_iou_inds = torch.argmax(ious, dim=-1) batch_inds = torch.arange(B, device=device) low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) if sam_output_tokens.size(1) > 1: sam_output_token = sam_output_tokens[batch_inds, best_iou_inds] else: (low_res_masks, high_res_masks) = (low_res_multimasks, high_res_multimasks) obj_ptr = self.obj_ptr_proj(sam_output_token) if self.pred_obj_scores: if self.soft_no_obj_ptr: assert not self.teacher_force_obj_scores_for_mem lambda_is_obj_appearing = object_score_logits.sigmoid() else: lambda_is_obj_appearing = is_obj_appearing.float() if self.fixed_no_obj_ptr: obj_ptr = lambda_is_obj_appearing * obj_ptr obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr return (low_res_multimasks, high_res_multimasks, ious, low_res_masks, high_res_masks, obj_ptr, object_score_logits) def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs): (out_scale, out_bias) = (20.0, -10.0) mask_inputs_float = mask_inputs.float() high_res_masks = mask_inputs_float * out_scale + out_bias low_res_masks = F.interpolate(high_res_masks, size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4), align_corners=False, mode='bilinear', antialias=True) ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float() if not self.use_obj_ptrs_in_encoder: obj_ptr = torch.zeros(mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device) else: (_, _, _, _, _, obj_ptr, _) = self._forward_sam_heads(backbone_features=backbone_features, mask_inputs=self.mask_downsample(mask_inputs_float), high_res_features=high_res_features) is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1) is_obj_appearing = is_obj_appearing[..., None] lambda_is_obj_appearing = is_obj_appearing.float() object_score_logits = out_scale * lambda_is_obj_appearing + out_bias if self.pred_obj_scores: if self.fixed_no_obj_ptr: obj_ptr = lambda_is_obj_appearing * obj_ptr obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr return (low_res_masks, high_res_masks, ious, low_res_masks, high_res_masks, obj_ptr, object_score_logits) def forward_image(self, img_batch: torch.Tensor): backbone_out = self.image_encoder(img_batch) if self.use_high_res_features_in_sam: backbone_out['backbone_fpn'][0] = self.sam_mask_decoder.conv_s0(backbone_out['backbone_fpn'][0]) backbone_out['backbone_fpn'][1] = self.sam_mask_decoder.conv_s1(backbone_out['backbone_fpn'][1]) return backbone_out def _prepare_backbone_features(self, backbone_out): backbone_out = backbone_out.copy() assert len(backbone_out['backbone_fpn']) == len(backbone_out['vision_pos_enc']) assert len(backbone_out['backbone_fpn']) >= self.num_feature_levels feature_maps = backbone_out['backbone_fpn'][-self.num_feature_levels:] vision_pos_embeds = backbone_out['vision_pos_enc'][-self.num_feature_levels:] feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds] vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps] vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds] return (backbone_out, vision_feats, vision_pos_embeds, feat_sizes) def _prepare_memory_conditioned_features(self, frame_idx, is_init_cond_frame, current_vision_feats, current_vision_pos_embeds, feat_sizes, output_dict, num_frames, track_in_reverse=False): B = current_vision_feats[-1].size(1) C = self.hidden_dim (H, W) = feat_sizes[-1] device = current_vision_feats[-1].device if self.num_maskmem == 0: pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) return pix_feat num_obj_ptr_tokens = 0 if not is_init_cond_frame: (to_cat_memory, to_cat_memory_pos_embed) = ([], []) assert len(output_dict['cond_frame_outputs']) > 0 cond_outputs = output_dict['cond_frame_outputs'] (selected_cond_outputs, unselected_cond_outputs) = select_closest_cond_frames(frame_idx, cond_outputs, self.max_cond_frames_in_attn) t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()] r = self.memory_temporal_stride_for_eval for t_pos in range(1, self.num_maskmem): t_rel = self.num_maskmem - t_pos if t_rel == 1: if not track_in_reverse: prev_frame_idx = frame_idx - t_rel else: prev_frame_idx = frame_idx + t_rel elif not track_in_reverse: prev_frame_idx = (frame_idx - 2) // r * r prev_frame_idx = prev_frame_idx - (t_rel - 2) * r else: prev_frame_idx = -(-(frame_idx + 2) // r) * r prev_frame_idx = prev_frame_idx + (t_rel - 2) * r out = output_dict['non_cond_frame_outputs'].get(prev_frame_idx, None) if out is None: out = unselected_cond_outputs.get(prev_frame_idx, None) t_pos_and_prevs.append((t_pos, out)) for (t_pos, prev) in t_pos_and_prevs: if prev is None: continue feats = prev['maskmem_features'].to(device, non_blocking=True) to_cat_memory.append(feats.flatten(2).permute(2, 0, 1)) maskmem_enc = prev['maskmem_pos_enc'][-1].to(device) maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1) maskmem_enc = maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1] to_cat_memory_pos_embed.append(maskmem_enc) if self.use_obj_ptrs_in_encoder: max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder) if not self.training and self.only_obj_ptrs_in_the_past_for_eval: ptr_cond_outputs = {t: out for (t, out) in selected_cond_outputs.items() if (t >= frame_idx if track_in_reverse else t <= frame_idx)} else: ptr_cond_outputs = selected_cond_outputs pos_and_ptrs = [(abs(frame_idx - t), out['obj_ptr']) for (t, out) in ptr_cond_outputs.items()] for t_diff in range(1, max_obj_ptrs_in_encoder): t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff if t < 0 or (num_frames is not None and t >= num_frames): break out = output_dict['non_cond_frame_outputs'].get(t, unselected_cond_outputs.get(t, None)) if out is not None: pos_and_ptrs.append((t_diff, out['obj_ptr'])) if len(pos_and_ptrs) > 0: (pos_list, ptrs_list) = zip(*pos_and_ptrs) obj_ptrs = torch.stack(ptrs_list, dim=0) if self.add_tpos_enc_to_obj_ptrs: t_diff_max = max_obj_ptrs_in_encoder - 1 tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim obj_pos = torch.tensor(pos_list, device=device) obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim) obj_pos = self.obj_ptr_tpos_proj(obj_pos) obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim) else: obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim) if self.mem_dim < C: obj_ptrs = obj_ptrs.reshape(-1, B, C // self.mem_dim, self.mem_dim) obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1) obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0) to_cat_memory.append(obj_ptrs) to_cat_memory_pos_embed.append(obj_pos) num_obj_ptr_tokens = obj_ptrs.shape[0] else: num_obj_ptr_tokens = 0 else: if self.directly_add_no_mem_embed: pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) return pix_feat_with_mem to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)] to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)] memory = torch.cat(to_cat_memory, dim=0) memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0) pix_feat_with_mem = self.memory_attention(curr=current_vision_feats, curr_pos=current_vision_pos_embeds, memory=memory, memory_pos=memory_pos_embed, num_obj_ptr_tokens=num_obj_ptr_tokens) pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) return pix_feat_with_mem def _encode_new_memory(self, current_vision_feats, feat_sizes, pred_masks_high_res, is_mask_from_pts): B = current_vision_feats[-1].size(1) C = self.hidden_dim (H, W) = feat_sizes[-1] pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) if self.non_overlap_masks_for_mem_enc and (not self.training): pred_masks_high_res = self._apply_non_overlapping_constraints(pred_masks_high_res) binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts if binarize and (not self.training): mask_for_mem = (pred_masks_high_res > 0).float() else: mask_for_mem = torch.sigmoid(pred_masks_high_res) if self.sigmoid_scale_for_mem_enc != 1.0: mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc if self.sigmoid_bias_for_mem_enc != 0.0: mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc maskmem_out = self.memory_encoder(pix_feat, mask_for_mem, skip_mask_sigmoid=True) maskmem_features = maskmem_out['vision_features'] maskmem_pos_enc = maskmem_out['vision_pos_enc'] return (maskmem_features, maskmem_pos_enc) def track_step(self, frame_idx, is_init_cond_frame, current_vision_feats, current_vision_pos_embeds, feat_sizes, point_inputs, mask_inputs, output_dict, num_frames, track_in_reverse=False, run_mem_encoder=True, prev_sam_mask_logits=None): current_out = {'point_inputs': point_inputs, 'mask_inputs': mask_inputs} if len(current_vision_feats) > 1: high_res_features = [x.permute(1, 2, 0).view(x.size(1), x.size(2), *s) for (x, s) in zip(current_vision_feats[:-1], feat_sizes[:-1])] else: high_res_features = None if mask_inputs is not None and self.use_mask_input_as_output_without_sam: pix_feat = current_vision_feats[-1].permute(1, 2, 0) pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1]) sam_outputs = self._use_mask_as_output(pix_feat, high_res_features, mask_inputs) else: pix_feat_with_mem = self._prepare_memory_conditioned_features(frame_idx=frame_idx, is_init_cond_frame=is_init_cond_frame, current_vision_feats=current_vision_feats[-1:], current_vision_pos_embeds=current_vision_pos_embeds[-1:], feat_sizes=feat_sizes[-1:], output_dict=output_dict, num_frames=num_frames, track_in_reverse=track_in_reverse) if prev_sam_mask_logits is not None: assert point_inputs is not None and mask_inputs is None mask_inputs = prev_sam_mask_logits multimask_output = self._use_multimask(is_init_cond_frame, point_inputs) sam_outputs = self._forward_sam_heads(backbone_features=pix_feat_with_mem, point_inputs=point_inputs, mask_inputs=mask_inputs, high_res_features=high_res_features, multimask_output=multimask_output) (_, _, _, low_res_masks, high_res_masks, obj_ptr, _) = sam_outputs current_out['pred_masks'] = low_res_masks current_out['pred_masks_high_res'] = high_res_masks current_out['obj_ptr'] = obj_ptr if run_mem_encoder and self.num_maskmem > 0: high_res_masks_for_mem_enc = high_res_masks (maskmem_features, maskmem_pos_enc) = self._encode_new_memory(current_vision_feats=current_vision_feats, feat_sizes=feat_sizes, pred_masks_high_res=high_res_masks_for_mem_enc, is_mask_from_pts=point_inputs is not None) current_out['maskmem_features'] = maskmem_features current_out['maskmem_pos_enc'] = maskmem_pos_enc else: current_out['maskmem_features'] = None current_out['maskmem_pos_enc'] = None return current_out def _use_multimask(self, is_init_cond_frame, point_inputs): num_pts = 0 if point_inputs is None else point_inputs['point_labels'].size(1) multimask_output = self.multimask_output_in_sam and (is_init_cond_frame or self.multimask_output_for_tracking) and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num) return multimask_output def _apply_non_overlapping_constraints(self, pred_masks): batch_size = pred_masks.size(0) if batch_size == 1: return pred_masks device = pred_masks.device max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True) batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None] keep = max_obj_inds == batch_obj_inds pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0)) return pred_masks # File: segment-anything-2-coreml-conversion/sam2/modeling/sam2_utils.py import copy import torch import torch.nn as nn import torch.nn.functional as F def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num): if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num: selected_outputs = cond_frame_outputs unselected_outputs = {} else: assert max_cond_frame_num >= 2, 'we should allow using 2+ conditioning frames' selected_outputs = {} idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None) if idx_before is not None: selected_outputs[idx_before] = cond_frame_outputs[idx_before] idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None) if idx_after is not None: selected_outputs[idx_after] = cond_frame_outputs[idx_after] num_remain = max_cond_frame_num - len(selected_outputs) inds_remain = sorted((t for t in cond_frame_outputs if t not in selected_outputs), key=lambda x: abs(x - frame_idx))[:num_remain] selected_outputs.update(((t, cond_frame_outputs[t]) for t in inds_remain)) unselected_outputs = {t: v for (t, v) in cond_frame_outputs.items() if t not in selected_outputs} return (selected_outputs, unselected_outputs) def get_1d_sine_pe(pos_inds, dim, temperature=10000): pe_dim = dim // 2 dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device) dim_t = temperature ** (2 * (dim_t // 2) / pe_dim) pos_embed = pos_inds.unsqueeze(-1) / dim_t pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1) return pos_embed def get_activation_fn(activation): if activation == 'relu': return F.relu if activation == 'gelu': return F.gelu if activation == 'glu': return F.glu raise RuntimeError(f'activation should be relu/gelu, not {activation}.') def get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) class DropPath(nn.Module): def __init__(self, drop_prob=0.0, scale_by_keep=True): super(DropPath, self).__init__() self.drop_prob = drop_prob self.scale_by_keep = scale_by_keep def forward(self, x): if self.drop_prob == 0.0 or not self.training: return x keep_prob = 1 - self.drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0 and self.scale_by_keep: random_tensor.div_(keep_prob) return x * random_tensor class MLP(nn.Module): def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, activation: nn.Module=nn.ReLU, sigmoid_output: bool=False) -> None: super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList((nn.Linear(n, k) for (n, k) in zip([input_dim] + h, h + [output_dim]))) self.sigmoid_output = sigmoid_output self.act = activation() def forward(self, x): for (i, layer) in enumerate(self.layers): x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x) if self.sigmoid_output: x = F.sigmoid(x) return x class LayerNorm2d(nn.Module): def __init__(self, num_channels: int, eps: float=1e-06) -> None: super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, x: torch.Tensor) -> torch.Tensor: u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x # File: segment-anything-2-coreml-conversion/sam2/sam2_image_predictor.py import os import logging from typing import List, Optional, Tuple, Union import numpy as np import torch from PIL.Image import Image from sam2.modeling.sam2_base import SAM2Base from sam2.utils.transforms import SAM2Transforms class SAM2ImagePredictor: def __init__(self, sam_model: SAM2Base, mask_threshold=0.0, max_hole_area=0.0, max_sprinkle_area=0.0, **kwargs) -> None: super().__init__() self.model = sam_model self._transforms = SAM2Transforms(resolution=self.model.image_size, mask_threshold=mask_threshold, max_hole_area=max_hole_area, max_sprinkle_area=max_sprinkle_area) self._is_image_set = False self._features = None self._orig_hw = None self._is_batch = False self.mask_threshold = mask_threshold self._bb_feat_sizes = [(256, 256), (128, 128), (64, 64)] @classmethod def from_pretrained(cls, model_id: str, **kwargs) -> 'SAM2ImagePredictor': from sam2.build_sam import build_sam2_hf sam_model = build_sam2_hf(model_id, **kwargs) return cls(sam_model, **kwargs) @torch.no_grad() def set_image(self, image: Union[np.ndarray, Image]) -> None: self.reset_predictor() if isinstance(image, np.ndarray): logging.info('For numpy array image, we assume (HxWxC) format') self._orig_hw = [image.shape[:2]] elif isinstance(image, Image): (w, h) = image.size self._orig_hw = [(h, w)] else: raise NotImplementedError('Image format not supported') input_image = self._transforms(image) input_image = input_image[None, ...].to(self.device) assert len(input_image.shape) == 4 and input_image.shape[1] == 3, f'input_image must be of size 1x3xHxW, got {input_image.shape}' logging.info('Computing image embeddings for the provided