File size: 159,855 Bytes
b1d4de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
# File: segment-anything-2-coreml-conversion/coreml/export.py
import argparse
import os
import enum
from typing import List, Optional, Tuple
import ast
import torch
import numpy as np
from PIL import Image
from PIL.Image import Resampling
import coremltools as ct
from coremltools.converters.mil._deployment_compatibility import AvailableTarget
from coremltools import ComputeUnit
from coremltools.converters.mil.mil.passes.defs.quantization import ComputePrecision
from coremltools.converters.mil import register_torch_op
from coremltools.converters.mil.mil import Builder as mb
from sam2.sam2_image_predictor import SAM2ImagePredictor

class SAM2Variant(enum.Enum):
    Tiny = 'tiny'
    Small = 'small'
    BasePlus = 'base-plus'
    Large = 'large'

    def fmt(self):
        if self == SAM2Variant.BasePlus:
            return 'BasePlus'
        return self.value.capitalize()
SAM2_HW = (1024, 1024)

def parse_args(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
    parser.add_argument('--output-dir', type=str, default='.', help='Provide location to save exported models.')
    parser.add_argument('--variant', type=lambda x: getattr(SAM2Variant, x), choices=[variant for variant in SAM2Variant], default=SAM2Variant.Small, help='SAM2 variant to export.')
    parser.add_argument('--points', type=str, help="List of 2D points, e.g., '[[10,20], [30,40]]'")
    parser.add_argument('--boxes', type=str, help="List of 2D bounding boxes, e.g., '[[10,20,30,40], [50,60,70,80]]'")
    parser.add_argument('--labels', type=str, help='List of binary labels for each points entry, denoting foreground (1) or background (0).')
    parser.add_argument('--min-deployment-target', type=lambda x: getattr(AvailableTarget, x), choices=[target for target in AvailableTarget], default=AvailableTarget.iOS17, help='Minimum deployment target for CoreML model.')
    parser.add_argument('--compute-units', type=lambda x: getattr(ComputeUnit, x), choices=[cu for cu in ComputeUnit], default=ComputeUnit.ALL, help='Which compute units to target for CoreML model.')
    parser.add_argument('--precision', type=lambda x: getattr(ComputePrecision, x), choices=[p for p in ComputePrecision], default=ComputePrecision.FLOAT16, help='Precision to use for quantization.')
    return parser

@register_torch_op
def upsample_bicubic2d(context, node):
    x = context[node.inputs[0]]
    output_size = context[node.inputs[1]].val
    scale_factor_height = output_size[0] / x.shape[2]
    scale_factor_width = output_size[1] / x.shape[3]
    align_corners = context[node.inputs[2]].val
    x = mb.upsample_bilinear(x=x, scale_factor_height=scale_factor_height, scale_factor_width=scale_factor_width, align_corners=align_corners, name=node.name)
    context.add(x)

class SAM2ImageEncoder(torch.nn.Module):

    def __init__(self, model: SAM2ImagePredictor):
        super().__init__()
        self.model = model

    @torch.no_grad()
    def forward(self, image):
        (img_embedding, feats_s0, feats_s1) = self.model.encode_image_raw(image)
        return (img_embedding, feats_s0, feats_s1)

def validate_image_encoder(model: ct.models.MLModel, ground_model: SAM2ImagePredictor, image: Image.Image):
    prepared_image = image.resize(SAM2_HW, Resampling.BILINEAR)
    predictions = model.predict({'image': prepared_image})
    image = np.array(image.convert('RGB'))
    tch_image = ground_model._transforms(image)
    tch_image = tch_image[None, ...].to('cpu')
    (ground_embedding, ground_feats_s0, ground_feats_s1) = ground_model.encode_image_raw(tch_image)
    (ground_embedding, ground_feats_s0, ground_feats_s1) = (ground_embedding.numpy(), ground_feats_s0.numpy(), ground_feats_s1.numpy())
    img_max_diff = np.max(np.abs(predictions['image_embedding'] - ground_embedding))
    img_avg_diff = np.mean(np.abs(predictions['image_embedding'] - ground_embedding))
    s0_max_diff = np.max(np.abs(predictions['feats_s0'] - ground_feats_s0))
    s0_avg_diff = np.mean(np.abs(predictions['feats_s0'] - ground_feats_s0))
    s1_max_diff = np.max(np.abs(predictions['feats_s1'] - ground_feats_s1))
    s1_avg_diff = np.mean(np.abs(predictions['feats_s1'] - ground_feats_s1))
    print(f'Image Embedding: Max Diff: {img_max_diff:.4f}, Avg Diff: {img_avg_diff:.4f}')
    print(f'Feats S0: Max Diff: {s0_max_diff:.4f}, Avg Diff: {s0_avg_diff:.4f}')
    print(f'Feats S1: Max Diff: {s1_max_diff:.4f}, Avg Diff: {s1_avg_diff:.4f}')

def validate_prompt_encoder(model: ct.models.MLModel, ground_model: SAM2ImagePredictor, unnorm_coords, labels):
    predictions = model.predict({'points': unnorm_coords, 'labels': labels})
    (ground_sparse, ground_dense) = ground_model.encode_points_raw(unnorm_coords, labels)
    ground_sparse = ground_sparse.numpy()
    ground_dense = ground_dense.numpy()
    sparse_max_diff = np.max(np.abs(predictions['sparse_embeddings'] - ground_sparse))
    sparse_avg_diff = np.mean(np.abs(predictions['sparse_embeddings'] - ground_sparse))
    dense_max_diff = np.max(np.abs(predictions['dense_embeddings'] - ground_dense))
    dense_avg_diff = np.mean(np.abs(predictions['dense_embeddings'] - ground_dense))
    print('Sparse Embeddings: Max Diff: {:.4f}, Avg Diff: {:.4f}'.format(sparse_max_diff, sparse_avg_diff))
    print('Dense Embeddings: Max Diff: {:.4f}, Avg Diff: {:.4f}'.format(dense_max_diff, dense_avg_diff))
    assert np.allclose(predictions['sparse_embeddings'], ground_sparse, atol=0.009)
    assert np.allclose(predictions['dense_embeddings'], ground_dense, atol=0.001)

def validate_mask_decoder(model: ct.models.MLModel, ground_model: SAM2ImagePredictor, image_embedding, sparse_embedding, dense_embedding, feats_s0, feats_s1, precision: ComputePrecision):
    predictions = model.predict({'image_embedding': image_embedding, 'sparse_embedding': sparse_embedding, 'dense_embedding': dense_embedding, 'feats_s0': feats_s0, 'feats_s1': feats_s1})
    (ground_masks, scores) = ground_model.decode_masks_raw(image_embedding, sparse_embedding, dense_embedding, [feats_s0, feats_s1])
    ground_masks = ground_masks.numpy()
    masks_max_diff = np.max(np.abs(predictions['low_res_masks'] - ground_masks))
    masks_avg_diff = np.mean(np.abs(predictions['low_res_masks'] - ground_masks))
    print('Masks: Max Diff: {:.4f}, Avg Diff: {:.4f}'.format(masks_max_diff, masks_avg_diff))
    atol = 0.07 if precision == ComputePrecision.FLOAT32 else 0.3
    assert np.allclose(predictions['low_res_masks'], ground_masks, atol=atol)
    print(f"Scores: {predictions['scores']}, ground: {scores}")

class SAM2PointsEncoder(torch.nn.Module):

    def __init__(self, model: SAM2ImagePredictor):
        super().__init__()
        self.model = model

    @torch.no_grad()
    def forward(self, points, labels):
        prompt_embedding = self.model.encode_points_raw(points, labels)
        return prompt_embedding

class SAM2MaskDecoder(torch.nn.Module):

    def __init__(self, model: SAM2ImagePredictor):
        super().__init__()
        self.model = model

    @torch.no_grad()
    def forward(self, image_embedding, sparse_embedding, dense_embedding, feats_s0, feats_s1):
        (low_res_masks, iou_scores) = self.model.decode_masks_raw(image_embedding, sparse_embedding, dense_embedding, [feats_s0, feats_s1])
        return (low_res_masks, iou_scores)

def export_image_encoder(image_predictor: SAM2ImagePredictor, variant: SAM2Variant, output_dir: str, min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision) -> Tuple[int, int]:
    image = Image.open('../notebooks/images/truck.jpg')
    image = np.array(image.convert('RGB'))
    orig_hw = (image.shape[0], image.shape[1])
    prepared_image = image_predictor._transforms(image)
    prepared_image = prepared_image[None, ...].to('cpu')
    traced_model = torch.jit.trace(SAM2ImageEncoder(image_predictor).eval(), prepared_image)
    scale = 1 / (0.226 * 255.0)
    bias = [-0.485 / 0.229, -0.456 / 0.224, -0.406 / 0.225]
    mlmodel = ct.convert(traced_model, inputs=[ct.ImageType(name='image', shape=(1, 3, SAM2_HW[0], SAM2_HW[1]), scale=scale, bias=bias)], outputs=[ct.TensorType(name='image_embedding'), ct.TensorType(name='feats_s0'), ct.TensorType(name='feats_s1')], minimum_deployment_target=min_target, compute_units=compute_units, compute_precision=precision)
    image = Image.open('../notebooks/images/truck.jpg')
    validate_image_encoder(mlmodel, image_predictor, image)
    output_path = os.path.join(output_dir, f'SAM2{variant.fmt()}ImageEncoder{precision.value.upper()}')
    mlmodel.save(output_path + '.mlpackage')
    return orig_hw

def export_points_prompt_encoder(image_predictor: SAM2ImagePredictor, variant: SAM2Variant, input_points: List[List[float]], input_labels: List[int], orig_hw: tuple, output_dir: str, min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision):
    image_predictor.model.sam_prompt_encoder.eval()
    points = torch.tensor(input_points, dtype=torch.float32)
    labels = torch.tensor(input_labels, dtype=torch.int32)
    unnorm_coords = image_predictor._transforms.transform_coords(points, normalize=True, orig_hw=orig_hw)
    (unnorm_coords, labels) = (unnorm_coords[None, ...], labels[None, ...])
    traced_model = torch.jit.trace(SAM2PointsEncoder(image_predictor), (unnorm_coords, labels))
    points_shape = ct.Shape(shape=(1, ct.RangeDim(lower_bound=1, upper_bound=16), 2))
    labels_shape = ct.Shape(shape=(1, ct.RangeDim(lower_bound=1, upper_bound=16)))
    mlmodel = ct.convert(traced_model, inputs=[ct.TensorType(name='points', shape=points_shape), ct.TensorType(name='labels', shape=labels_shape)], outputs=[ct.TensorType(name='sparse_embeddings'), ct.TensorType(name='dense_embeddings')], minimum_deployment_target=min_target, compute_units=compute_units, compute_precision=precision)
    validate_prompt_encoder(mlmodel, image_predictor, unnorm_coords, labels)
    output_path = os.path.join(output_dir, f'SAM2{variant.fmt()}PromptEncoder{precision.value.upper()}')
    mlmodel.save(output_path + '.mlpackage')

def export_mask_decoder(image_predictor: SAM2ImagePredictor, variant: SAM2Variant, output_dir: str, min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision):
    image_predictor.model.sam_mask_decoder.eval()
    s0 = torch.randn(1, 32, 256, 256)
    s1 = torch.randn(1, 64, 128, 128)
    image_embedding = torch.randn(1, 256, 64, 64)
    sparse_embedding = torch.randn(1, 3, 256)
    dense_embedding = torch.randn(1, 256, 64, 64)
    traced_model = torch.jit.trace(SAM2MaskDecoder(image_predictor), (image_embedding, sparse_embedding, dense_embedding, s0, s1))
    traced_model.eval()
    mlmodel = ct.convert(traced_model, inputs=[ct.TensorType(name='image_embedding', shape=[1, 256, 64, 64]), ct.TensorType(name='sparse_embedding', shape=ct.EnumeratedShapes(shapes=[[1, i, 256] for i in range(2, 16)])), ct.TensorType(name='dense_embedding', shape=[1, 256, 64, 64]), ct.TensorType(name='feats_s0', shape=[1, 32, 256, 256]), ct.TensorType(name='feats_s1', shape=[1, 64, 128, 128])], outputs=[ct.TensorType(name='low_res_masks'), ct.TensorType(name='scores')], minimum_deployment_target=min_target, compute_units=compute_units, compute_precision=precision)
    validate_mask_decoder(mlmodel, image_predictor, image_embedding, sparse_embedding, dense_embedding, s0, s1, precision)
    output_path = os.path.join(output_dir, f'SAM2{variant.fmt()}MaskDecoder{precision.value.upper()}')
    mlmodel.save(output_path + '.mlpackage')
Point = Tuple[float, float]
Box = Tuple[float, float, float, float]

def export(output_dir: str, variant: SAM2Variant, points: Optional[List[Point]], boxes: Optional[List[Box]], labels: Optional[List[int]], min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision):
    os.makedirs(output_dir, exist_ok=True)
    device = torch.device('cpu')
    sam2_checkpoint = f'facebook/sam2-hiera-{variant.value}'
    with torch.no_grad():
        img_predictor = SAM2ImagePredictor.from_pretrained(sam2_checkpoint, device=device)
        img_predictor.model.eval()
        orig_hw = export_image_encoder(img_predictor, variant, output_dir, min_target, compute_units, precision)
        if boxes is not None and points is None:
            raise ValueError('Boxes are not supported yet')
        else:
            export_points_prompt_encoder(img_predictor, variant, points, labels, orig_hw, output_dir, min_target, compute_units, precision)
        export_mask_decoder(img_predictor, variant, output_dir, min_target, compute_units, precision)
if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='SAM2 -> CoreML CLI')
    parser = parse_args(parser)
    args = parser.parse_args()
    (points, boxes, labels) = (None, None, None)
    if args.points:
        points = [tuple(p) for p in ast.literal_eval(args.points)]
    if args.boxes:
        boxes = [tuple(b) for b in ast.literal_eval(args.boxes)]
    if args.labels:
        labels = ast.literal_eval(args.labels)
    if boxes and points:
        raise ValueError('Cannot provide both points and boxes')
    if points:
        if not isinstance(points, list) or not all((isinstance(p, tuple) and len(p) == 2 for p in points)):
            raise ValueError('Points must be a tuple of 2D points')
    if labels:
        if not isinstance(labels, list) or not all((isinstance(l, int) and l in [0, 1] for l in labels)):
            raise ValueError('Labels must denote foreground (1) or background (0)')
    if points:
        if len(points) != len(labels):
            raise ValueError('Number of points must match the number of labels')
        if len(points) > 16:
            raise ValueError('Number of points must be less than or equal to 16')
    if boxes:
        if not isinstance(boxes, list) or not all((isinstance(b, tuple) and len(b) == 4 for b in boxes)):
            raise ValueError('Boxes must be a tuple of 4D bounding boxes')
    export(args.output_dir, args.variant, points, boxes, labels, args.min_deployment_target, args.compute_units, args.precision)