image...') backbone_out = self.model.forward_image(input_image) (_, vision_feats, _, _) = self.model._prepare_backbone_features(backbone_out) if self.model.directly_add_no_mem_embed: vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed feats = [feat.permute(1, 2, 0).view(1, -1, *feat_size) for (feat, feat_size) in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])][::-1] self._features = {'image_embed': feats[-1], 'high_res_feats': feats[:-1]} self._is_image_set = True serialize_ground = os.environ.get('SERIALIZE_GROUND', False) if serialize_ground: image_embed = self._features['image_embed'].cpu().numpy() high_res_feats = self._features['high_res_feats'] feats_s0 = high_res_feats[0].cpu().numpy() feats_s1 = high_res_feats[1].cpu().numpy() np.save('image_embed.npy', image_embed) np.save('feats_s0.npy', feats_s0) np.save('feats_s1.npy', feats_s1) logging.info('Image embeddings computed.') @torch.no_grad() def encode_image_raw(self, prepared_image: torch.Tensor): self.model.eval() with torch.no_grad(): for (_, param) in self.model.named_parameters(): if param.requires_grad: param.requires_grad = False backbone_out = self.model.forward_image(prepared_image) (_, vision_feats, _, _) = self.model._prepare_backbone_features(backbone_out) if self.model.directly_add_no_mem_embed: vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed feats = [feat.permute(1, 2, 0).view(1, -1, *feat_size) for (feat, feat_size) in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])][::-1] image_embed = feats[-1] high_res_feats = feats[:-1] assert len(high_res_feats) == 2 (feats_s0, feats_s1) = (high_res_feats[0], high_res_feats[1]) return (image_embed, feats_s0, feats_s1) @torch.no_grad() def encode_points_raw(self, unnorm_coords: torch.Tensor, labels: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: concat_points = (unnorm_coords, labels) with torch.no_grad(): for (_, param) in self.model.named_parameters(): if param.requires_grad: param.requires_grad = False (sparse_embeddings, dense_embeddings) = self.model.sam_prompt_encoder.points_only(points=concat_points) return (sparse_embeddings, dense_embeddings) @torch.no_grad() def decode_masks_raw(self, image_embeddings: torch.Tensor, sparse_embedding: torch.Tensor, dense_embedding: torch.Tensor, high_res_features: List[torch.Tensor], multimask_output: bool=True, batched_mode: bool=False): with torch.no_grad(): for (_, param) in self.model.sam_mask_decoder.named_parameters(): if param.requires_grad: param.requires_grad = False (low_res_masks, iou_scores, _, _) = self.model.sam_mask_decoder(image_embeddings=image_embeddings, image_pe=self.model.sam_prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embedding, dense_prompt_embeddings=dense_embedding, multimask_output=multimask_output, repeat_image=batched_mode, high_res_features=high_res_features) return (low_res_masks, iou_scores) @torch.no_grad() def set_image_batch(self, image_list: List[Union[np.ndarray]]) -> None: self.reset_predictor() assert isinstance(image_list, list) self._orig_hw = [] for image in image_list: assert isinstance(image, np.ndarray), 'Images are expected to be an np.ndarray in RGB format, and of shape HWC' self._orig_hw.append(image.shape[:2]) img_batch = self._transforms.forward_batch(image_list) img_batch = img_batch.to(self.device) batch_size = img_batch.shape[0] assert len(img_batch.shape) == 4 and img_batch.shape[1] == 3, f'img_batch must be of size Bx3xHxW, got {img_batch.shape}' logging.info('Computing image embeddings for the provided images...') backbone_out = self.model.forward_image(img_batch) (_, vision_feats, _, _) = self.model._prepare_backbone_features(backbone_out) if self.model.directly_add_no_mem_embed: vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed feats = [feat.permute(1, 2, 0).view(batch_size, -1, *feat_size) for (feat, feat_size) in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])][::-1] self._features = {'image_embed': feats[-1], 'high_res_feats': feats[:-1]} self._is_image_set = True self._is_batch = True logging.info('Image embeddings computed.') def predict_batch(self, point_coords_batch: List[np.ndarray]=None, point_labels_batch: List[np.ndarray]=None, box_batch: List[np.ndarray]=None, mask_input_batch: List[np.ndarray]=None, multimask_output: bool=True, return_logits: bool=False, normalize_coords=True) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]: assert self._is_batch, 'This function should only be used when in batched mode' if not self._is_image_set: raise RuntimeError('An image must be set with .set_image_batch(...) before mask prediction.') num_images = len(self._features['image_embed']) all_masks = [] all_ious = [] all_low_res_masks = [] for img_idx in range(num_images): point_coords = point_coords_batch[img_idx] if point_coords_batch is not None else None point_labels = point_labels_batch[img_idx] if point_labels_batch is not None else None box = box_batch[img_idx] if box_batch is not None else None mask_input = mask_input_batch[img_idx] if mask_input_batch is not None else None (mask_input, unnorm_coords, labels, unnorm_box) = self._prep_prompts(point_coords, point_labels, box, mask_input, normalize_coords, img_idx=img_idx) (masks, iou_predictions, low_res_masks) = self._predict(unnorm_coords, labels, unnorm_box, mask_input, multimask_output, return_logits=return_logits, img_idx=img_idx) masks_np = masks.squeeze(0).float().detach().cpu().numpy() iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy() low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy() all_masks.append(masks_np) all_ious.append(iou_predictions_np) all_low_res_masks.append(low_res_masks_np) return (all_masks, all_ious, all_low_res_masks) def predict(self, point_coords: Optional[np.ndarray]=None, point_labels: Optional[np.ndarray]=None, box: Optional[np.ndarray]=None, mask_input: Optional[np.ndarray]=None, multimask_output: bool=True, return_logits: bool=False, normalize_coords=True) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: if not self._is_image_set: raise RuntimeError('An image must be set with .set_image(...) before mask prediction.') (mask_input, unnorm_coords, labels, unnorm_box) = self._prep_prompts(point_coords, point_labels, box, mask_input, normalize_coords) (masks, iou_predictions, low_res_masks) = self._predict(unnorm_coords, labels, unnorm_box, mask_input, multimask_output, return_logits=return_logits) masks_np = masks.squeeze(0).float().detach().cpu().numpy() iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy() low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy() return (masks_np, iou_predictions_np, low_res_masks_np) def _prep_prompts(self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1): (unnorm_coords, labels, unnorm_box, mask_input) = (None, None, None, None) if point_coords is not None: assert point_labels is not None, 'point_labels must be supplied if point_coords is supplied.' point_coords = torch.as_tensor(point_coords, dtype=torch.float, device=self.device) unnorm_coords = self._transforms.transform_coords(point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]) labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) if len(unnorm_coords.shape) == 2: (unnorm_coords, labels) = (unnorm_coords[None, ...], labels[None, ...]) if box is not None: box = torch.as_tensor(box, dtype=torch.float, device=self.device) unnorm_box = self._transforms.transform_boxes(box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]) if mask_logits is not None: mask_input = torch.as_tensor(mask_logits, dtype=torch.float, device=self.device) if len(mask_input.shape) == 3: mask_input = mask_input[None, :, :, :] return (mask_input, unnorm_coords, labels, unnorm_box) @torch.no_grad() def _predict(self, point_coords: Optional[torch.Tensor], point_labels: Optional[torch.Tensor], boxes: Optional[torch.Tensor]=None, mask_input: Optional[torch.Tensor]=None, multimask_output: bool=True, return_logits: bool=False, img_idx: int=-1) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: if not self._is_image_set: raise RuntimeError('An image must be set with .set_image(...) before mask prediction.') if point_coords is not None: concat_points = (point_coords, point_labels) else: concat_points = None if boxes is not None: box_coords = boxes.reshape(-1, 2, 2) box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device) box_labels = box_labels.repeat(boxes.size(0), 1) if concat_points is not None: concat_coords = torch.cat([box_coords, concat_points[0]], dim=1) concat_labels = torch.cat([box_labels, concat_points[1]], dim=1) concat_points = (concat_coords, concat_labels) else: concat_points = (box_coords, box_labels) (sparse_embeddings, dense_embeddings) = self.model.sam_prompt_encoder(points=concat_points, boxes=None, masks=mask_input) batched_mode = concat_points is not None and concat_points[0].shape[0] > 1 high_res_features = [feat_level[img_idx].unsqueeze(0) for feat_level in self._features['high_res_feats']] (low_res_masks, iou_predictions, _, _) = self.model.sam_mask_decoder(image_embeddings=self._features['image_embed'][img_idx].unsqueeze(0), image_pe=self.model.sam_prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, repeat_image=batched_mode, high_res_features=high_res_features) if os.environ.get('SERIALIZE_GROUND', False): low_res_masks_np = low_res_masks.cpu().numpy() np.save('low_res_masks.npy', low_res_masks_np) masks = self._transforms.postprocess_masks(low_res_masks, self._orig_hw[img_idx]) low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0) if not return_logits: masks = masks > self.mask_threshold return (masks, iou_predictions, low_res_masks) def get_image_embedding(self) -> torch.Tensor: if not self._is_image_set: raise RuntimeError('An image must be set with .set_image(...) to generate an embedding.') assert self._features is not None, 'Features must exist if an image has been set.' return self._features['image_embed'] @property def device(self) -> torch.device: return self.model.device def reset_predictor(self) -> None: self._is_image_set = False self._features = None self._orig_hw = None self._is_batch = False # File: segment-anything-2-coreml-conversion/sam2/sam2_video_predictor.py import warnings from collections import OrderedDict import torch from tqdm import tqdm from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames class SAM2VideoPredictor(SAM2Base): def __init__(self, fill_hole_area=0, non_overlap_masks=False, clear_non_cond_mem_around_input=False, clear_non_cond_mem_for_multi_obj=False, **kwargs): super().__init__(**kwargs) self.fill_hole_area = fill_hole_area self.non_overlap_masks = non_overlap_masks self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj @torch.inference_mode() def init_state(self, video_path, offload_video_to_cpu=False, offload_state_to_cpu=False, async_loading_frames=False): compute_device = self.device (images, video_height, video_width) = load_video_frames(video_path=video_path, image_size=self.image_size, offload_video_to_cpu=offload_video_to_cpu, async_loading_frames=async_loading_frames, compute_device=compute_device) inference_state = {} inference_state['images'] = images inference_state['num_frames'] = len(images) inference_state['offload_video_to_cpu'] = offload_video_to_cpu inference_state['offload_state_to_cpu'] = offload_state_to_cpu inference_state['video_height'] = video_height inference_state['video_width'] = video_width inference_state['device'] = compute_device if offload_state_to_cpu: inference_state['storage_device'] = torch.device('cpu') else: inference_state['storage_device'] = compute_device inference_state['point_inputs_per_obj'] = {} inference_state['mask_inputs_per_obj'] = {} inference_state['cached_features'] = {} inference_state['constants'] = {} inference_state['obj_id_to_idx'] = OrderedDict() inference_state['obj_idx_to_id'] = OrderedDict() inference_state['obj_ids'] = [] inference_state['output_dict'] = {'cond_frame_outputs': {}, 'non_cond_frame_outputs': {}} inference_state['output_dict_per_obj'] = {} inference_state['temp_output_dict_per_obj'] = {} inference_state['consolidated_frame_inds'] = {'cond_frame_outputs': set(), 'non_cond_frame_outputs': set()} inference_state['tracking_has_started'] = False inference_state['frames_already_tracked'] = {} self._get_image_feature(inference_state, frame_idx=0, batch_size=1) return inference_state @classmethod def from_pretrained(cls, model_id: str, **kwargs) -> 'SAM2VideoPredictor': from sam2.build_sam import build_sam2_video_predictor_hf sam_model = build_sam2_video_predictor_hf(model_id, **kwargs) return sam_model def _obj_id_to_idx(self, inference_state, obj_id): obj_idx = inference_state['obj_id_to_idx'].get(obj_id, None) if obj_idx is not None: return obj_idx allow_new_object = not inference_state['tracking_has_started'] if allow_new_object: obj_idx = len(inference_state['obj_id_to_idx']) inference_state['obj_id_to_idx'][obj_id] = obj_idx inference_state['obj_idx_to_id'][obj_idx] = obj_id inference_state['obj_ids'] = list(inference_state['obj_id_to_idx']) inference_state['point_inputs_per_obj'][obj_idx] = {} inference_state['mask_inputs_per_obj'][obj_idx] = {} inference_state['output_dict_per_obj'][obj_idx] = {'cond_frame_outputs': {}, 'non_cond_frame_outputs': {}} inference_state['temp_output_dict_per_obj'][obj_idx] = {'cond_frame_outputs': {}, 'non_cond_frame_outputs': {}} return obj_idx else: raise RuntimeError(f"Cannot add new object id {obj_id} after tracking starts. All existing object ids: {inference_state['obj_ids']}. Please call 'reset_state' to restart from scratch.") def _obj_idx_to_id(self, inference_state, obj_idx): return inference_state['obj_idx_to_id'][obj_idx] def _get_obj_num(self, inference_state): return len(inference_state['obj_idx_to_id']) @torch.inference_mode() def add_new_points_or_box(self, inference_state, frame_idx, obj_id, points=None, labels=None, clear_old_points=True, normalize_coords=True, box=None): obj_idx = self._obj_id_to_idx(inference_state, obj_id) point_inputs_per_frame = inference_state['point_inputs_per_obj'][obj_idx] mask_inputs_per_frame = inference_state['mask_inputs_per_obj'][obj_idx] if (points is not None) != (labels is not None): raise ValueError('points and labels must be provided together') if points is None and box is None: raise ValueError('at least one of points or box must be provided as input') if points is None: points = torch.zeros(0, 2, dtype=torch.float32) elif not isinstance(points, torch.Tensor): points = torch.tensor(points, dtype=torch.float32) if labels is None: labels = torch.zeros(0, dtype=torch.int32) elif not isinstance(labels, torch.Tensor): labels = torch.tensor(labels, dtype=torch.int32) if points.dim() == 2: points = points.unsqueeze(0) if labels.dim() == 1: labels = labels.unsqueeze(0) if box is not None: if not clear_old_points: raise ValueError('cannot add box without clearing old points, since box prompt must be provided before any point prompt (please use clear_old_points=True instead)') if inference_state['tracking_has_started']: warnings.warn("You are adding a box after tracking starts. SAM 2 may not always be able to incorporate a box prompt for *refinement*. If you intend to use box prompt as an *initial* input before tracking, please call 'reset_state' on the inference state to restart from scratch.", category=UserWarning, stacklevel=2) if not isinstance(box, torch.Tensor): box = torch.tensor(box, dtype=torch.float32, device=points.device) box_coords = box.reshape(1, 2, 2) box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device) box_labels = box_labels.reshape(1, 2) points = torch.cat([box_coords, points], dim=1) labels = torch.cat([box_labels, labels], dim=1) if