# File: segment-anything-2-coreml-conversion/sam2/automatic_mask_generator.py
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
import torch
from torchvision.ops.boxes import batched_nms, box_area
from sam2.modeling.sam2_base import SAM2Base
from sam2.sam2_image_predictor import SAM2ImagePredictor
from sam2.utils.amg import area_from_rle, batch_iterator, batched_mask_to_box, box_xyxy_to_xywh, build_all_layer_point_grids, calculate_stability_score, coco_encode_rle, generate_crop_boxes, is_box_near_crop_edge, mask_to_rle_pytorch, MaskData, remove_small_regions, rle_to_mask, uncrop_boxes_xyxy, uncrop_masks, uncrop_points

class SAM2AutomaticMaskGenerator:

    def __init__(self, model: SAM2Base, points_per_side: Optional[int]=32, points_per_batch: int=64, pred_iou_thresh: float=0.8, stability_score_thresh: float=0.95, stability_score_offset: float=1.0, mask_threshold: float=0.0, box_nms_thresh: float=0.7, crop_n_layers: int=0, crop_nms_thresh: float=0.7, crop_overlap_ratio: float=512 / 1500, crop_n_points_downscale_factor: int=1, point_grids: Optional[List[np.ndarray]]=None, min_mask_region_area: int=0, output_mode: str='binary_mask', use_m2m: bool=False, multimask_output: bool=True, **kwargs) -> None:
        assert (points_per_side is None) != (point_grids is None), 'Exactly one of points_per_side or point_grid must be provided.'
        if points_per_side is not None:
            self.point_grids = build_all_layer_point_grids(points_per_side, crop_n_layers, crop_n_points_downscale_factor)
        elif point_grids is not None:
            self.point_grids = point_grids
        else:
            raise ValueError("Can't have both points_per_side and point_grid be None.")
        assert output_mode in ['binary_mask', 'uncompressed_rle', 'coco_rle'], f'Unknown output_mode {output_mode}.'
        if output_mode == 'coco_rle':
            try:
                from pycocotools import mask as mask_utils
            except ImportError as e:
                print('Please install pycocotools')
                raise e
        self.predictor = SAM2ImagePredictor(model, max_hole_area=min_mask_region_area, max_sprinkle_area=min_mask_region_area)
        self.points_per_batch = points_per_batch
        self.pred_iou_thresh = pred_iou_thresh
        self.stability_score_thresh = stability_score_thresh
        self.stability_score_offset = stability_score_offset
        self.mask_threshold = mask_threshold
        self.box_nms_thresh = box_nms_thresh
        self.crop_n_layers = crop_n_layers
        self.crop_nms_thresh = crop_nms_thresh
        self.crop_overlap_ratio = crop_overlap_ratio
        self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
        self.min_mask_region_area = min_mask_region_area
        self.output_mode = output_mode
        self.use_m2m = use_m2m
        self.multimask_output = multimask_output

    @classmethod
    def from_pretrained(cls, model_id: str, **kwargs) -> 'SAM2AutomaticMaskGenerator':
        from sam2.build_sam import build_sam2_hf
        sam_model = build_sam2_hf(model_id, **kwargs)
        return cls(sam_model, **kwargs)

    @torch.no_grad()
    def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
        mask_data = self._generate_masks(image)
        if self.output_mode == 'coco_rle':
            mask_data['segmentations'] = [coco_encode_rle(rle) for rle in mask_data['rles']]
        elif self.output_mode == 'binary_mask':
            mask_data['segmentations'] = [rle_to_mask(rle) for rle in mask_data['rles']]
        else:
            mask_data['segmentations'] = mask_data['rles']
        curr_anns = []
        for idx in range(len(mask_data['segmentations'])):
            ann = {'segmentation': mask_data['segmentations'][idx], 'area': area_from_rle(mask_data['rles'][idx]), 'bbox': box_xyxy_to_xywh(mask_data['boxes'][idx]).tolist(), 'predicted_iou': mask_data['iou_preds'][idx].item(), 'point_coords': [mask_data['points'][idx].tolist()], 'stability_score': mask_data['stability_score'][idx].item(), 'crop_box': box_xyxy_to_xywh(mask_data['crop_boxes'][idx]).tolist()}
            curr_anns.append(ann)
        return curr_anns

    def _generate_masks(self, image: np.ndarray) -> MaskData:
        orig_size = image.shape[:2]
        (crop_boxes, layer_idxs) = generate_crop_boxes(orig_size, self.crop_n_layers, self.crop_overlap_ratio)
        data = MaskData()
        for (crop_box, layer_idx) in zip(crop_boxes, layer_idxs):
            crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
            data.cat(crop_data)
        if len(crop_boxes) > 1:
            scores = 1 / box_area(data['crop_boxes'])
            scores = scores.to(data['boxes'].device)
            keep_by_nms = batched_nms(data['boxes'].float(), scores, torch.zeros_like(data['boxes'][:, 0]), iou_threshold=self.crop_nms_thresh)
            data.filter(keep_by_nms)
        data.to_numpy()
        return data

    def _process_crop(self, image: np.ndarray, crop_box: List[int], crop_layer_idx: int, orig_size: Tuple[int, ...]) -> MaskData:
        (x0, y0, x1, y1) = crop_box
        cropped_im = image[y0:y1, x0:x1, :]
        cropped_im_size = cropped_im.shape[:2]
        self.predictor.set_image(cropped_im)
        points_scale = np.array(cropped_im_size)[None, ::-1]
        points_for_image = self.point_grids[crop_layer_idx] * points_scale
        data = MaskData()
        for (points,) in batch_iterator(self.points_per_batch, points_for_image):
            batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size, normalize=True)
            data.cat(batch_data)
            del batch_data
        self.predictor.reset_predictor()
        keep_by_nms = batched_nms(data['boxes'].float(), data['iou_preds'], torch.zeros_like(data['boxes'][:, 0]), iou_threshold=self.box_nms_thresh)
        data.filter(keep_by_nms)
        data['boxes'] = uncrop_boxes_xyxy(data['boxes'], crop_box)
        data['points'] = uncrop_points(data['points'], crop_box)
        data['crop_boxes'] = torch.tensor([crop_box for _ in range(len(data['rles']))])
        return data

    def _process_batch(self, points: np.ndarray, im_size: Tuple[int, ...], crop_box: List[int], orig_size: Tuple[int, ...], normalize=False) -> MaskData:
        (orig_h, orig_w) = orig_size
        points = torch.as_tensor(points, dtype=torch.float32, device=self.predictor.device)
        in_points = self.predictor._transforms.transform_coords(points, normalize=normalize, orig_hw=im_size)
        in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
        (masks, iou_preds, low_res_masks) = self.predictor._predict(in_points[:, None, :], in_labels[:, None], multimask_output=self.multimask_output, return_logits=True)
        data = MaskData(masks=masks.flatten(0, 1), iou_preds=iou_preds.flatten(0, 1), points=points.repeat_interleave(masks.shape[1], dim=0), low_res_masks=low_res_masks.flatten(0, 1))
        del masks
        if not self.use_m2m:
            if self.pred_iou_thresh > 0.0:
                keep_mask = data['iou_preds'] > self.pred_iou_thresh
                data.filter(keep_mask)
            data['stability_score'] = calculate_stability_score(data['masks'], self.mask_threshold, self.stability_score_offset)
            if self.stability_score_thresh > 0.0:
                keep_mask = data['stability_score'] >= self.stability_score_thresh
                data.filter(keep_mask)
        else:
            in_points = self.predictor._transforms.transform_coords(data['points'], normalize=normalize, orig_hw=im_size)
            labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
            (masks, ious) = self.refine_with_m2m(in_points, labels, data['low_res_masks'], self.points_per_batch)
            data['masks'] = masks.squeeze(1)
            data['iou_preds'] = ious.squeeze(1)
            if self.pred_iou_thresh > 0.0:
                keep_mask = data['iou_preds'] > self.pred_iou_thresh
                data.filter(keep_mask)
            data['stability_score'] = calculate_stability_score(data['masks'], self.mask_threshold, self.stability_score_offset)
            if self.stability_score_thresh > 0.0:
                keep_mask = data['stability_score'] >= self.stability_score_thresh
                data.filter(keep_mask)
        data['masks'] = data['masks'] > self.mask_threshold
        data['boxes'] = batched_mask_to_box(data['masks'])
        keep_mask = ~is_box_near_crop_edge(data['boxes'], crop_box, [0, 0, orig_w, orig_h])
        if not torch.all(keep_mask):
            data.filter(keep_mask)
        data['masks'] = uncrop_masks(data['masks'], crop_box, orig_h, orig_w)
        data['rles'] = mask_to_rle_pytorch(data['masks'])
        del data['masks']
        return data

    @staticmethod
    def postprocess_small_regions(mask_data: MaskData, min_area: int, nms_thresh: float) -> MaskData:
        if len(mask_data['rles']) == 0:
            return mask_data
        new_masks = []
        scores = []
        for rle in mask_data['rles']:
            mask = rle_to_mask(rle)
            (mask, changed) = remove_small_regions(mask, min_area, mode='holes')
            unchanged = not changed
            (mask, changed) = remove_small_regions(mask, min_area, mode='islands')
            unchanged = unchanged and (not changed)
            new_masks.append(torch.as_tensor(mask).unsqueeze(0))
            scores.append(float(unchanged))
        masks = torch.cat(new_masks, dim=0)
        boxes = batched_mask_to_box(masks)
        keep_by_nms = batched_nms(boxes.float(), torch.as_tensor(scores), torch.zeros_like(boxes[:, 0]), iou_threshold=nms_thresh)
        for i_mask in keep_by_nms:
            if scores[i_mask] == 0.0:
                mask_torch = masks[i_mask].unsqueeze(0)
                mask_data['rles'][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
                mask_data['boxes'][i_mask] = boxes[i_mask]
        mask_data.filter(keep_by_nms)
        return mask_data

    def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch):
        new_masks = []
        new_iou_preds = []
        for (cur_points, cur_point_labels, low_res_mask) in batch_iterator(points_per_batch, points, point_labels, low_res_masks):
            (best_masks, best_iou_preds, _) = self.predictor._predict(cur_points[:, None, :], cur_point_labels[:, None], mask_input=low_res_mask[:, None, :], multimask_output=False, return_logits=True)
            new_masks.append(best_masks)
            new_iou_preds.append(best_iou_preds)
        masks = torch.cat(new_masks, dim=0)
        return (masks, torch.cat(new_iou_preds, dim=0))

# File: segment-anything-2-coreml-conversion/sam2/build_sam.py
import logging
import torch
from hydra import compose
from hydra.utils import instantiate
from omegaconf import OmegaConf

def build_sam2(config_file, ckpt_path=None, device='cuda', mode='eval', hydra_overrides_extra=[], apply_postprocessing=True, **kwargs):
    if apply_postprocessing:
        hydra_overrides_extra = hydra_overrides_extra.copy()
        hydra_overrides_extra += ['++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98']
    cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
    OmegaConf.resolve(cfg)
    model = instantiate(cfg.model, _recursive_=True)
    _load_checkpoint(model, ckpt_path)
    model = model.to(device)
    if mode == 'eval':
        model.eval()
    return model

def build_sam2_video_predictor(config_file, ckpt_path=None, device='cuda', mode='eval', hydra_overrides_extra=[], apply_postprocessing=True, **kwargs):
    hydra_overrides = ['++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor']
    if apply_postprocessing:
        hydra_overrides_extra = hydra_overrides_extra.copy()
        hydra_overrides_extra += ['++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98', '++model.binarize_mask_from_pts_for_mem_enc=true', '++model.fill_hole_area=8']
    hydra_overrides.extend(hydra_overrides_extra)
    cfg = compose(config_name=config_file, overrides=hydra_overrides)
    OmegaConf.resolve(cfg)
    model = instantiate(cfg.model, _recursive_=True)
    _load_checkpoint(model, ckpt_path)
    model = model.to(device)
    if mode == 'eval':
        model.eval()
    return model

def build_sam2_hf(model_id, **kwargs):
    from huggingface_hub import hf_hub_download
    model_id_to_filenames = {'facebook/sam2-hiera-tiny': ('sam2_hiera_t.yaml', 'sam2_hiera_tiny.pt'), 'facebook/sam2-hiera-small': ('sam2_hiera_s.yaml', 'sam2_hiera_small.pt'), 'facebook/sam2-hiera-base-plus': ('sam2_hiera_b+.yaml', 'sam2_hiera_base_plus.pt'), 'facebook/sam2-hiera-large': ('sam2_hiera_l.yaml', 'sam2_hiera_large.pt')}
    (config_name, checkpoint_name) = model_id_to_filenames[model_id]
    ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
    return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)

def build_sam2_video_predictor_hf(model_id, **kwargs):
    from huggingface_hub import hf_hub_download
    model_id_to_filenames = {'facebook/sam2-hiera-tiny': ('sam2_hiera_t.yaml', 'sam2_hiera_tiny.pt'), 'facebook/sam2-hiera-small': ('sam2_hiera_s.yaml', 'sam2_hiera_small.pt'), 'facebook/sam2-hiera-base-plus': ('sam2_hiera_b+.yaml', 'sam2_hiera_base_plus.pt'), 'facebook/sam2-hiera-large': ('sam2_hiera_l.yaml', 'sam2_hiera_large.pt')}
    (config_name, checkpoint_name) = model_id_to_filenames[model_id]
    ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
    return build_sam2_video_predictor(config_file=config_name, ckpt_path=ckpt_path, **kwargs)

def _load_checkpoint(model, ckpt_path):
    if ckpt_path is not None:
        sd = torch.load(ckpt_path, map_location='cpu')['model']
        (missing_keys, unexpected_keys) = model.load_state_dict(sd)
        if missing_keys:
            logging.error(missing_keys)
            raise RuntimeError()
        if unexpected_keys:
            logging.error(unexpected_keys)
            raise RuntimeError()
        logging.info('Loaded checkpoint sucessfully')

# File: segment-anything-2-coreml-conversion/sam2/modeling/backbones/hieradet.py
from functools import partial
from typing import List, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from sam2.modeling.backbones.utils import PatchEmbed, window_partition, window_unpartition
from sam2.modeling.sam2_utils import DropPath, MLP

def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module=None) -> torch.Tensor:
    if pool is None:
        return x
    x = x.permute(0, 3, 1, 2)
    x = pool(x)
    x = x.permute(0, 2, 3, 1)
    if norm:
        x = norm(x)
    return x

class MultiScaleAttention(nn.Module):

    def __init__(self, dim: int, dim_out: int, num_heads: int, q_pool: nn.Module=None):
        super().__init__()
        self.dim = dim
        self.dim_out = dim_out
        self.num_heads = num_heads
        self.q_pool = q_pool
        self.qkv = nn.Linear(dim, dim_out * 3)
        self.proj = nn.Linear(dim_out, dim_out)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        (B, H, W, _) = x.shape
        qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
        (q, k, v) = torch.unbind(qkv, 2)
        if self.q_pool:
            q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
            (H, W) = q.shape[1:3]
            q = q.reshape(B, H * W, self.num_heads, -1)
        x = F.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2))
        x = x.transpose(1, 2)
        x = x.reshape(B, H, W, -1)
        x = self.proj(x)
        return x

class MultiScaleBlock(nn.Module):

    def __init__(self, dim: int, dim_out: int, num_heads: int, mlp_ratio: float=4.0, drop_path: float=0.0, norm_layer: Union[nn.Module, str]='LayerNorm', q_stride: Tuple[int, int]=None, act_layer: nn.Module=nn.GELU, window_size: int=0):
        super().__init__()
        if isinstance(norm_layer, str):
            norm_layer = partial(getattr(nn, norm_layer), eps=1e-06)
        self.dim = dim
        self.dim_out = dim_out
        self.norm1 = norm_layer(dim)
        self.window_size = window_size
        (self.pool, self.q_stride) = (None, q_stride)
        if self.q_stride:
            self.pool = nn.MaxPool2d(kernel_size=q_stride, stride=q_stride, ceil_mode=False)
        self.attn = MultiScaleAttention(dim, dim_out, num_heads=num_heads, q_pool=self.pool)
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = norm_layer(dim_out)
        self.mlp = MLP(dim_out, int(dim_out * mlp_ratio), dim_out, num_layers=2, activation=act_layer)
        if dim != dim_out:
            self.proj = nn.Linear(dim, dim_out)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shortcut = x
        x = self.norm1(x)
        if self.dim != self.dim_out:
            shortcut = do_pool(self.proj(x), self.pool)
        window_size = self.window_size
        if window_size > 0:
            (H, W) = (x.shape[1], x.shape[2])
            (x, pad_hw) = window_partition(x, window_size)
        x = self.attn(x)
        if self.q_stride:
            window_size = self.window_size // self.q_stride[0]
            (H, W) = shortcut.shape[1:3]
            pad_h = (window_size - H % window_size) % window_size
            pad_w = (window_size - W % window_size) % window_size
            pad_hw = (H + pad_h, W + pad_w)
        if self.window_size > 0:
            x = window_unpartition(x, window_size, pad_hw, (H, W))
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x

class Hiera(nn.Module):

    def __init__(self, embed_dim: int=96, num_heads: int=1, drop_path_rate: float=0.0, q_pool: int=3, q_stride: Tuple[int, int]=(2, 2), stages: Tuple[int, ...]=(2, 3, 16, 3), dim_mul: float=2.0, head_mul: float=2.0, window_pos_embed_bkg_spatial_size: Tuple[int, int]=(14, 14), window_spec: Tuple[int, ...]=(8, 4, 14, 7), global_att_blocks: Tuple[int, ...]=(12, 16, 20), return_interm_layers=True):
        super().__init__()
        assert len(stages) == len(window_spec)
        self.window_spec = window_spec
        depth = sum(stages)
        self.q_stride = q_stride
        self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
        assert 0 <= q_pool <= len(self.stage_ends[:-1])
        self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
        self.return_interm_layers = return_interm_layers
        self.patch_embed = PatchEmbed(embed_dim=embed_dim)
        self.global_att_blocks = global_att_blocks
        self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
        self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size))
        self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]))
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
        cur_stage = 1
        self.blocks = nn.ModuleList()
        for i in range(depth):
            dim_out = embed_dim
            window_size = self.window_spec[cur_stage - 1]
            if self.global_att_blocks is not None:
                window_size = 0 if i in self.global_att_blocks else window_size
            if i - 1 in self.stage_ends:
                dim_out = int(embed_dim * dim_mul)
                num_heads = int(num_heads * head_mul)
                cur_stage += 1
            block = MultiScaleBlock(dim=embed_dim, dim_out=dim_out, num_heads=num_heads, drop_path=dpr[i], q_stride=self.q_stride if i in self.q_pool_blocks else None, window_size=window_size)
            embed_dim = dim_out
            self.blocks.append(block)
        self.channel_list = [self.blocks[i].dim_out for i in self.stage_ends[::-1]] if return_interm_layers else [self.blocks[-1].dim_out]

    def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
        (h, w) = hw
        window_embed = self.pos_embed_window
        pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode='bicubic')
        tiles = [x // y for (x, y) in zip(pos_embed.shape, window_embed.shape)]
        pos_embed = pos_embed + window_embed.tile(tiles)
        pos_embed = pos_embed.permute(0, 2, 3, 1)
        return pos_embed

    def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
        x = self.patch_embed(x)
        x = x + self._get_pos_embed(x.shape[1:3])
        outputs = []
        for (i, blk) in enumerate(self.blocks):
            x = blk(x)
            if i == self.stage_ends[-1] or (i in self.stage_ends and self.return_interm_layers):
                feats = x.permute(0, 3, 1, 2)
                outputs.append(feats)
        return outputs

# File: segment-anything-2-coreml-conversion/sam2/modeling/backbones/image_encoder.py
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F

class ImageEncoder(nn.Module):

    def __init__(self, trunk: nn.Module, neck: nn.Module, scalp: int=0):
        super().__init__()
        self.trunk = trunk
        self.neck = neck
        self.scalp = scalp
        assert self.trunk.channel_list == self.neck.backbone_channel_list, f'Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}'

    def forward(self, sample: torch.Tensor):
        (features, pos) = self.neck(self.trunk(sample))
        if self.scalp > 0:
            (features, pos) = (features[:-self.scalp], pos[:-self.scalp])
        src = features[-1]
        output = {'vision_features': src, 'vision_pos_enc': pos, 'backbone_fpn': features}
        return output

class FpnNeck(nn.Module):

    def __init__(self, position_encoding: nn.Module, d_model: int, backbone_channel_list: List[int], kernel_size: int=1, stride: int=1, padding: int=0, fpn_interp_model: str='bilinear', fuse_type: str='sum', fpn_top_down_levels: Optional[List[int]]=None):
        super().__init__()
        self.position_encoding = position_encoding
        self.convs = nn.ModuleList()
        self.backbone_channel_list = backbone_channel_list
        for dim in backbone_channel_list:
            current = nn.Sequential()
            current.add_module('conv', nn.Conv2d(in_channels=dim, out_channels=d_model, kernel_size=kernel_size, stride=stride, padding=padding))
            self.convs.append(current)
        self.fpn_interp_model = fpn_interp_model
        assert fuse_type in ['sum', 'avg']
        self.fuse_type = fuse_type
        if fpn_top_down_levels is None:
            fpn_top_down_levels = range(len(self.convs))
        self.fpn_top_down_levels = list(fpn_top_down_levels)

    def forward(self, xs: List[torch.Tensor]):
        out = [None] * len(self.convs)
        pos = [None] * len(self.convs)
        assert len(xs) == len(self.convs)
        prev_features = None
        n = len(self.convs) - 1
        for i in range(n, -1, -1):
            x = xs[i]
            lateral_features = self.convs[n - i](x)
            if i in self.fpn_top_down_levels and prev_features is not None:
                top_down_features = F.interpolate(prev_features.to(dtype=torch.float32), scale_factor=2.0, mode=self.fpn_interp_model, align_corners=None if self.fpn_interp_model == 'nearest' else False, antialias=False)
                prev_features = lateral_features + top_down_features
                if self.fuse_type == 'avg':
                    prev_features /= 2
            else:
                prev_features = lateral_features
            x_out = prev_features
            out[i] = x_out
            pos[i] = self.position_encoding(x_out).to(x_out.dtype)
        return (out, pos)

# File: segment-anything-2-coreml-conversion/sam2/modeling/backbones/utils.py
""""""
from typing import Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F

def window_partition(x, window_size):
    (B, H, W, C) = x.shape
    pad_h = (window_size - H % window_size) % window_size
    pad_w = (window_size - W % window_size) % window_size
    if pad_h > 0 or pad_w > 0:
        x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
    (Hp, Wp) = (H + pad_h, W + pad_w)
    x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return (windows, (Hp, Wp))

def window_unpartition(windows, window_size, pad_hw, hw):
    (Hp, Wp) = pad_hw
    (H, W) = hw
    B = windows.shape[0] // (Hp * Wp // window_size // window_size)
    x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
    if Hp > H or Wp > W:
        x = x[:, :H, :W, :].contiguous()
    return x

class PatchEmbed(nn.Module):

    def __init__(self, kernel_size: Tuple[int, ...]=(7, 7), stride: Tuple[int, ...]=(4, 4), padding: Tuple[int, ...]=(3, 3), in_chans: int=3, embed_dim: int=768):
        super().__init__()
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj(x)
        x = x.permute(0, 2, 3, 1)
        return x

# File: segment-anything-2-coreml-conversion/sam2/modeling/memory_attention.py
from typing import Optional
import torch
from torch import nn, Tensor
from sam2.modeling.sam.transformer import RoPEAttention
from sam2.modeling.sam2_utils import get_activation_fn, get_clones

class MemoryAttentionLayer(nn.Module):

    def __init__(self, activation: str, cross_attention: nn.Module, d_model: int, dim_feedforward: int, dropout: float, pos_enc_at_attn: bool, pos_enc_at_cross_attn_keys: bool, pos_enc_at_cross_attn_queries: bool, self_attention: nn.Module):
        super().__init__()
        self.d_model = d_model
        self.dim_feedforward = dim_feedforward
        self.dropout_value = dropout
        self.self_attn = self_attention
        self.cross_attn_image = cross_attention
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)
        self.activation_str = activation
        self.activation = get_activation_fn(activation)
        self.pos_enc_at_attn = pos_enc_at_attn
        self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
        self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys

    def _forward_sa(self, tgt, query_pos):
        tgt2 = self.norm1(tgt)
        q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
        tgt2 = self.self_attn(q, k, v=tgt2)
        tgt = tgt + self.dropout1(tgt2)
        return tgt

    def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
        kwds = {}
        if num_k_exclude_rope > 0:
            assert isinstance(self.cross_attn_image, RoPEAttention)
            kwds = {'num_k_exclude_rope': num_k_exclude_rope}
        tgt2 = self.norm2(tgt)
        tgt2 = self.cross_attn_image(q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2, k=memory + pos if self.pos_enc_at_cross_attn_keys else memory, v=memory, **kwds)
        tgt = tgt + self.dropout2(tgt2)
        return tgt

    def forward(self, tgt, memory, pos: Optional[Tensor]=None, query_pos: Optional[Tensor]=None, num_k_exclude_rope: int=0) -> torch.Tensor:
        tgt = self._forward_sa(tgt, query_pos)
        tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
        tgt2 = self.norm3(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
        tgt = tgt + self.dropout3(tgt2)
        return tgt

class MemoryAttention(nn.Module):

    def __init__(self, d_model: int, pos_enc_at_input: bool, layer: nn.Module, num_layers: int, batch_first: bool=True):
        super().__init__()
        self.d_model = d_model
        self.layers = get_clones(layer, num_layers)
        self.num_layers = num_layers
        self.norm = nn.LayerNorm(d_model)
        self.pos_enc_at_input = pos_enc_at_input
        self.batch_first = batch_first

    def forward(self, curr: torch.Tensor, memory: torch.Tensor, curr_pos: Optional[Tensor]=None, memory_pos: Optional[Tensor]=None, num_obj_ptr_tokens: int=0):
        if isinstance(curr, list):
            assert isinstance(curr_pos, list)
            assert len(curr) == len(curr_pos) == 1
            (curr, curr_pos) = (curr[0], curr_pos[0])
        assert curr.shape[1] == memory.shape[1], 'Batch size must be the same for curr and memory'
        output = curr
        if self.pos_enc_at_input and curr_pos is not None:
            output = output + 0.1 * curr_pos
        if self.batch_first:
            output = output.transpose(0, 1)
            curr_pos = curr_pos.transpose(0, 1)
            memory = memory.transpose(0, 1)
            memory_pos = memory_pos.transpose(0, 1)
        for layer in self.layers:
            kwds = {}
            if isinstance(layer.cross_attn_image, RoPEAttention):
                kwds = {'num_k_exclude_rope': num_obj_ptr_tokens}
            output = layer(tgt=output, memory=memory, pos=memory_pos, query_pos=curr_pos, **kwds)
        normed_output = self.norm(output)
        if self.batch_first:
            normed_output = normed_output.transpose(0, 1)
            curr_pos = curr_pos.transpose(0, 1)
        return normed_output