normalize_coords: video_H = inference_state['video_height'] video_W = inference_state['video_width'] points = points / torch.tensor([video_W, video_H]).to(points.device) points = points * self.image_size points = points.to(inference_state['device']) labels = labels.to(inference_state['device']) if not clear_old_points: point_inputs = point_inputs_per_frame.get(frame_idx, None) else: point_inputs = None point_inputs = concat_points(point_inputs, points, labels) point_inputs_per_frame[frame_idx] = point_inputs mask_inputs_per_frame.pop(frame_idx, None) is_init_cond_frame = frame_idx not in inference_state['frames_already_tracked'] if is_init_cond_frame: reverse = False else: reverse = inference_state['frames_already_tracked'][frame_idx]['reverse'] obj_output_dict = inference_state['output_dict_per_obj'][obj_idx] obj_temp_output_dict = inference_state['temp_output_dict_per_obj'][obj_idx] is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs' prev_sam_mask_logits = None prev_out = obj_temp_output_dict[storage_key].get(frame_idx) if prev_out is None: prev_out = obj_output_dict['cond_frame_outputs'].get(frame_idx) if prev_out is None: prev_out = obj_output_dict['non_cond_frame_outputs'].get(frame_idx) if prev_out is not None and prev_out['pred_masks'] is not None: device = inference_state['device'] prev_sam_mask_logits = prev_out['pred_masks'].to(device, non_blocking=True) prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0) (current_out, _) = self._run_single_frame_inference(inference_state=inference_state, output_dict=obj_output_dict, frame_idx=frame_idx, batch_size=1, is_init_cond_frame=is_init_cond_frame, point_inputs=point_inputs, mask_inputs=None, reverse=reverse, run_mem_encoder=False, prev_sam_mask_logits=prev_sam_mask_logits) obj_temp_output_dict[storage_key][frame_idx] = current_out obj_ids = inference_state['obj_ids'] consolidated_out = self._consolidate_temp_output_across_obj(inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=False, consolidate_at_video_res=True) (_, video_res_masks) = self._get_orig_video_res_output(inference_state, consolidated_out['pred_masks_video_res']) return (frame_idx, obj_ids, video_res_masks) def add_new_points(self, *args, **kwargs): return self.add_new_points_or_box(*args, **kwargs) @torch.inference_mode() def add_new_mask(self, inference_state, frame_idx, obj_id, mask): obj_idx = self._obj_id_to_idx(inference_state, obj_id) point_inputs_per_frame = inference_state['point_inputs_per_obj'][obj_idx] mask_inputs_per_frame = inference_state['mask_inputs_per_obj'][obj_idx] if not isinstance(mask, torch.Tensor): mask = torch.tensor(mask, dtype=torch.bool) assert mask.dim() == 2 (mask_H, mask_W) = mask.shape mask_inputs_orig = mask[None, None] mask_inputs_orig = mask_inputs_orig.float().to(inference_state['device']) if mask_H != self.image_size or mask_W != self.image_size: mask_inputs = torch.nn.functional.interpolate(mask_inputs_orig, size=(self.image_size, self.image_size), align_corners=False, mode='bilinear', antialias=True) mask_inputs = (mask_inputs >= 0.5).float() else: mask_inputs = mask_inputs_orig mask_inputs_per_frame[frame_idx] = mask_inputs point_inputs_per_frame.pop(frame_idx, None) is_init_cond_frame = frame_idx not in inference_state['frames_already_tracked'] if is_init_cond_frame: reverse = False else: reverse = inference_state['frames_already_tracked'][frame_idx]['reverse'] obj_output_dict = inference_state['output_dict_per_obj'][obj_idx] obj_temp_output_dict = inference_state['temp_output_dict_per_obj'][obj_idx] is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs' (current_out, _) = self._run_single_frame_inference(inference_state=inference_state, output_dict=obj_output_dict, frame_idx=frame_idx, batch_size=1, is_init_cond_frame=is_init_cond_frame, point_inputs=None, mask_inputs=mask_inputs, reverse=reverse, run_mem_encoder=False) obj_temp_output_dict[storage_key][frame_idx] = current_out obj_ids = inference_state['obj_ids'] consolidated_out = self._consolidate_temp_output_across_obj(inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=False, consolidate_at_video_res=True) (_, video_res_masks) = self._get_orig_video_res_output(inference_state, consolidated_out['pred_masks_video_res']) return (frame_idx, obj_ids, video_res_masks) def _get_orig_video_res_output(self, inference_state, any_res_masks): device = inference_state['device'] video_H = inference_state['video_height'] video_W = inference_state['video_width'] any_res_masks = any_res_masks.to(device, non_blocking=True) if any_res_masks.shape[-2:] == (video_H, video_W): video_res_masks = any_res_masks else: video_res_masks = torch.nn.functional.interpolate(any_res_masks, size=(video_H, video_W), mode='bilinear', align_corners=False) if self.non_overlap_masks: video_res_masks = self._apply_non_overlapping_constraints(video_res_masks) return (any_res_masks, video_res_masks) def _consolidate_temp_output_across_obj(self, inference_state, frame_idx, is_cond, run_mem_encoder, consolidate_at_video_res=False): batch_size = self._get_obj_num(inference_state) storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs' if consolidate_at_video_res: assert not run_mem_encoder, 'memory encoder cannot run at video resolution' consolidated_H = inference_state['video_height'] consolidated_W = inference_state['video_width'] consolidated_mask_key = 'pred_masks_video_res' else: consolidated_H = consolidated_W = self.image_size // 4 consolidated_mask_key = 'pred_masks' consolidated_out = {'maskmem_features': None, 'maskmem_pos_enc': None, consolidated_mask_key: torch.full(size=(batch_size, 1, consolidated_H, consolidated_W), fill_value=NO_OBJ_SCORE, dtype=torch.float32, device=inference_state['storage_device']), 'obj_ptr': torch.full(size=(batch_size, self.hidden_dim), fill_value=NO_OBJ_SCORE, dtype=torch.float32, device=inference_state['device'])} empty_mask_ptr = None for obj_idx in range(batch_size): obj_temp_output_dict = inference_state['temp_output_dict_per_obj'][obj_idx] obj_output_dict = inference_state['output_dict_per_obj'][obj_idx] out = obj_temp_output_dict[storage_key].get(frame_idx, None) if out is None: out = obj_output_dict['cond_frame_outputs'].get(frame_idx, None) if out is None: out = obj_output_dict['non_cond_frame_outputs'].get(frame_idx, None) if out is None: if run_mem_encoder: if empty_mask_ptr is None: empty_mask_ptr = self._get_empty_mask_ptr(inference_state, frame_idx) consolidated_out['obj_ptr'][obj_idx:obj_idx + 1] = empty_mask_ptr continue obj_mask = out['pred_masks'] consolidated_pred_masks = consolidated_out[consolidated_mask_key] if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]: consolidated_pred_masks[obj_idx:obj_idx + 1] = obj_mask else: resized_obj_mask = torch.nn.functional.interpolate(obj_mask, size=consolidated_pred_masks.shape[-2:], mode='bilinear', align_corners=False) consolidated_pred_masks[obj_idx:obj_idx + 1] = resized_obj_mask consolidated_out['obj_ptr'][obj_idx:obj_idx + 1] = out['obj_ptr'] if run_mem_encoder: device = inference_state['device'] high_res_masks = torch.nn.functional.interpolate(consolidated_out['pred_masks'].to(device, non_blocking=True), size=(self.image_size, self.image_size), mode='bilinear', align_corners=False) if self.non_overlap_masks_for_mem_enc: high_res_masks = self._apply_non_overlapping_constraints(high_res_masks) (maskmem_features, maskmem_pos_enc) = self._run_memory_encoder(inference_state=inference_state, frame_idx=frame_idx, batch_size=batch_size, high_res_masks=high_res_masks, is_mask_from_pts=True) consolidated_out['maskmem_features'] = maskmem_features consolidated_out['maskmem_pos_enc'] = maskmem_pos_enc return consolidated_out def _get_empty_mask_ptr(self, inference_state, frame_idx): batch_size = 1 mask_inputs = torch.zeros((batch_size, 