# File: segment-anything-2-coreml-conversion/sam2/modeling/memory_encoder.py
import math
from typing import Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d

class MaskDownSampler(nn.Module):

    def __init__(self, embed_dim=256, kernel_size=4, stride=4, padding=0, total_stride=16, activation=nn.GELU):
        super().__init__()
        num_layers = int(math.log2(total_stride) // math.log2(stride))
        assert stride ** num_layers == total_stride
        self.encoder = nn.Sequential()
        (mask_in_chans, mask_out_chans) = (1, 1)
        for _ in range(num_layers):
            mask_out_chans = mask_in_chans * stride ** 2
            self.encoder.append(nn.Conv2d(mask_in_chans, mask_out_chans, kernel_size=kernel_size, stride=stride, padding=padding))
            self.encoder.append(LayerNorm2d(mask_out_chans))
            self.encoder.append(activation())
            mask_in_chans = mask_out_chans
        self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))

    def forward(self, x):
        return self.encoder(x)

class CXBlock(nn.Module):

    def __init__(self, dim, kernel_size=7, padding=3, drop_path=0.0, layer_scale_init_value=1e-06, use_dwconv=True):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=kernel_size, padding=padding, groups=dim if use_dwconv else 1)
        self.norm = LayerNorm2d(dim, eps=1e-06)
        self.pwconv1 = nn.Linear(dim, 4 * dim)
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) if layer_scale_init_value > 0 else None
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = self.norm(x)
        x = x.permute(0, 2, 3, 1)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.permute(0, 3, 1, 2)
        x = input + self.drop_path(x)
        return x

class Fuser(nn.Module):

    def __init__(self, layer, num_layers, dim=None, input_projection=False):
        super().__init__()
        self.proj = nn.Identity()
        self.layers = get_clones(layer, num_layers)
        if input_projection:
            assert dim is not None
            self.proj = nn.Conv2d(dim, dim, kernel_size=1)

    def forward(self, x):
        x = self.proj(x)
        for layer in self.layers:
            x = layer(x)
        return x

class MemoryEncoder(nn.Module):

    def __init__(self, out_dim, mask_downsampler, fuser, position_encoding, in_dim=256):
        super().__init__()
        self.mask_downsampler = mask_downsampler
        self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
        self.fuser = fuser
        self.position_encoding = position_encoding
        self.out_proj = nn.Identity()
        if out_dim != in_dim:
            self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)

    def forward(self, pix_feat: torch.Tensor, masks: torch.Tensor, skip_mask_sigmoid: bool=False) -> Tuple[torch.Tensor, torch.Tensor]:
        if not skip_mask_sigmoid:
            masks = F.sigmoid(masks)
        masks = self.mask_downsampler(masks)
        pix_feat = pix_feat.to(masks.device)
        x = self.pix_feat_proj(pix_feat)
        x = x + masks
        x = self.fuser(x)
        x = self.out_proj(x)
        pos = self.position_encoding(x).to(x.dtype)
        return {'vision_features': x, 'vision_pos_enc': [pos]}

# File: segment-anything-2-coreml-conversion/sam2/modeling/position_encoding.py
import math
from typing import Any, Optional, Tuple
import numpy as np
import torch
from torch import nn

class PositionEmbeddingSine(nn.Module):

    def __init__(self, num_pos_feats, temperature: int=10000, normalize: bool=True, scale: Optional[float]=None):
        super().__init__()
        assert num_pos_feats % 2 == 0, 'Expecting even model width'
        self.num_pos_feats = num_pos_feats // 2
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError('normalize should be True if scale is passed')
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale
        self.cache = {}

    def _encode_xy(self, x, y):
        assert len(x) == len(y) and x.ndim == y.ndim == 1
        x_embed = x * self.scale
        y_embed = y * self.scale
        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
        pos_x = x_embed[:, None] / dim_t
        pos_y = y_embed[:, None] / dim_t
        pos_x = torch.stack((pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2).flatten(1)
        pos_y = torch.stack((pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2).flatten(1)
        return (pos_x, pos_y)

    @torch.no_grad()
    def encode_boxes(self, x, y, w, h):
        (pos_x, pos_y) = self._encode_xy(x, y)
        pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
        return pos
    encode = encode_boxes

    @torch.no_grad()
    def encode_points(self, x, y, labels):
        ((bx, nx), (by, ny), (bl, nl)) = (x.shape, y.shape, labels.shape)
        assert bx == by and nx == ny and (bx == bl) and (nx == nl)
        (pos_x, pos_y) = self._encode_xy(x.flatten(), y.flatten())
        (pos_x, pos_y) = (pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1))
        pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
        return pos

    @torch.no_grad()
    def forward(self, x: torch.Tensor):
        cache_key = (x.shape[-2], x.shape[-1])
        if cache_key in self.cache:
            return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1)
        y_embed = torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device).view(1, -1, 1).repeat(x.shape[0], 1, x.shape[-1])
        x_embed = torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device).view(1, 1, -1).repeat(x.shape[0], x.shape[-2], 1)
        if self.normalize:
            eps = 1e-06
            y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
            x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        self.cache[cache_key] = pos[0]
        return pos

class PositionEmbeddingRandom(nn.Module):

    def __init__(self, num_pos_feats: int=64, scale: Optional[float]=None) -> None:
        super().__init__()
        if scale is None or scale <= 0.0:
            scale = 1.0
        self.register_buffer('positional_encoding_gaussian_matrix', scale * torch.randn((2, num_pos_feats)))

    def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
        coords = 2 * coords - 1
        coords = coords @ self.positional_encoding_gaussian_matrix
        coords = 2 * np.pi * coords
        return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)

    def forward(self, size: Tuple[int, int]) -> torch.Tensor:
        (h, w) = size
        device: Any = self.positional_encoding_gaussian_matrix.device
        grid = torch.ones((h, w), device=device, dtype=torch.float32)
        y_embed = grid.cumsum(dim=0) - 0.5
        x_embed = grid.cumsum(dim=1) - 0.5
        y_embed = y_embed / h
        x_embed = x_embed / w
        pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
        return pe.permute(2, 0, 1)

    def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
        coords = coords_input.clone()
        coords[:, :, 0] = coords[:, :, 0] / image_size[1]
        coords[:, :, 1] = coords[:, :, 1] / image_size[0]
        return self._pe_encoding(coords.to(torch.float))

def init_t_xy(end_x: int, end_y: int):
    t = torch.arange(end_x * end_y, dtype=torch.float32)
    t_x = (t % end_x).float()
    t_y = torch.div(t, end_x, rounding_mode='floor').float()
    return (t_x, t_y)

def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float=10000.0):
    freqs_x = 1.0 / theta ** (torch.arange(0, dim, 4)[:dim // 4].float() / dim)
    freqs_y = 1.0 / theta ** (torch.arange(0, dim, 4)[:dim // 4].float() / dim)
    (t_x, t_y) = init_t_xy(end_x, end_y)
    freqs_x = torch.outer(t_x, freqs_x)
    freqs_y = torch.outer(t_y, freqs_y)
    freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
    freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
    return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)

def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    ndim = x.ndim
    assert 0 <= 1 < ndim
    assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
    shape = [d if i >= ndim - 2 else 1 for (i, d) in enumerate(x.shape)]
    return freqs_cis.view(*shape)

def apply_rotary_enc(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor, repeat_freqs_k: bool=False):
    xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
    xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) if xk.shape[-2] != 0 else None
    freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
    xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
    if xk_ is None:
        return (xq_out.type_as(xq).to(xq.device), xk)
    if repeat_freqs_k:
        r = xk_.shape[-2] // xq_.shape[-2]
        if freqs_cis.is_cuda:
            freqs_cis = freqs_cis.repeat(*[1] * (freqs_cis.ndim - 2), r, 1)
        else:
            freqs_cis = freqs_cis.unsqueeze(2).expand(-1, -1, r, -1, -1).flatten(2, 3)
    xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
    return (xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device))

# File: segment-anything-2-coreml-conversion/sam2/modeling/sam/mask_decoder.py
from typing import List, Optional, Tuple, Type
import torch
from torch import nn
from sam2.modeling.sam2_utils import LayerNorm2d, MLP

class MaskDecoder(nn.Module):

    def __init__(self, *, transformer_dim: int, transformer: nn.Module, num_multimask_outputs: int=3, activation: Type[nn.Module]=nn.GELU, iou_head_depth: int=3, iou_head_hidden_dim: int=256, use_high_res_features: bool=False, iou_prediction_use_sigmoid=False, dynamic_multimask_via_stability=False, dynamic_multimask_stability_delta=0.05, dynamic_multimask_stability_thresh=0.98, pred_obj_scores: bool=False, pred_obj_scores_mlp: bool=False, use_multimask_token_for_obj_ptr: bool=False) -> None:
        super().__init__()
        self.transformer_dim = transformer_dim
        self.transformer = transformer
        self.num_multimask_outputs = num_multimask_outputs
        self.iou_token = nn.Embedding(1, transformer_dim)
        self.num_mask_tokens = num_multimask_outputs + 1
        self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
        self.pred_obj_scores = pred_obj_scores
        if self.pred_obj_scores:
            self.obj_score_token = nn.Embedding(1, transformer_dim)
        self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
        self.output_upscaling = nn.Sequential(nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), LayerNorm2d(transformer_dim // 4), activation(), nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), activation())
        self.use_high_res_features = use_high_res_features
        if use_high_res_features:
            self.conv_s0 = nn.Conv2d(transformer_dim, transformer_dim // 8, kernel_size=1, stride=1)
            self.conv_s1 = nn.Conv2d(transformer_dim, transformer_dim // 4, kernel_size=1, stride=1)
        self.output_hypernetworks_mlps = nn.ModuleList([MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens)])
        self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth, sigmoid_output=iou_prediction_use_sigmoid)
        if self.pred_obj_scores:
            self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
            if pred_obj_scores_mlp:
                self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
        self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
        self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
        self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh

    def forward(self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, multimask_output: bool, repeat_image: bool, high_res_features: Optional[List[torch.Tensor]]=None) -> Tuple[torch.Tensor, torch.Tensor]:
        (masks, iou_pred, mask_tokens_out, object_score_logits) = self.predict_masks(image_embeddings=image_embeddings, image_pe=image_pe, sparse_prompt_embeddings=sparse_prompt_embeddings, dense_prompt_embeddings=dense_prompt_embeddings, repeat_image=repeat_image, high_res_features=high_res_features)
        if multimask_output:
            masks = masks[:, 1:, :, :]
            iou_pred = iou_pred[:, 1:]
        elif self.dynamic_multimask_via_stability and (not self.training):
            (masks, iou_pred) = self._dynamic_multimask_via_stability(masks, iou_pred)
        else:
            masks = masks[:, 0:1, :, :]
            iou_pred = iou_pred[:, 0:1]
        if multimask_output and self.use_multimask_token_for_obj_ptr:
            sam_tokens_out = mask_tokens_out[:, 1:]
        else:
            sam_tokens_out = mask_tokens_out[:, 0:1]
        return (masks, iou_pred, sam_tokens_out, object_score_logits)

    def predict_masks(self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, repeat_image: bool, high_res_features: Optional[List[torch.Tensor]]=None) -> Tuple[torch.Tensor, torch.Tensor]:
        s = 0
        if self.pred_obj_scores:
            output_tokens = torch.cat([self.obj_score_token.weight, self.iou_token.weight, self.mask_tokens.weight], dim=0)
            s = 1
        else:
            output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
        output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
        tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
        if repeat_image:
            src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
        else:
            assert image_embeddings.shape[0] == tokens.shape[0]
            src = image_embeddings
        src = src + dense_prompt_embeddings
        assert image_pe.size(0) == 1, 'image_pe should have size 1 in batch dim (from `get_dense_pe()`)'
        pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
        (b, c, h, w) = src.shape
        (hs, src) = self.transformer(src, pos_src, tokens)
        iou_token_out = hs[:, s, :]
        mask_tokens_out = hs[:, s + 1:s + 1 + self.num_mask_tokens, :]
        src = src.transpose(1, 2).view(b, c, h, w)
        if not self.use_high_res_features:
            upscaled_embedding = self.output_upscaling(src)
        else:
            (dc1, ln1, act1, dc2, act2) = self.output_upscaling
            (feat_s0, feat_s1) = high_res_features
            upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
            upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
        hyper_in_list: List[torch.Tensor] = []
        for i in range(self.num_mask_tokens):
            hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
        hyper_in = torch.stack(hyper_in_list, dim=1)
        (b, c, h, w) = upscaled_embedding.shape
        masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
        iou_pred = self.iou_prediction_head(iou_token_out)
        if self.pred_obj_scores:
            assert s == 1
            object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
        else:
            object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
        return (masks, iou_pred, mask_tokens_out, object_score_logits)

    def _get_stability_scores(self, mask_logits):
        mask_logits = mask_logits.flatten(-2)
        stability_delta = self.dynamic_multimask_stability_delta
        area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
        area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
        stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
        return stability_scores

    def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
        multimask_logits = all_mask_logits[:, 1:, :, :]
        multimask_iou_scores = all_iou_scores[:, 1:]
        best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
        batch_inds = torch.arange(multimask_iou_scores.size(0), device=all_iou_scores.device)
        best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
        best_multimask_logits = best_multimask_logits.unsqueeze(1)
        best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
        best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
        singlemask_logits = all_mask_logits[:, 0:1, :, :]
        singlemask_iou_scores = all_iou_scores[:, 0:1]
        stability_scores = self._get_stability_scores(singlemask_logits)
        is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
        mask_logits_out = torch.where(is_stable[..., None, None].expand_as(singlemask_logits), singlemask_logits, best_multimask_logits)
        iou_scores_out = torch.where(is_stable.expand_as(singlemask_iou_scores), singlemask_iou_scores, best_multimask_iou_scores)
        return (mask_logits_out, iou_scores_out)