1, self.image_size, self.image_size), dtype=torch.float32, device=inference_state['device']) (_, _, current_vision_feats, current_vision_pos_embeds, feat_sizes) = self._get_image_feature(inference_state, frame_idx, batch_size) current_out = self.track_step(frame_idx=frame_idx, is_init_cond_frame=True, current_vision_feats=current_vision_feats, current_vision_pos_embeds=current_vision_pos_embeds, feat_sizes=feat_sizes, point_inputs=None, mask_inputs=mask_inputs, output_dict={}, num_frames=inference_state['num_frames'], track_in_reverse=False, run_mem_encoder=False, prev_sam_mask_logits=None) return current_out['obj_ptr'] @torch.inference_mode() def propagate_in_video_preflight(self, inference_state): inference_state['tracking_has_started'] = True batch_size = self._get_obj_num(inference_state) temp_output_dict_per_obj = inference_state['temp_output_dict_per_obj'] output_dict = inference_state['output_dict'] consolidated_frame_inds = inference_state['consolidated_frame_inds'] for is_cond in [False, True]: storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs' temp_frame_inds = set() for obj_temp_output_dict in temp_output_dict_per_obj.values(): temp_frame_inds.update(obj_temp_output_dict[storage_key].keys()) consolidated_frame_inds[storage_key].update(temp_frame_inds) for frame_idx in temp_frame_inds: consolidated_out = self._consolidate_temp_output_across_obj(inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True) output_dict[storage_key][frame_idx] = consolidated_out self._add_output_per_object(inference_state, frame_idx, consolidated_out, storage_key) clear_non_cond_mem = self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1) if clear_non_cond_mem: self._clear_non_cond_mem_around_input(inference_state, frame_idx) for obj_temp_output_dict in temp_output_dict_per_obj.values(): obj_temp_output_dict[storage_key].clear() for frame_idx in output_dict['cond_frame_outputs']: output_dict['non_cond_frame_outputs'].pop(frame_idx, None) for obj_output_dict in inference_state['output_dict_per_obj'].values(): for frame_idx in obj_output_dict['cond_frame_outputs']: obj_output_dict['non_cond_frame_outputs'].pop(frame_idx, None) for frame_idx in consolidated_frame_inds['cond_frame_outputs']: assert frame_idx in output_dict['cond_frame_outputs'] consolidated_frame_inds['non_cond_frame_outputs'].discard(frame_idx) all_consolidated_frame_inds = consolidated_frame_inds['cond_frame_outputs'] | consolidated_frame_inds['non_cond_frame_outputs'] input_frames_inds = set() for point_inputs_per_frame in inference_state['point_inputs_per_obj'].values(): input_frames_inds.update(point_inputs_per_frame.keys()) for mask_inputs_per_frame in inference_state['mask_inputs_per_obj'].values(): input_frames_inds.update(mask_inputs_per_frame.keys()) assert all_consolidated_frame_inds == input_frames_inds @torch.inference_mode() def propagate_in_video(self, inference_state, start_frame_idx=None, max_frame_num_to_track=None, reverse=False): self.propagate_in_video_preflight(inference_state) output_dict = inference_state['output_dict'] consolidated_frame_inds = inference_state['consolidated_frame_inds'] obj_ids = inference_state['obj_ids'] num_frames = inference_state['num_frames'] batch_size = self._get_obj_num(inference_state) if len(output_dict['cond_frame_outputs']) == 0: raise RuntimeError('No points are provided; please add points first') clear_non_cond_mem = self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1) if start_frame_idx is None: start_frame_idx = min(output_dict['cond_frame_outputs']) if max_frame_num_to_track is None: max_frame_num_to_track = num_frames if reverse: end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0) if start_frame_idx > 0: processing_order = range(start_frame_idx, end_frame_idx - 1, -1) else: processing_order = [] else: end_frame_idx = min(start_frame_idx + max_frame_num_to_track, num_frames - 1) processing_order = range(start_frame_idx, end_frame_idx + 1) for frame_idx in tqdm(processing_order, desc='propagate in video'): if frame_idx in consolidated_frame_inds['cond_frame_outputs']: storage_key = 'cond_frame_outputs' current_out = output_dict[storage_key][frame_idx] pred_masks = current_out['pred_masks'] if clear_non_cond_mem: self._clear_non_cond_mem_around_input(inference_state, frame_idx) elif frame_idx in consolidated_frame_inds['non_cond_frame_outputs']: storage_key = 'non_cond_frame_outputs' current_out = output_dict[storage_key][frame_idx] pred_masks = current_out['pred_masks'] else: storage_key = 'non_cond_frame_outputs' (current_out, pred_masks) = self._run_single_frame_inference(inference_state=inference_state, output_dict=output_dict, frame_idx=frame_idx, batch_size=batch_size, is_init_cond_frame=False, point_inputs=None, mask_inputs=None, reverse=reverse, run_mem_encoder=True) output_dict[storage_key][frame_idx] = current_out self._add_output_per_object(inference_state, frame_idx, current_out, storage_key) inference_state['frames_already_tracked'][frame_idx] = {'reverse': reverse} (_, video_res_masks) = self._get_orig_video_res_output(inference_state, pred_masks) yield (frame_idx, obj_ids, video_res_masks) def _add_output_per_object(self, inference_state, frame_idx, current_out, storage_key): maskmem_features = current_out['maskmem_features'] assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor) maskmem_pos_enc = current_out['maskmem_pos_enc'] assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list) output_dict_per_obj = inference_state['output_dict_per_obj'] for (obj_idx, obj_output_dict) in output_dict_per_obj.items(): obj_slice = slice(obj_idx, obj_idx + 1) obj_out = {'maskmem_features': None, 'maskmem_pos_enc': None, 'pred_masks': current_out['pred_masks'][obj_slice], 'obj_ptr': current_out['obj_ptr'][obj_slice]} if maskmem_features is not None: obj_out['maskmem_features'] = maskmem_features[obj_slice] if maskmem_pos_enc is not None: obj_out['maskmem_pos_enc'] = [x[obj_slice] for x in maskmem_pos_enc] obj_output_dict[storage_key][frame_idx] = obj_out @torch.inference_mode() def reset_state(self, inference_state): self._reset_tracking_results(inference_state) inference_state['obj_id_to_idx'].clear() inference_state['obj_idx_to_id'].clear() inference_state['obj_ids'].clear() inference_state['point_inputs_per_obj'].clear() inference_state['mask_inputs_per_obj'].clear() inference_state['output_dict_per_obj'].clear() inference_state['temp_output_dict_per_obj'].clear() def _reset_tracking_results(self, inference_state): for v in inference_state['point_inputs_per_obj'].values(): v.clear() for v in inference_state['mask_inputs_per_obj'].values(): v.clear() for v in inference_state['output_dict_per_obj'].values(): v['cond_frame_outputs'].clear() v['non_cond_frame_outputs'].clear() for v in inference_state['temp_output_dict_per_obj'].values(): v['cond_frame_outputs'].clear() v['non_cond_frame_outputs'].clear() inference_state['output_dict']['cond_frame_outputs'].clear() inference_state['output_dict']['non_cond_frame_outputs'].clear() inference_state['consolidated_frame_inds']['cond_frame_outputs'].clear() inference_state['consolidated_frame_inds']['non_cond_frame_outputs'].clear() inference_state['tracking_has_started'] = False inference_state['frames_already_tracked'].clear() def _get_image_feature(self, inference_state, frame_idx, batch_size): (image, backbone_out) = inference_state['cached_features'].get(frame_idx, (None, None)) if backbone_out is None: device = inference_state['device'] image = inference_state['images'][frame_idx].to(device).float().unsqueeze(0) backbone_out = self.forward_image(image) inference_state['cached_features'] = {frame_idx: (image, backbone_out)} expanded_image = image.expand(batch_size, -1, -1, -1) expanded_backbone_out = {'backbone_fpn': backbone_out['backbone_fpn'].copy(), 'vision_pos_enc': backbone_out['vision_pos_enc'].copy()} for (i, feat) in enumerate(expanded_backbone_out['backbone_fpn']): expanded_backbone_out['backbone_fpn'][i] = feat.expand(batch_size, -1, -1, -1) for (i, pos) in enumerate(expanded_backbone_out['vision_pos_enc']): pos = pos.expand(batch_size, -1, -1, -1) expanded_backbone_out['vision_pos_enc'][i] = pos features = self._prepare_backbone_features(expanded_backbone_out) features = (expanded_image,) + features return features def _run_single_frame_inference(self, inference_state, output_dict, frame_idx, batch_size, is_init_cond_frame, point_inputs, mask_inputs, reverse, run_mem_encoder, prev_sam_mask_logits=None): (_, _, current_vision_feats, current_vision_pos_embeds, feat_sizes) = self._get_image_feature(inference_state, frame_idx, batch_size) assert point_inputs is None or mask_inputs is None current_out = self.track_step(frame_idx=frame_idx, is_init_cond_frame=is_init_cond_frame, current_vision_feats=current_vision_feats, current_vision_pos_embeds=current_vision_pos_embeds, feat_sizes=feat_sizes, point_inputs=point_inputs, mask_inputs=mask_inputs, output_dict=output_dict, num_frames=inference_state['num_frames'], track_in_reverse=reverse, run_mem_encoder=run_mem_encoder, prev_sam_mask_logits=prev_sam_mask_logits) storage_device = inference_state['storage_device'] maskmem_features = current_out['maskmem_features'] if maskmem_features is not None: maskmem_features = maskmem_features.to(torch.bfloat16) maskmem_features = maskmem_features.to(storage_device, non_blocking=True) pred_masks_gpu = current_out['pred_masks'] if self.fill_hole_area > 0: pred_masks_gpu = fill_holes_in_mask_scores(pred_masks_gpu, self.fill_hole_area) pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True) maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out) obj_ptr = current_out['obj_ptr'] compact_current_out = {'maskmem_features': maskmem_features, 'maskmem_pos_enc': maskmem_pos_enc, 'pred_masks': pred_masks, 'obj_ptr': obj_ptr} return (compact_current_out, pred_masks_gpu) def _run_memory_encoder(self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts): (_, _, current_vision_feats, _, feat_sizes) = self._get_image_feature(inference_state, frame_idx, batch_size) (maskmem_features, maskmem_pos_enc) = self._encode_new_memory(current_vision_feats=current_vision_feats, feat_sizes=feat_sizes, pred_masks_high_res=high_res_masks, is_mask_from_pts=is_mask_from_pts) storage_device = inference_state['storage_device'] maskmem_features = maskmem_features.to(torch.bfloat16) maskmem_features = maskmem_features.to(storage_device, non_blocking=True) maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, {'maskmem_pos_enc': maskmem_pos_enc}) return (maskmem_features, maskmem_pos_enc) def _get_maskmem_pos_enc(self, inference_state, current_out): model_constants = inference_state['constants'] out_maskmem_pos_enc = current_out['maskmem_pos_enc'] if out_maskmem_pos_enc is not None: if 'maskmem_pos_enc' not in model_constants: assert isinstance(out_maskmem_pos_enc, list) maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc] model_constants['maskmem_pos_enc'] = maskmem_pos_enc else: maskmem_pos_enc = model_constants['maskmem_pos_enc'] batch_size = out_maskmem_pos_enc[0].size(0) expanded_maskmem_pos_enc = [x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc] else: expanded_maskmem_pos_enc = None return expanded_maskmem_pos_enc def _clear_non_cond_mem_around_input(self, inference_state, frame_idx): r = self.memory_temporal_stride_for_eval frame_idx_begin = frame_idx - r * self.num_maskmem frame_idx_end = frame_idx + r * self.num_maskmem output_dict = inference_state['output_dict'] non_cond_frame_outputs = output_dict['non_cond_frame_outputs'] for t in range(frame_idx_begin, frame_idx_end + 1): non_cond_frame_outputs.pop(t, None) for obj_output_dict in inference_state['output_dict_per_obj'].values(): obj_output_dict['non_cond_frame_outputs'].pop(t, None) # File: segment-anything-2-coreml-conversion/sav_dataset/sav_evaluator.py from argparse import ArgumentParser from utils.sav_benchmark import benchmark '' parser = ArgumentParser() parser.add_argument('--gt_root', required=True, help="Path to the GT folder. For SA-V, it's sav_val/Annotations_6fps or sav_test/Annotations_6fps") parser.add_argument('--pred_root', required=True, help='Path to a folder containing folders of masks to be evaluated, with exactly the same structure as gt_root') parser.add_argument('-n', '--num_processes', default=16, type=int, help='Number of concurrent processes') parser.add_argument('-s', '--strict', help='Make sure every video in the gt_root folder has a corresponding video in the prediction', action='store_true') parser.add_argument('-q', '--quiet', help='Quietly run evaluation without printing the information out', action='store_true') parser.add_argument('--do_not_skip_first_and_last_frame', help="In SA-V val and test, we skip the first and the last annotated frames in evaluation. Set this to true for evaluation on settings that doesn't skip first and last frames", action='store_true') if __name__ == '__main__': args = parser.parse_args() benchmark([args.gt_root], [args.pred_root], args.strict, args.num_processes, verbose=not args.quiet, skip_first_and_last=not args.do_not_skip_first_and_last_frame) # File: segment-anything-2-coreml-conversion/tools/vos_inference.py import argparse import os import numpy as np import torch from PIL import Image from sam2.build_sam import build_sam2_video_predictor DAVIS_PALETTE = b'\x00\x00\x00\x80\x00\x00\x00\x80\x00\x80\x80\x00\x00\x00\x80\x80\x00\x80\x00\x80\x80\x80\x80\x80@\x00\x00\xc0\x00\x00@\x80\x00\xc0\x80\x00@\x00\x80\xc0\x00\x80@\x80\x80\xc0\x80\x80\x00@\x00\x80@\x00\x00\xc0\x00\x80\xc0\x00\x00@\x80\x80@\x80\x00\xc0\x80\x80\xc0\x80@@\x00\xc0@\x00@\xc0\x00\xc0\xc0\x00@@\x80\xc0@\x80@\xc0\x80\xc0\xc0\x80\x00\x00@\x80\x00@\x00\x80@\x80\x80@\x00\x00\xc0\x80\x00\xc0\x00\x80\xc0\x80\x80\xc0@\x00@\xc0\x00@@\x80@\xc0\x80@@\x00\xc0\xc0\x00\xc0@\x80\xc0\xc0\x80\xc0\x00@@\x80@@\x00\xc0@\x80\xc0@\x00@\xc0\x80@\xc0\x00\xc0\xc0\x80\xc0\xc0@@@\xc0@@@\xc0@\xc0\xc0@@@\xc0\xc0@\xc0@\xc0\xc0\xc0\xc0\xc0 \x00\x00\xa0\x00\x00 \x80\x00\xa0\x80\x00 \x00\x80\xa0\x00\x80 \x80\x80\xa0\x80\x80`\x00\x00\xe0\x00\x00`\x80\x00\xe0\x80\x00`\x00\x80\xe0\x00\x80`\x80\x80\xe0\x80\x80 @\x00\xa0@\x00 \xc0\x00\xa0\xc0\x00 @\x80\xa0@\x80 \xc0\x80\xa0\xc0\x80`@\x00\xe0@\x00`\xc0\x00\xe0\xc0\x00`@\x80\xe0@\x80`\xc0\x80\xe0\xc0\x80 \x00@\xa0\x00@ \x80@\xa0\x80@ \x00\xc0\xa0\x00\xc0 \x80\xc0\xa0\x80\xc0`\x00@\xe0\x00@`\x80@\xe0\x80@`\x00\xc0\xe0\x00\xc0`\x80\xc0\xe0\x80\xc0 @@\xa0@@ \xc0@\xa0\xc0@ @\xc0\xa0@\xc0 \xc0\xc0\xa0\xc0\xc0`@@\xe0@@`\xc0@\xe0\xc0@`@\xc0\xe0@\xc0`\xc0\xc0\xe0\xc0\xc0\x00 \x00\x80 \x00\x00\xa0\x00\x80\xa0\x00\x00 \x80\x80 \x80\x00\xa0\x80\x80\xa0\x80@ \x00\xc0 \x00@\xa0\x00\xc0\xa0\x00@ \x80\xc0 \x80@\xa0\x80\xc0\xa0\x80\x00`\x00\x80`\x00\x00\xe0\x00\x80\xe0\x00\x00`\x80\x80`\x80\x00\xe0\x80\x80\xe0\x80@`\x00\xc0`\x00@\xe0\x00\xc0\xe0\x00@`\x80\xc0`\x80@\xe0\x80\xc0\xe0\x80\x00 @\x80 @\x00\xa0@\x80\xa0@\x00 \xc0\x80 \xc0\x00\xa0\xc0\x80\xa0\xc0@ @\xc0 @@\xa0@\xc0\xa0@@ \xc0\xc0 \xc0@\xa0\xc0\xc0\xa0\xc0\x00`@\x80`@\x00\xe0@\x80\xe0@\x00`\xc0\x80`\xc0\x00\xe0\xc0\x80\xe0\xc0@`@\xc0`@@\xe0@\xc0\xe0@@`\xc0\xc0`\xc0@\xe0\xc0\xc0\xe0\xc0 \x00\xa0 \x00 \xa0\x00\xa0\xa0\x00 \x80\xa0 \x80 \xa0\x80\xa0\xa0\x80` \x00\xe0 \x00`\xa0\x00\xe0\xa0\x00` \x80\xe0 \x80`\xa0\x80\xe0\xa0\x80 `\x00\xa0`\x00 \xe0\x00\xa0\xe0\x00 `\x80\xa0`\x80 \xe0\x80\xa0\xe0\x80``\x00\xe0`\x00`\xe0\x00\xe0\xe0\x00``\x80\xe0`\x80`\xe0\x80\xe0\xe0\x80 @\xa0 @ \xa0@\xa0\xa0@ \xc0\xa0 \xc0 \xa0\xc0\xa0\xa0\xc0` @\xe0 @`\xa0@\xe0\xa0@` \xc0\xe0 \xc0`\xa0\xc0\xe0\xa0\xc0 `@\xa0`@ \xe0@\xa0\xe0@ `\xc0\xa0`\xc0 \xe0\xc0\xa0\xe0\xc0``@\xe0`@`\xe0@\xe0\xe0@``\xc0\xe0`\xc0`\xe0\xc0\xe0\xe0\xc0' def load_ann_png(path): mask = Image.open(path) palette = mask.getpalette() mask = np.array(mask).astype(np.uint8) return (mask, palette) def save_ann_png(path, mask, palette): assert mask.dtype == np.uint8 assert mask.ndim == 2 output_mask = Image.fromarray(mask) output_mask.putpalette(palette) output_mask.save(path) def get_per_obj_mask(mask): object_ids = np.unique(mask) object_ids = object_ids[object_ids > 0].tolist() per_obj_mask = {object_id: mask == object_id for object_id in object_ids} return per_obj_mask def put_per_obj_mask(per_obj_mask, height, width): mask = np.zeros((height, width), dtype=np.uint8) object_ids = sorted(per_obj_mask)[::-1] for object_id in object_ids: object_mask = per_obj_mask[object_id] object_mask = object_mask.reshape(height, width) mask[object_mask] = object_id return mask def load_masks_from_dir(input_mask_dir, video_name, frame_name, per_obj_png_file): if not per_obj_png_file: input_mask_path = os.path.join(input_mask_dir, video_name, f'{frame_name}.png') (input_mask, input_palette) = load_ann_png(input_mask_path) per_obj_input_mask = get_per_obj_mask(input_mask) else: per_obj_input_mask = {} for object_name in os.listdir(os.path.join(input_mask_dir, video_name)): object_id = int(object_name) input_mask_path = os.path.join(input_mask_dir, video_name, object_name, f'{frame_name}.png') (input_mask, input_palette) = load_ann_png(input_mask_path) per_obj_input_mask[object_id] = input_mask > 0 return (per_obj_input_mask, input_palette) def save_masks_to_dir(output_mask_dir, video_name, frame_name, per_obj_output_mask, height, width, per_obj_png_file, output_palette): os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True) if not per_obj_png_file: output_mask = put_per_obj_mask(per_obj_output_mask, height, width) output_mask_path = os.path.join(output_mask_dir, video_name, f'{frame_name}.png') save_ann_png(output_mask_path, output_mask, output_palette) else: for (object_id, object_mask) in per_obj_output_mask.items(): object_name = f'{object_id:03d}' os.makedirs(os.path.join(output_mask_dir, video_name, object_name), exist_ok=True) output_mask = object_mask.reshape(height, width).astype(np.uint8) output_mask_path = os.path.join(output_mask_dir, video_name, object_name, f'{frame_name}.png') save_ann_png(output_mask_path, output_mask, output_palette) @torch.inference_mode() @torch.autocast(device_type='cuda', dtype=torch.bfloat16) def vos_inference(predictor, base_video_dir, input_mask_dir, output_mask_dir, video_name, score_thresh=0.0, use_all_masks=False, per_obj_png_file=False): video_dir = os.path.join(base_video_dir, video_name) frame_names = [os.path.splitext(p)[0] for p in os.listdir(video_dir) if os.path.splitext(p)[-1] in ['.jpg', '.jpeg', '.JPG', '.JPEG']] frame_names.sort(key=lambda p: int(os.path.splitext(p)[0])) inference_state = predictor.init_state(video_path=video_dir, async_loading_frames=False) height = inference_state['video_height'] width = inference_state['video_width'] input_palette = None if not use_all_masks: input_frame_inds = [0] else: if not per_obj_png_file: input_frame_inds = [idx for (idx, name) in enumerate(frame_names) if os.path.exists(os.path.join(input_mask_dir, video_name, f'{name}.png'))] else: input_frame_inds = [idx for object_name in os.listdir(os.path.join(input_mask_dir, video_name)) for (idx, name) in enumerate(frame_names) if os.path.exists(os.path.join(input_mask_dir, video_name, object_name, f'{name}.png'))] input_frame_inds = sorted(set(input_frame_inds)) for input_frame_idx in input_frame_inds: (per_obj_input_mask, input_palette) = load_masks_from_dir(input_mask_dir=input_mask_dir, video_name=video_name, frame_name=frame_names[input_frame_idx], per_obj_png_file=per_obj_png_file) for (object_id, object_mask) in per_obj_input_mask.items(): predictor.add_new_mask(inference_state=inference_state, frame_idx=input_frame_idx, obj_id=object_id, mask=object_mask) os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True) output_palette = input_palette or DAVIS_PALETTE video_segments = {} for (out_frame_idx, out_obj_ids, out_mask_logits) in predictor.propagate_in_video(inference_state): per_obj_output_mask = {out_obj_id: (out_mask_logits[i] > score_thresh).cpu().numpy() for (i, out_obj_id) in enumerate(out_obj_ids)} video_segments[out_frame_idx] = per_obj_output_mask for (out_frame_idx, per_obj_output_mask) in video_segments.items(): save_masks_to_dir(output_mask_dir=output_mask_dir, video_name=video_name, frame_name=frame_names[out_frame_idx], per_obj_output_mask=per_obj_output_mask, height=height, width=width, per_obj_png_file=per_obj_png_file, output_palette=output_palette) def main(): parser = argparse.ArgumentParser() parser.add_argument('--sam2_cfg', type=str, default='sam2_hiera_b+.yaml', help='SAM 2 model configuration file') parser.add_argument('--sam2_checkpoint', type=str, default='./checkpoints/sam2_hiera_b+.pt', help='path to the SAM 2 model checkpoint') parser.add_argument('--base_video_dir', type=str, required=True, help='directory containing videos (as JPEG files) to run VOS prediction on') parser.add_argument('--input_mask_dir', type=str, required=True, help='directory containing input masks (as PNG files) of each video') parser.add_argument('--video_list_file', type=str, default=None, help='text file containing the list of video names to run VOS prediction on') parser.add_argument('--output_mask_dir', type=str, required=True, help='directory to save the output masks (as PNG files)') parser.add_argument('--score_thresh', type=float, default=0.0, help='threshold for the output mask logits (default: 0.0)') parser.add_argument('--use_all_masks', action='store_true', help="whether to use all available PNG files in input_mask_dir (default without this flag: just the first PNG file as input to the SAM 2 model; usually we don't need this flag, since semi-supervised VOS evaluation usually takes input from the first frame only)") parser.add_argument('--per_obj_png_file', action='store_true', help='whether use separate per-object PNG files for input and output masks (default without this flag: all object masks are packed into a single PNG file on each frame following DAVIS format; note that the SA-V dataset stores each object mask as an individual PNG file and requires this flag)') parser.add_argument('--apply_postprocessing', action='store_true', help="whether to apply postprocessing (e.g. hole-filling) to the output masks (we don't apply such post-processing in the SAM 2 model evaluation)") args = parser.parse_args() hydra_overrides_extra = ['++model.non_overlap_masks=' + ('false' if args.per_obj_png_file else 'true')] predictor = build_sam2_video_predictor(config_file=args.sam2_cfg, ckpt_path=args.sam2_checkpoint, apply_postprocessing=args.apply_postprocessing, hydra_overrides_extra=hydra_overrides_extra) if args.use_all_masks: print('using all available masks in input_mask_dir as input to the SAM 2 model') else: print("using only the first frame's mask in input_mask_dir as input to the SAM 2 model") if args.video_list_file is not None: with open(args.video_list_file, 'r') as f: video_names = [v.strip() for v in f.readlines()] else: video_names = [p for p in os.listdir(args.base_video_dir) if os.path.isdir(os.path.join(args.base_video_dir, p))] print(f'running VOS prediction on {len(video_names)} videos:\n{video_names}') for (n_video, video_name) in enumerate(video_names): print(f'\n{n_video + 1}/{len(video_names)} - running on {video_name}') vos_inference(predictor=predictor, base_video_dir=args.base_video_dir, input_mask_dir=args.input_mask_dir, output_mask_dir=args.output_mask_dir, video_name=video_name, score_thresh=args.score_thresh, use_all_masks=args.use_all_masks, per_obj_png_file=args.per_obj_png_file) print(f'completed VOS prediction on {len(video_names)} videos -- output masks saved to {args.output_mask_dir}') if __name__ == '__main__': main() |