# File: segment-anything-2-coreml-conversion/sam2/modeling/sam/prompt_encoder.py
from typing import Optional, Tuple, Type
import torch
from torch import nn
from sam2.modeling.position_encoding import PositionEmbeddingRandom
from sam2.modeling.sam2_utils import LayerNorm2d

class PromptEncoder(nn.Module):

    def __init__(self, embed_dim: int, image_embedding_size: Tuple[int, int], input_image_size: Tuple[int, int], mask_in_chans: int, activation: Type[nn.Module]=nn.GELU) -> None:
        super().__init__()
        self.embed_dim = embed_dim
        self.input_image_size = input_image_size
        self.image_embedding_size = image_embedding_size
        self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
        self.num_point_embeddings: int = 4
        point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
        self.point_embeddings = nn.ModuleList(point_embeddings)
        self.not_a_point_embed = nn.Embedding(1, embed_dim)
        self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
        self.mask_downscaling = nn.Sequential(nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans // 4), activation(), nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans), activation(), nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1))
        self.no_mask_embed = nn.Embedding(1, embed_dim)

    def get_dense_pe(self) -> torch.Tensor:
        return self.pe_layer(self.image_embedding_size).unsqueeze(0)

    def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor:
        points = points + 0.5
        if pad:
            padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
            padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
            points = torch.cat([points, padding_point], dim=1)
            labels = torch.cat([labels, padding_label], dim=1)
        point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
        mask_not_a_point = (labels == -1).float().unsqueeze(-1)
        mask_label_0 = (labels == 0).float().unsqueeze(-1)
        mask_label_1 = (labels == 1).float().unsqueeze(-1)
        mask_label_2 = (labels == 2).float().unsqueeze(-1)
        mask_label_3 = (labels == 3).float().unsqueeze(-1)
        point_embedding = point_embedding * (1 - mask_not_a_point) + self.not_a_point_embed.weight * mask_not_a_point + self.point_embeddings[0].weight * mask_label_0 + self.point_embeddings[1].weight * mask_label_1 + self.point_embeddings[2].weight * mask_label_2 + self.point_embeddings[3].weight * mask_label_3
        return point_embedding

    def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
        boxes = boxes + 0.5
        coords = boxes.reshape(-1, 2, 2)
        corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
        corner_embedding[:, 0, :] += self.point_embeddings[2].weight
        corner_embedding[:, 1, :] += self.point_embeddings[3].weight
        return corner_embedding

    def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
        mask_embedding = self.mask_downscaling(masks)
        return mask_embedding

    def _get_batch_size(self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor]) -> int:
        if points is not None:
            return points[0].shape[0]
        elif boxes is not None:
            return boxes.shape[0]
        elif masks is not None:
            return masks.shape[0]
        else:
            return 1

    def _get_device(self) -> torch.device:
        return self.point_embeddings[0].weight.device

    def forward(self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
        bs = self._get_batch_size(points, boxes, masks)
        sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
        if points is not None:
            (coords, labels) = points
            point_embeddings = self._embed_points(coords, labels, pad=boxes is None)
            sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
        if boxes is not None:
            box_embeddings = self._embed_boxes(boxes)
            sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
        if masks is not None:
            dense_embeddings = self._embed_masks(masks)
        else:
            dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(bs, -1, self.image_embedding_size[0], self.image_embedding_size[1])
        return (sparse_embeddings, dense_embeddings)

    def points_only(self, points: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
        (coords, labels) = points
        sparse_embeddings = self._embed_points(coords, labels, pad=True)
        bs = points[0].shape[0]
        dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(bs, -1, self.image_embedding_size[0], self.image_embedding_size[1])
        return (sparse_embeddings, dense_embeddings)

# File: segment-anything-2-coreml-conversion/sam2/modeling/sam/transformer.py
import contextlib
import math
import warnings
from functools import partial
from typing import Tuple, Type
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis
from sam2.modeling.sam2_utils import MLP
from sam2.utils.misc import get_sdpa_settings
warnings.simplefilter(action='ignore', category=FutureWarning)
(OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON) = get_sdpa_settings()
ALLOW_ALL_KERNELS = False

def sdp_kernel_context(dropout_p):
    if ALLOW_ALL_KERNELS:
        return contextlib.nullcontext()
    return torch.backends.cuda.sdp_kernel(enable_flash=USE_FLASH_ATTN, enable_math=OLD_GPU and dropout_p > 0.0 or MATH_KERNEL_ON, enable_mem_efficient=OLD_GPU)

class TwoWayTransformer(nn.Module):

    def __init__(self, depth: int, embedding_dim: int, num_heads: int, mlp_dim: int, activation: Type[nn.Module]=nn.ReLU, attention_downsample_rate: int=2) -> None:
        super().__init__()
        self.depth = depth
        self.embedding_dim = embedding_dim
        self.num_heads = num_heads
        self.mlp_dim = mlp_dim
        self.layers = nn.ModuleList()
        for i in range(depth):
            self.layers.append(TwoWayAttentionBlock(embedding_dim=embedding_dim, num_heads=num_heads, mlp_dim=mlp_dim, activation=activation, attention_downsample_rate=attention_downsample_rate, skip_first_layer_pe=i == 0))
        self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
        self.norm_final_attn = nn.LayerNorm(embedding_dim)

    def forward(self, image_embedding: Tensor, image_pe: Tensor, point_embedding: Tensor) -> Tuple[Tensor, Tensor]:
        (bs, c, h, w) = image_embedding.shape
        image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
        image_pe = image_pe.flatten(2).permute(0, 2, 1)
        queries = point_embedding
        keys = image_embedding
        for layer in self.layers:
            (queries, keys) = layer(queries=queries, keys=keys, query_pe=point_embedding, key_pe=image_pe)
        q = queries + point_embedding
        k = keys + image_pe
        attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm_final_attn(queries)
        return (queries, keys)

class TwoWayAttentionBlock(nn.Module):

    def __init__(self, embedding_dim: int, num_heads: int, mlp_dim: int=2048, activation: Type[nn.Module]=nn.ReLU, attention_downsample_rate: int=2, skip_first_layer_pe: bool=False) -> None:
        super().__init__()
        self.self_attn = Attention(embedding_dim, num_heads)
        self.norm1 = nn.LayerNorm(embedding_dim)
        self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
        self.norm2 = nn.LayerNorm(embedding_dim)
        self.mlp = MLP(embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation)
        self.norm3 = nn.LayerNorm(embedding_dim)
        self.norm4 = nn.LayerNorm(embedding_dim)
        self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
        self.skip_first_layer_pe = skip_first_layer_pe

    def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]:
        if self.skip_first_layer_pe:
            queries = self.self_attn(q=queries, k=queries, v=queries)
        else:
            q = queries + query_pe
            attn_out = self.self_attn(q=q, k=q, v=queries)
            queries = queries + attn_out
        queries = self.norm1(queries)
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm2(queries)
        mlp_out = self.mlp(queries)
        queries = queries + mlp_out
        queries = self.norm3(queries)
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
        keys = keys + attn_out
        keys = self.norm4(keys)
        return (queries, keys)

class Attention(nn.Module):

    def __init__(self, embedding_dim: int, num_heads: int, downsample_rate: int=1, dropout: float=0.0, kv_in_dim: int=None) -> None:
        super().__init__()
        self.embedding_dim = embedding_dim
        self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
        self.internal_dim = embedding_dim // downsample_rate
        self.num_heads = num_heads
        assert self.internal_dim % num_heads == 0, 'num_heads must divide embedding_dim.'
        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
        self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
        self.dropout_p = dropout

    def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
        (b, n, c) = x.shape
        x = x.reshape(b, n, num_heads, c // num_heads)
        return x.transpose(1, 2)

    def _recombine_heads(self, x: Tensor) -> Tensor:
        (b, n_heads, n_tokens, c_per_head) = x.shape
        x = x.transpose(1, 2)
        return x.reshape(b, n_tokens, n_heads * c_per_head)

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        q = self.q_proj(q)
        k = self.k_proj(k)
        v = self.v_proj(v)
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)
        dropout_p = self.dropout_p if self.training else 0.0
        try:
            with sdp_kernel_context(dropout_p):
                out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
        except Exception as e:
            warnings.warn(f'Flash Attention kernel failed due to: {e}\nFalling back to all available kernels for scaled_dot_product_attention (which may have a slower speed).', category=UserWarning, stacklevel=2)
            global ALLOW_ALL_KERNELS
            ALLOW_ALL_KERNELS = True
            out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
        out = self._recombine_heads(out)
        out = self.out_proj(out)
        return out

class RoPEAttention(Attention):

    def __init__(self, *args, rope_theta=10000.0, rope_k_repeat=False, feat_sizes=(32, 32), **kwargs):
        super().__init__(*args, **kwargs)
        self.compute_cis = partial(compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta)
        freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
        self.freqs_cis = freqs_cis
        self.rope_k_repeat = rope_k_repeat

    def forward(self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int=0) -> Tensor:
        q = self.q_proj(q)
        k = self.k_proj(k)
        v = self.v_proj(v)
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)
        w = h = math.sqrt(q.shape[-2])
        self.freqs_cis = self.freqs_cis.to(q.device)
        if self.freqs_cis.shape[0] != q.shape[-2]:
            self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
        if q.shape[-2] != k.shape[-2]:
            assert self.rope_k_repeat
        num_k_rope = k.size(-2) - num_k_exclude_rope
        (q, k[:, :, :num_k_rope]) = apply_rotary_enc(q, k[:, :, :num_k_rope], freqs_cis=self.freqs_cis, repeat_freqs_k=self.rope_k_repeat)
        dropout_p = self.dropout_p if self.training else 0.0
        try:
            with sdp_kernel_context(dropout_p):
                out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
        except Exception as e:
            warnings.warn(f'Flash Attention kernel failed due to: {e}\nFalling back to all available kernels for scaled_dot_product_attention (which may have a slower speed).', category=UserWarning, stacklevel=2)
            global ALLOW_ALL_KERNELS
            ALLOW_ALL_KERNELS = True
            out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
        out = self._recombine_heads(out)
        out = self.out_proj(out)
        return out

# File: segment-anything-2-coreml-conversion/sam2/modeling/sam2_base.py
import torch
import torch.distributed
import torch.nn.functional as F
from torch.nn.init import trunc_normal_
from sam2.modeling.sam.mask_decoder import MaskDecoder
from sam2.modeling.sam.prompt_encoder import PromptEncoder
from sam2.modeling.sam.transformer import TwoWayTransformer
from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames
NO_OBJ_SCORE = -1024.0

class SAM2Base(torch.nn.Module):

    def __init__(self, image_encoder, memory_attention, memory_encoder, num_maskmem=7, image_size=512, backbone_stride=16, sigmoid_scale_for_mem_enc=1.0, sigmoid_bias_for_mem_enc=0.0, binarize_mask_from_pts_for_mem_enc=False, use_mask_input_as_output_without_sam=False, max_cond_frames_in_attn=-1, directly_add_no_mem_embed=False, use_high_res_features_in_sam=False, multimask_output_in_sam=False, multimask_min_pt_num=1, multimask_max_pt_num=1, multimask_output_for_tracking=False, use_multimask_token_for_obj_ptr: bool=False, iou_prediction_use_sigmoid=False, memory_temporal_stride_for_eval=1, add_all_frames_to_correct_as_cond=False, non_overlap_masks_for_mem_enc=False, use_obj_ptrs_in_encoder=False, max_obj_ptrs_in_encoder=16, add_tpos_enc_to_obj_ptrs=True, proj_tpos_enc_in_obj_ptrs=False, only_obj_ptrs_in_the_past_for_eval=False, pred_obj_scores: bool=False, pred_obj_scores_mlp: bool=False, fixed_no_obj_ptr: bool=False, soft_no_obj_ptr: bool=False, use_mlp_for_obj_ptr_proj: bool=False, sam_mask_decoder_extra_args=None, compile_image_encoder: bool=False):
        super().__init__()
        self.image_encoder = image_encoder
        self.use_high_res_features_in_sam = use_high_res_features_in_sam
        self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
        self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
        self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
        if use_obj_ptrs_in_encoder:
            self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
        self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
        if proj_tpos_enc_in_obj_ptrs:
            assert add_tpos_enc_to_obj_ptrs
        self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
        self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval
        self.memory_attention = memory_attention
        self.hidden_dim = memory_attention.d_model
        self.memory_encoder = memory_encoder
        self.mem_dim = self.hidden_dim
        if hasattr(self.memory_encoder, 'out_proj') and hasattr(self.memory_encoder.out_proj, 'weight'):
            self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
        self.num_maskmem = num_maskmem
        self.maskmem_tpos_enc = torch.nn.Parameter(torch.zeros(num_maskmem, 1, 1, self.mem_dim))
        trunc_normal_(self.maskmem_tpos_enc, std=0.02)
        self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
        self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
        trunc_normal_(self.no_mem_embed, std=0.02)
        trunc_normal_(self.no_mem_pos_enc, std=0.02)
        self.directly_add_no_mem_embed = directly_add_no_mem_embed
        self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
        self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
        self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
        self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
        self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
        self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
        self.multimask_output_in_sam = multimask_output_in_sam
        self.multimask_min_pt_num = multimask_min_pt_num
        self.multimask_max_pt_num = multimask_max_pt_num
        self.multimask_output_for_tracking = multimask_output_for_tracking
        self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
        self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid
        self.image_size = image_size
        self.backbone_stride = backbone_stride
        self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
        self.pred_obj_scores = pred_obj_scores
        self.pred_obj_scores_mlp = pred_obj_scores_mlp
        self.fixed_no_obj_ptr = fixed_no_obj_ptr
        self.soft_no_obj_ptr = soft_no_obj_ptr
        if self.fixed_no_obj_ptr:
            assert self.pred_obj_scores
            assert self.use_obj_ptrs_in_encoder
        if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
            self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
            trunc_normal_(self.no_obj_ptr, std=0.02)
        self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj
        self._build_sam_heads()
        self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
        self.max_cond_frames_in_attn = max_cond_frames_in_attn
        if compile_image_encoder:
            print('Image encoder compilation is enabled. First forward pass will be slow.')
            self.image_encoder.forward = torch.compile(self.image_encoder.forward, mode='max-autotune', fullgraph=True, dynamic=False)

    @property
    def device(self):
        return next(self.parameters()).device

    def forward(self, *args, **kwargs):
        raise NotImplementedError('Please use the corresponding methods in SAM2VideoPredictor for inference.See notebooks/video_predictor_example.ipynb for an example.')

    def _build_sam_heads(self):
        self.sam_prompt_embed_dim = self.hidden_dim
        self.sam_image_embedding_size = self.image_size // self.backbone_stride
        self.sam_prompt_encoder = PromptEncoder(embed_dim=self.sam_prompt_embed_dim, image_embedding_size=(self.sam_image_embedding_size, self.sam_image_embedding_size), input_image_size=(self.image_size, self.image_size), mask_in_chans=16)
        self.sam_mask_decoder = MaskDecoder(num_multimask_outputs=3, transformer=TwoWayTransformer(depth=2, embedding_dim=self.sam_prompt_embed_dim, mlp_dim=2048, num_heads=8), transformer_dim=self.sam_prompt_embed_dim, iou_head_depth=3, iou_head_hidden_dim=256, use_high_res_features=self.use_high_res_features_in_sam, iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid, pred_obj_scores=self.pred_obj_scores, pred_obj_scores_mlp=self.pred_obj_scores_mlp, use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr, **self.sam_mask_decoder_extra_args or {})
        if self.use_obj_ptrs_in_encoder:
            self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
            if self.use_mlp_for_obj_ptr_proj:
                self.obj_ptr_proj = MLP(self.hidden_dim, self.hidden_dim, self.hidden_dim, 3)
        else:
            self.obj_ptr_proj = torch.nn.Identity()
        if self.proj_tpos_enc_in_obj_ptrs:
            self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
        else:
            self.obj_ptr_tpos_proj = torch.nn.Identity()

    def _forward_sam_heads(self, backbone_features, point_inputs=None, mask_inputs=None, high_res_features=None, multimask_output=False):
        B = backbone_features.size(0)
        device = backbone_features.device
        assert backbone_features.size(1) == self.sam_prompt_embed_dim
        assert backbone_features.size(2) == self.sam_image_embedding_size
        assert backbone_features.size(3) == self.sam_image_embedding_size
        if point_inputs is not None:
            sam_point_coords = point_inputs['point_coords']
            sam_point_labels = point_inputs['point_labels']
            assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
        else:
            sam_point_coords = torch.zeros(B, 1, 2, device=device)
            sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
        if mask_inputs is not None:
            assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
            if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
                sam_mask_prompt = F.interpolate(mask_inputs.float(), size=self.sam_prompt_encoder.mask_input_size, align_corners=False, mode='bilinear', antialias=True)
            else:
                sam_mask_prompt = mask_inputs
        else:
            sam_mask_prompt = None
        (sparse_embeddings, dense_embeddings) = self.sam_prompt_encoder(points=(sam_point_coords, sam_point_labels), boxes=None, masks=sam_mask_prompt)
        (low_res_multimasks, ious, sam_output_tokens, object_score_logits) = self.sam_mask_decoder(image_embeddings=backbone_features, image_pe=self.sam_prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, repeat_image=False, high_res_features=high_res_features)
        if self.pred_obj_scores:
            is_obj_appearing = object_score_logits > 0
            low_res_multimasks = torch.where(is_obj_appearing[:, None, None], low_res_multimasks, NO_OBJ_SCORE)
        low_res_multimasks = low_res_multimasks.float()
        high_res_multimasks = F.interpolate(low_res_multimasks, size=(self.image_size, self.image_size), mode='bilinear', align_corners=False)
        sam_output_token = sam_output_tokens[:, 0]
        if multimask_output:
            best_iou_inds = torch.argmax(ious, dim=-1)
            batch_inds = torch.arange(B, device=device)
            low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
            high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
            if sam_output_tokens.size(1) > 1:
                sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
        else:
            (low_res_masks, high_res_masks) = (low_res_multimasks, high_res_multimasks)
        obj_ptr = self.obj_ptr_proj(sam_output_token)
        if self.pred_obj_scores:
            if self.soft_no_obj_ptr:
                assert not self.teacher_force_obj_scores_for_mem
                lambda_is_obj_appearing = object_score_logits.sigmoid()
            else:
                lambda_is_obj_appearing = is_obj_appearing.float()
            if self.fixed_no_obj_ptr:
                obj_ptr = lambda_is_obj_appearing * obj_ptr
            obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
        return (low_res_multimasks, high_res_multimasks, ious, low_res_masks, high_res_masks, obj_ptr, object_score_logits)

    def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
        (out_scale, out_bias) = (20.0, -10.0)
        mask_inputs_float = mask_inputs.float()
        high_res_masks = mask_inputs_float * out_scale + out_bias
        low_res_masks = F.interpolate(high_res_masks, size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4), align_corners=False, mode='bilinear', antialias=True)
        ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
        if not self.use_obj_ptrs_in_encoder:
            obj_ptr = torch.zeros(mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device)
        else:
            (_, _, _, _, _, obj_ptr, _) = self._forward_sam_heads(backbone_features=backbone_features, mask_inputs=self.mask_downsample(mask_inputs_float), high_res_features=high_res_features)
        is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
        is_obj_appearing = is_obj_appearing[..., None]
        lambda_is_obj_appearing = is_obj_appearing.float()
        object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
        if self.pred_obj_scores:
            if self.fixed_no_obj_ptr:
                obj_ptr = lambda_is_obj_appearing * obj_ptr
            obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
        return (low_res_masks, high_res_masks, ious, low_res_masks, high_res_masks, obj_ptr, object_score_logits)

    def forward_image(self, img_batch: torch.Tensor):
        backbone_out = self.image_encoder(img_batch)
        if self.use_high_res_features_in_sam:
            backbone_out['backbone_fpn'][0] = self.sam_mask_decoder.conv_s0(backbone_out['backbone_fpn'][0])
            backbone_out['backbone_fpn'][1] = self.sam_mask_decoder.conv_s1(backbone_out['backbone_fpn'][1])
        return backbone_out

    def _prepare_backbone_features(self, backbone_out):
        backbone_out = backbone_out.copy()
        assert len(backbone_out['backbone_fpn']) == len(backbone_out['vision_pos_enc'])
        assert len(backbone_out['backbone_fpn']) >= self.num_feature_levels
        feature_maps = backbone_out['backbone_fpn'][-self.num_feature_levels:]
        vision_pos_embeds = backbone_out['vision_pos_enc'][-self.num_feature_levels:]
        feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
        vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
        vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]
        return (backbone_out, vision_feats, vision_pos_embeds, feat_sizes)

    def _prepare_memory_conditioned_features(self, frame_idx, is_init_cond_frame, current_vision_feats, current_vision_pos_embeds, feat_sizes, output_dict, num_frames, track_in_reverse=False):
        B = current_vision_feats[-1].size(1)
        C = self.hidden_dim
        (H, W) = feat_sizes[-1]
        device = current_vision_feats[-1].device
        if self.num_maskmem == 0:
            pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
            return pix_feat
        num_obj_ptr_tokens = 0
        if not is_init_cond_frame:
            (to_cat_memory, to_cat_memory_pos_embed) = ([], [])
            assert len(output_dict['cond_frame_outputs']) > 0
            cond_outputs = output_dict['cond_frame_outputs']
            (selected_cond_outputs, unselected_cond_outputs) = select_closest_cond_frames(frame_idx, cond_outputs, self.max_cond_frames_in_attn)
            t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
            r = self.memory_temporal_stride_for_eval
            for t_pos in range(1, self.num_maskmem):
                t_rel = self.num_maskmem - t_pos
                if t_rel == 1:
                    if not track_in_reverse:
                        prev_frame_idx = frame_idx - t_rel
                    else:
                        prev_frame_idx = frame_idx + t_rel
                elif not track_in_reverse:
                    prev_frame_idx = (frame_idx - 2) // r * r
                    prev_frame_idx = prev_frame_idx - (t_rel - 2) * r
                else:
                    prev_frame_idx = -(-(frame_idx + 2) // r) * r
                    prev_frame_idx = prev_frame_idx + (t_rel - 2) * r
                out = output_dict['non_cond_frame_outputs'].get(prev_frame_idx, None)
                if out is None:
                    out = unselected_cond_outputs.get(prev_frame_idx, None)
                t_pos_and_prevs.append((t_pos, out))
            for (t_pos, prev) in t_pos_and_prevs:
                if prev is None:
                    continue
                feats = prev['maskmem_features'].to(device, non_blocking=True)
                to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
                maskmem_enc = prev['maskmem_pos_enc'][-1].to(device)
                maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
                maskmem_enc = maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
                to_cat_memory_pos_embed.append(maskmem_enc)
            if self.use_obj_ptrs_in_encoder:
                max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
                if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
                    ptr_cond_outputs = {t: out for (t, out) in selected_cond_outputs.items() if (t >= frame_idx if track_in_reverse else t <= frame_idx)}
                else:
                    ptr_cond_outputs = selected_cond_outputs
                pos_and_ptrs = [(abs(frame_idx - t), out['obj_ptr']) for (t, out) in ptr_cond_outputs.items()]
                for t_diff in range(1, max_obj_ptrs_in_encoder):
                    t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
                    if t < 0 or (num_frames is not None and t >= num_frames):
                        break
                    out = output_dict['non_cond_frame_outputs'].get(t, unselected_cond_outputs.get(t, None))
                    if out is not None:
                        pos_and_ptrs.append((t_diff, out['obj_ptr']))
                if len(pos_and_ptrs) > 0:
                    (pos_list, ptrs_list) = zip(*pos_and_ptrs)
                    obj_ptrs = torch.stack(ptrs_list, dim=0)
                    if self.add_tpos_enc_to_obj_ptrs:
                        t_diff_max = max_obj_ptrs_in_encoder - 1
                        tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
                        obj_pos = torch.tensor(pos_list, device=device)
                        obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
                        obj_pos = self.obj_ptr_tpos_proj(obj_pos)
                        obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
                    else:
                        obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
                    if self.mem_dim < C:
                        obj_ptrs = obj_ptrs.reshape(-1, B, C // self.mem_dim, self.mem_dim)
                        obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
                        obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
                    to_cat_memory.append(obj_ptrs)
                    to_cat_memory_pos_embed.append(obj_pos)
                    num_obj_ptr_tokens = obj_ptrs.shape[0]
                else:
                    num_obj_ptr_tokens = 0
        else:
            if self.directly_add_no_mem_embed:
                pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
                pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
                return pix_feat_with_mem
            to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
            to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]
        memory = torch.cat(to_cat_memory, dim=0)
        memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)
        pix_feat_with_mem = self.memory_attention(curr=current_vision_feats, curr_pos=current_vision_pos_embeds, memory=memory, memory_pos=memory_pos_embed, num_obj_ptr_tokens=num_obj_ptr_tokens)
        pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
        return pix_feat_with_mem

    def _encode_new_memory(self, current_vision_feats, feat_sizes, pred_masks_high_res, is_mask_from_pts):
        B = current_vision_feats[-1].size(1)
        C = self.hidden_dim
        (H, W) = feat_sizes[-1]
        pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
        if self.non_overlap_masks_for_mem_enc and (not self.training):
            pred_masks_high_res = self._apply_non_overlapping_constraints(pred_masks_high_res)
        binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
        if binarize and (not self.training):
            mask_for_mem = (pred_masks_high_res > 0).float()
        else:
            mask_for_mem = torch.sigmoid(pred_masks_high_res)
        if self.sigmoid_scale_for_mem_enc != 1.0:
            mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
        if self.sigmoid_bias_for_mem_enc != 0.0:
            mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
        maskmem_out = self.memory_encoder(pix_feat, mask_for_mem, skip_mask_sigmoid=True)
        maskmem_features = maskmem_out['vision_features']
        maskmem_pos_enc = maskmem_out['vision_pos_enc']
        return (maskmem_features, maskmem_pos_enc)

    def track_step(self, frame_idx, is_init_cond_frame, current_vision_feats, current_vision_pos_embeds, feat_sizes, point_inputs, mask_inputs, output_dict, num_frames, track_in_reverse=False, run_mem_encoder=True, prev_sam_mask_logits=None):
        current_out = {'point_inputs': point_inputs, 'mask_inputs': mask_inputs}
        if len(current_vision_feats) > 1:
            high_res_features = [x.permute(1, 2, 0).view(x.size(1), x.size(2), *s) for (x, s) in zip(current_vision_feats[:-1], feat_sizes[:-1])]
        else:
            high_res_features = None
        if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
            pix_feat = current_vision_feats[-1].permute(1, 2, 0)
            pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
            sam_outputs = self._use_mask_as_output(pix_feat, high_res_features, mask_inputs)
        else:
            pix_feat_with_mem = self._prepare_memory_conditioned_features(frame_idx=frame_idx, is_init_cond_frame=is_init_cond_frame, current_vision_feats=current_vision_feats[-1:], current_vision_pos_embeds=current_vision_pos_embeds[-1:], feat_sizes=feat_sizes[-1:], output_dict=output_dict, num_frames=num_frames, track_in_reverse=track_in_reverse)
            if prev_sam_mask_logits is not None:
                assert point_inputs is not None and mask_inputs is None
                mask_inputs = prev_sam_mask_logits
            multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
            sam_outputs = self._forward_sam_heads(backbone_features=pix_feat_with_mem, point_inputs=point_inputs, mask_inputs=mask_inputs, high_res_features=high_res_features, multimask_output=multimask_output)
        (_, _, _, low_res_masks, high_res_masks, obj_ptr, _) = sam_outputs
        current_out['pred_masks'] = low_res_masks
        current_out['pred_masks_high_res'] = high_res_masks
        current_out['obj_ptr'] = obj_ptr
        if run_mem_encoder and self.num_maskmem > 0:
            high_res_masks_for_mem_enc = high_res_masks
            (maskmem_features, maskmem_pos_enc) = self._encode_new_memory(current_vision_feats=current_vision_feats, feat_sizes=feat_sizes, pred_masks_high_res=high_res_masks_for_mem_enc, is_mask_from_pts=point_inputs is not None)
            current_out['maskmem_features'] = maskmem_features
            current_out['maskmem_pos_enc'] = maskmem_pos_enc
        else:
            current_out['maskmem_features'] = None
            current_out['maskmem_pos_enc'] = None
        return current_out

    def _use_multimask(self, is_init_cond_frame, point_inputs):
        num_pts = 0 if point_inputs is None else point_inputs['point_labels'].size(1)
        multimask_output = self.multimask_output_in_sam and (is_init_cond_frame or self.multimask_output_for_tracking) and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
        return multimask_output

    def _apply_non_overlapping_constraints(self, pred_masks):
        batch_size = pred_masks.size(0)
        if batch_size == 1:
            return pred_masks
        device = pred_masks.device
        max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
        batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
        keep = max_obj_inds == batch_obj_inds
        pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
        return pred_masks

# File: segment-anything-2-coreml-conversion/sam2/modeling/sam2_utils.py
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F

def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
    if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
        selected_outputs = cond_frame_outputs
        unselected_outputs = {}
    else:
        assert max_cond_frame_num >= 2, 'we should allow using 2+ conditioning frames'
        selected_outputs = {}
        idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
        if idx_before is not None:
            selected_outputs[idx_before] = cond_frame_outputs[idx_before]
        idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
        if idx_after is not None:
            selected_outputs[idx_after] = cond_frame_outputs[idx_after]
        num_remain = max_cond_frame_num - len(selected_outputs)
        inds_remain = sorted((t for t in cond_frame_outputs if t not in selected_outputs), key=lambda x: abs(x - frame_idx))[:num_remain]
        selected_outputs.update(((t, cond_frame_outputs[t]) for t in inds_remain))
        unselected_outputs = {t: v for (t, v) in cond_frame_outputs.items() if t not in selected_outputs}
    return (selected_outputs, unselected_outputs)

def get_1d_sine_pe(pos_inds, dim, temperature=10000):
    pe_dim = dim // 2
    dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
    dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
    pos_embed = pos_inds.unsqueeze(-1) / dim_t
    pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
    return pos_embed

def get_activation_fn(activation):
    if activation == 'relu':
        return F.relu
    if activation == 'gelu':
        return F.gelu
    if activation == 'glu':
        return F.glu
    raise RuntimeError(f'activation should be relu/gelu, not {activation}.')

def get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])

class DropPath(nn.Module):

    def __init__(self, drop_prob=0.0, scale_by_keep=True):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        if self.drop_prob == 0.0 or not self.training:
            return x
        keep_prob = 1 - self.drop_prob
        shape = (x.shape[0],) + (1,) * (x.ndim - 1)
        random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
        if keep_prob > 0.0 and self.scale_by_keep:
            random_tensor.div_(keep_prob)
        return x * random_tensor

class MLP(nn.Module):

    def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, activation: nn.Module=nn.ReLU, sigmoid_output: bool=False) -> None:
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList((nn.Linear(n, k) for (n, k) in zip([input_dim] + h, h + [output_dim])))
        self.sigmoid_output = sigmoid_output
        self.act = activation()

    def forward(self, x):
        for (i, layer) in enumerate(self.layers):
            x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
        if self.sigmoid_output:
            x = F.sigmoid(x)
        return x

class LayerNorm2d(nn.Module):

    def __init__(self, num_channels: int, eps: float=1e-06) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x

# File: segment-anything-2-coreml-conversion/sam2/sam2_image_predictor.py
import os
import logging
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from PIL.Image import Image
from sam2.modeling.sam2_base import SAM2Base
from sam2.utils.transforms import SAM2Transforms

class SAM2ImagePredictor:

    def __init__(self, sam_model: SAM2Base, mask_threshold=0.0, max_hole_area=0.0, max_sprinkle_area=0.0, **kwargs) -> None:
        super().__init__()
        self.model = sam_model
        self._transforms = SAM2Transforms(resolution=self.model.image_size, mask_threshold=mask_threshold, max_hole_area=max_hole_area, max_sprinkle_area=max_sprinkle_area)
        self._is_image_set = False
        self._features = None
        self._orig_hw = None
        self._is_batch = False
        self.mask_threshold = mask_threshold
        self._bb_feat_sizes = [(256, 256), (128, 128), (64, 64)]

    @classmethod
    def from_pretrained(cls, model_id: str, **kwargs) -> 'SAM2ImagePredictor':
        from sam2.build_sam import build_sam2_hf
        sam_model = build_sam2_hf(model_id, **kwargs)
        return cls(sam_model, **kwargs)

    @torch.no_grad()
    def set_image(self, image: Union[np.ndarray, Image]) -> None:
        self.reset_predictor()
        if isinstance(image, np.ndarray):
            logging.info('For numpy array image, we assume (HxWxC) format')
            self._orig_hw = [image.shape[:2]]
        elif isinstance(image, Image):
            (w, h) = image.size
            self._orig_hw = [(h, w)]
        else:
            raise NotImplementedError('Image format not supported')
        input_image = self._transforms(image)
        input_image = input_image[None, ...].to(self.device)
        assert len(input_image.shape) == 4 and input_image.shape[1] == 3, f'input_image must be of size 1x3xHxW, got {input_image.shape}'
        logging.info('Computing image embeddings for the provided image...')
        backbone_out = self.model.forward_image(input_image)
        (_, vision_feats, _, _) = self.model._prepare_backbone_features(backbone_out)
        if self.model.directly_add_no_mem_embed:
            vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
        feats = [feat.permute(1, 2, 0).view(1, -1, *feat_size) for (feat, feat_size) in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])][::-1]
        self._features = {'image_embed': feats[-1], 'high_res_feats': feats[:-1]}
        self._is_image_set = True
        serialize_ground = os.environ.get('SERIALIZE_GROUND', False)
        if serialize_ground:
            image_embed = self._features['image_embed'].cpu().numpy()
            high_res_feats = self._features['high_res_feats']
            feats_s0 = high_res_feats[0].cpu().numpy()
            feats_s1 = high_res_feats[1].cpu().numpy()
            np.save('image_embed.npy', image_embed)
            np.save('feats_s0.npy', feats_s0)
            np.save('feats_s1.npy', feats_s1)
        logging.info('Image embeddings computed.')

    @torch.no_grad()
    def encode_image_raw(self, prepared_image: torch.Tensor):
        self.model.eval()
        with torch.no_grad():
            for (_, param) in self.model.named_parameters():
                if param.requires_grad:
                    param.requires_grad = False
            backbone_out = self.model.forward_image(prepared_image)
            (_, vision_feats, _, _) = self.model._prepare_backbone_features(backbone_out)
            if self.model.directly_add_no_mem_embed:
                vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
            feats = [feat.permute(1, 2, 0).view(1, -1, *feat_size) for (feat, feat_size) in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])][::-1]
            image_embed = feats[-1]
            high_res_feats = feats[:-1]
            assert len(high_res_feats) == 2
            (feats_s0, feats_s1) = (high_res_feats[0], high_res_feats[1])
            return (image_embed, feats_s0, feats_s1)

    @torch.no_grad()
    def encode_points_raw(self, unnorm_coords: torch.Tensor, labels: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        concat_points = (unnorm_coords, labels)
        with torch.no_grad():
            for (_, param) in self.model.named_parameters():
                if param.requires_grad:
                    param.requires_grad = False
            (sparse_embeddings, dense_embeddings) = self.model.sam_prompt_encoder.points_only(points=concat_points)
            return (sparse_embeddings, dense_embeddings)

    @torch.no_grad()
    def decode_masks_raw(self, image_embeddings: torch.Tensor, sparse_embedding: torch.Tensor, dense_embedding: torch.Tensor, high_res_features: List[torch.Tensor], multimask_output: bool=True, batched_mode: bool=False):
        with torch.no_grad():
            for (_, param) in self.model.sam_mask_decoder.named_parameters():
                if param.requires_grad:
                    param.requires_grad = False
            (low_res_masks, iou_scores, _, _) = self.model.sam_mask_decoder(image_embeddings=image_embeddings, image_pe=self.model.sam_prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embedding, dense_prompt_embeddings=dense_embedding, multimask_output=multimask_output, repeat_image=batched_mode, high_res_features=high_res_features)
            return (low_res_masks, iou_scores)

    @torch.no_grad()
    def set_image_batch(self, image_list: List[Union[np.ndarray]]) -> None:
        self.reset_predictor()
        assert isinstance(image_list, list)
        self._orig_hw = []
        for image in image_list:
            assert isinstance(image, np.ndarray), 'Images are expected to be an np.ndarray in RGB format, and of shape  HWC'
            self._orig_hw.append(image.shape[:2])
        img_batch = self._transforms.forward_batch(image_list)
        img_batch = img_batch.to(self.device)
        batch_size = img_batch.shape[0]
        assert len(img_batch.shape) == 4 and img_batch.shape[1] == 3, f'img_batch must be of size Bx3xHxW, got {img_batch.shape}'
        logging.info('Computing image embeddings for the provided images...')
        backbone_out = self.model.forward_image(img_batch)
        (_, vision_feats, _, _) = self.model._prepare_backbone_features(backbone_out)
        if self.model.directly_add_no_mem_embed:
            vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
        feats = [feat.permute(1, 2, 0).view(batch_size, -1, *feat_size) for (feat, feat_size) in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])][::-1]
        self._features = {'image_embed': feats[-1], 'high_res_feats': feats[:-1]}
        self._is_image_set = True
        self._is_batch = True
        logging.info('Image embeddings computed.')

    def predict_batch(self, point_coords_batch: List[np.ndarray]=None, point_labels_batch: List[np.ndarray]=None, box_batch: List[np.ndarray]=None, mask_input_batch: List[np.ndarray]=None, multimask_output: bool=True, return_logits: bool=False, normalize_coords=True) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]:
        assert self._is_batch, 'This function should only be used when in batched mode'
        if not self._is_image_set:
            raise RuntimeError('An image must be set with .set_image_batch(...) before mask prediction.')
        num_images = len(self._features['image_embed'])
        all_masks = []
        all_ious = []
        all_low_res_masks = []
        for img_idx in range(num_images):
            point_coords = point_coords_batch[img_idx] if point_coords_batch is not None else None
            point_labels = point_labels_batch[img_idx] if point_labels_batch is not None else None
            box = box_batch[img_idx] if box_batch is not None else None
            mask_input = mask_input_batch[img_idx] if mask_input_batch is not None else None
            (mask_input, unnorm_coords, labels, unnorm_box) = self._prep_prompts(point_coords, point_labels, box, mask_input, normalize_coords, img_idx=img_idx)
            (masks, iou_predictions, low_res_masks) = self._predict(unnorm_coords, labels, unnorm_box, mask_input, multimask_output, return_logits=return_logits, img_idx=img_idx)
            masks_np = masks.squeeze(0).float().detach().cpu().numpy()
            iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy()
            low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
            all_masks.append(masks_np)
            all_ious.append(iou_predictions_np)
            all_low_res_masks.append(low_res_masks_np)
        return (all_masks, all_ious, all_low_res_masks)

    def predict(self, point_coords: Optional[np.ndarray]=None, point_labels: Optional[np.ndarray]=None, box: Optional[np.ndarray]=None, mask_input: Optional[np.ndarray]=None, multimask_output: bool=True, return_logits: bool=False, normalize_coords=True) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
        if not self._is_image_set:
            raise RuntimeError('An image must be set with .set_image(...) before mask prediction.')
        (mask_input, unnorm_coords, labels, unnorm_box) = self._prep_prompts(point_coords, point_labels, box, mask_input, normalize_coords)
        (masks, iou_predictions, low_res_masks) = self._predict(unnorm_coords, labels, unnorm_box, mask_input, multimask_output, return_logits=return_logits)
        masks_np = masks.squeeze(0).float().detach().cpu().numpy()
        iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy()
        low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
        return (masks_np, iou_predictions_np, low_res_masks_np)

    def _prep_prompts(self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1):
        (unnorm_coords, labels, unnorm_box, mask_input) = (None, None, None, None)
        if point_coords is not None:
            assert point_labels is not None, 'point_labels must be supplied if point_coords is supplied.'
            point_coords = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
            unnorm_coords = self._transforms.transform_coords(point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx])
            labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
            if len(unnorm_coords.shape) == 2:
                (unnorm_coords, labels) = (unnorm_coords[None, ...], labels[None, ...])
        if box is not None:
            box = torch.as_tensor(box, dtype=torch.float, device=self.device)
            unnorm_box = self._transforms.transform_boxes(box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx])
        if mask_logits is not None:
            mask_input = torch.as_tensor(mask_logits, dtype=torch.float, device=self.device)
            if len(mask_input.shape) == 3:
                mask_input = mask_input[None, :, :, :]
        return (mask_input, unnorm_coords, labels, unnorm_box)

    @torch.no_grad()
    def _predict(self, point_coords: Optional[torch.Tensor], point_labels: Optional[torch.Tensor], boxes: Optional[torch.Tensor]=None, mask_input: Optional[torch.Tensor]=None, multimask_output: bool=True, return_logits: bool=False, img_idx: int=-1) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        if not self._is_image_set:
            raise RuntimeError('An image must be set with .set_image(...) before mask prediction.')
        if point_coords is not None:
            concat_points = (point_coords, point_labels)
        else:
            concat_points = None
        if boxes is not None:
            box_coords = boxes.reshape(-1, 2, 2)
            box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device)
            box_labels = box_labels.repeat(boxes.size(0), 1)
            if concat_points is not None:
                concat_coords = torch.cat([box_coords, concat_points[0]], dim=1)
                concat_labels = torch.cat([box_labels, concat_points[1]], dim=1)
                concat_points = (concat_coords, concat_labels)
            else:
                concat_points = (box_coords, box_labels)
        (sparse_embeddings, dense_embeddings) = self.model.sam_prompt_encoder(points=concat_points, boxes=None, masks=mask_input)
        batched_mode = concat_points is not None and concat_points[0].shape[0] > 1
        high_res_features = [feat_level[img_idx].unsqueeze(0) for feat_level in self._features['high_res_feats']]
        (low_res_masks, iou_predictions, _, _) = self.model.sam_mask_decoder(image_embeddings=self._features['image_embed'][img_idx].unsqueeze(0), image_pe=self.model.sam_prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, repeat_image=batched_mode, high_res_features=high_res_features)
        if os.environ.get('SERIALIZE_GROUND', False):
            low_res_masks_np = low_res_masks.cpu().numpy()
            np.save('low_res_masks.npy', low_res_masks_np)
        masks = self._transforms.postprocess_masks(low_res_masks, self._orig_hw[img_idx])
        low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0)
        if not return_logits:
            masks = masks > self.mask_threshold
        return (masks, iou_predictions, low_res_masks)

    def get_image_embedding(self) -> torch.Tensor:
        if not self._is_image_set:
            raise RuntimeError('An image must be set with .set_image(...) to generate an embedding.')
        assert self._features is not None, 'Features must exist if an image has been set.'
        return self._features['image_embed']

    @property
    def device(self) -> torch.device:
        return self.model.device

    def reset_predictor(self) -> None:
        self._is_image_set = False
        self._features = None
        self._orig_hw = None
        self._is_batch = False

# File: segment-anything-2-coreml-conversion/sam2/sam2_video_predictor.py
import warnings
from collections import OrderedDict
import torch
from tqdm import tqdm
from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames

class SAM2VideoPredictor(SAM2Base):

    def __init__(self, fill_hole_area=0, non_overlap_masks=False, clear_non_cond_mem_around_input=False, clear_non_cond_mem_for_multi_obj=False, **kwargs):
        super().__init__(**kwargs)
        self.fill_hole_area = fill_hole_area
        self.non_overlap_masks = non_overlap_masks
        self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
        self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj

    @torch.inference_mode()
    def init_state(self, video_path, offload_video_to_cpu=False, offload_state_to_cpu=False, async_loading_frames=False):
        compute_device = self.device
        (images, video_height, video_width) = load_video_frames(video_path=video_path, image_size=self.image_size, offload_video_to_cpu=offload_video_to_cpu, async_loading_frames=async_loading_frames, compute_device=compute_device)
        inference_state = {}
        inference_state['images'] = images
        inference_state['num_frames'] = len(images)
        inference_state['offload_video_to_cpu'] = offload_video_to_cpu
        inference_state['offload_state_to_cpu'] = offload_state_to_cpu
        inference_state['video_height'] = video_height
        inference_state['video_width'] = video_width
        inference_state['device'] = compute_device
        if offload_state_to_cpu:
            inference_state['storage_device'] = torch.device('cpu')
        else:
            inference_state['storage_device'] = compute_device
        inference_state['point_inputs_per_obj'] = {}
        inference_state['mask_inputs_per_obj'] = {}
        inference_state['cached_features'] = {}
        inference_state['constants'] = {}
        inference_state['obj_id_to_idx'] = OrderedDict()
        inference_state['obj_idx_to_id'] = OrderedDict()
        inference_state['obj_ids'] = []
        inference_state['output_dict'] = {'cond_frame_outputs': {}, 'non_cond_frame_outputs': {}}
        inference_state['output_dict_per_obj'] = {}
        inference_state['temp_output_dict_per_obj'] = {}
        inference_state['consolidated_frame_inds'] = {'cond_frame_outputs': set(), 'non_cond_frame_outputs': set()}
        inference_state['tracking_has_started'] = False
        inference_state['frames_already_tracked'] = {}
        self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
        return inference_state

    @classmethod
    def from_pretrained(cls, model_id: str, **kwargs) -> 'SAM2VideoPredictor':
        from sam2.build_sam import build_sam2_video_predictor_hf
        sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
        return sam_model

    def _obj_id_to_idx(self, inference_state, obj_id):
        obj_idx = inference_state['obj_id_to_idx'].get(obj_id, None)
        if obj_idx is not None:
            return obj_idx
        allow_new_object = not inference_state['tracking_has_started']
        if allow_new_object:
            obj_idx = len(inference_state['obj_id_to_idx'])
            inference_state['obj_id_to_idx'][obj_id] = obj_idx
            inference_state['obj_idx_to_id'][obj_idx] = obj_id
            inference_state['obj_ids'] = list(inference_state['obj_id_to_idx'])
            inference_state['point_inputs_per_obj'][obj_idx] = {}
            inference_state['mask_inputs_per_obj'][obj_idx] = {}
            inference_state['output_dict_per_obj'][obj_idx] = {'cond_frame_outputs': {}, 'non_cond_frame_outputs': {}}
            inference_state['temp_output_dict_per_obj'][obj_idx] = {'cond_frame_outputs': {}, 'non_cond_frame_outputs': {}}
            return obj_idx
        else:
            raise RuntimeError(f"Cannot add new object id {obj_id} after tracking starts. All existing object ids: {inference_state['obj_ids']}. Please call 'reset_state' to restart from scratch.")

    def _obj_idx_to_id(self, inference_state, obj_idx):
        return inference_state['obj_idx_to_id'][obj_idx]

    def _get_obj_num(self, inference_state):
        return len(inference_state['obj_idx_to_id'])

    @torch.inference_mode()
    def add_new_points_or_box(self, inference_state, frame_idx, obj_id, points=None, labels=None, clear_old_points=True, normalize_coords=True, box=None):
        obj_idx = self._obj_id_to_idx(inference_state, obj_id)
        point_inputs_per_frame = inference_state['point_inputs_per_obj'][obj_idx]
        mask_inputs_per_frame = inference_state['mask_inputs_per_obj'][obj_idx]
        if (points is not None) != (labels is not None):
            raise ValueError('points and labels must be provided together')
        if points is None and box is None:
            raise ValueError('at least one of points or box must be provided as input')
        if points is None:
            points = torch.zeros(0, 2, dtype=torch.float32)
        elif not isinstance(points, torch.Tensor):
            points = torch.tensor(points, dtype=torch.float32)
        if labels is None:
            labels = torch.zeros(0, dtype=torch.int32)
        elif not isinstance(labels, torch.Tensor):
            labels = torch.tensor(labels, dtype=torch.int32)
        if points.dim() == 2:
            points = points.unsqueeze(0)
        if labels.dim() == 1:
            labels = labels.unsqueeze(0)
        if box is not None:
            if not clear_old_points:
                raise ValueError('cannot add box without clearing old points, since box prompt must be provided before any point prompt (please use clear_old_points=True instead)')
            if inference_state['tracking_has_started']:
                warnings.warn("You are adding a box after tracking starts. SAM 2 may not always be able to incorporate a box prompt for *refinement*. If you intend to use box prompt as an *initial* input before tracking, please call 'reset_state' on the inference state to restart from scratch.", category=UserWarning, stacklevel=2)
            if not isinstance(box, torch.Tensor):
                box = torch.tensor(box, dtype=torch.float32, device=points.device)
            box_coords = box.reshape(1, 2, 2)
            box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device)
            box_labels = box_labels.reshape(1, 2)
            points = torch.cat([box_coords, points], dim=1)
            labels = torch.cat([box_labels, labels], dim=1)
        if normalize_coords:
            video_H = inference_state['video_height']
            video_W = inference_state['video_width']
            points = points / torch.tensor([video_W, video_H]).to(points.device)
        points = points * self.image_size
        points = points.to(inference_state['device'])
        labels = labels.to(inference_state['device'])
        if not clear_old_points:
            point_inputs = point_inputs_per_frame.get(frame_idx, None)
        else:
            point_inputs = None
        point_inputs = concat_points(point_inputs, points, labels)
        point_inputs_per_frame[frame_idx] = point_inputs
        mask_inputs_per_frame.pop(frame_idx, None)
        is_init_cond_frame = frame_idx not in inference_state['frames_already_tracked']
        if is_init_cond_frame:
            reverse = False
        else:
            reverse = inference_state['frames_already_tracked'][frame_idx]['reverse']
        obj_output_dict = inference_state['output_dict_per_obj'][obj_idx]
        obj_temp_output_dict = inference_state['temp_output_dict_per_obj'][obj_idx]
        is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
        storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs'
        prev_sam_mask_logits = None
        prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
        if prev_out is None:
            prev_out = obj_output_dict['cond_frame_outputs'].get(frame_idx)
            if prev_out is None:
                prev_out = obj_output_dict['non_cond_frame_outputs'].get(frame_idx)
        if prev_out is not None and prev_out['pred_masks'] is not None:
            device = inference_state['device']
            prev_sam_mask_logits = prev_out['pred_masks'].to(device, non_blocking=True)
            prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
        (current_out, _) = self._run_single_frame_inference(inference_state=inference_state, output_dict=obj_output_dict, frame_idx=frame_idx, batch_size=1, is_init_cond_frame=is_init_cond_frame, point_inputs=point_inputs, mask_inputs=None, reverse=reverse, run_mem_encoder=False, prev_sam_mask_logits=prev_sam_mask_logits)
        obj_temp_output_dict[storage_key][frame_idx] = current_out
        obj_ids = inference_state['obj_ids']
        consolidated_out = self._consolidate_temp_output_across_obj(inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=False, consolidate_at_video_res=True)
        (_, video_res_masks) = self._get_orig_video_res_output(inference_state, consolidated_out['pred_masks_video_res'])
        return (frame_idx, obj_ids, video_res_masks)

    def add_new_points(self, *args, **kwargs):
        return self.add_new_points_or_box(*args, **kwargs)

    @torch.inference_mode()
    def add_new_mask(self, inference_state, frame_idx, obj_id, mask):
        obj_idx = self._obj_id_to_idx(inference_state, obj_id)
        point_inputs_per_frame = inference_state['point_inputs_per_obj'][obj_idx]
        mask_inputs_per_frame = inference_state['mask_inputs_per_obj'][obj_idx]
        if not isinstance(mask, torch.Tensor):
            mask = torch.tensor(mask, dtype=torch.bool)
        assert mask.dim() == 2
        (mask_H, mask_W) = mask.shape
        mask_inputs_orig = mask[None, None]
        mask_inputs_orig = mask_inputs_orig.float().to(inference_state['device'])
        if mask_H != self.image_size or mask_W != self.image_size:
            mask_inputs = torch.nn.functional.interpolate(mask_inputs_orig, size=(self.image_size, self.image_size), align_corners=False, mode='bilinear', antialias=True)
            mask_inputs = (mask_inputs >= 0.5).float()
        else:
            mask_inputs = mask_inputs_orig
        mask_inputs_per_frame[frame_idx] = mask_inputs
        point_inputs_per_frame.pop(frame_idx, None)
        is_init_cond_frame = frame_idx not in inference_state['frames_already_tracked']
        if is_init_cond_frame:
            reverse = False
        else:
            reverse = inference_state['frames_already_tracked'][frame_idx]['reverse']
        obj_output_dict = inference_state['output_dict_per_obj'][obj_idx]
        obj_temp_output_dict = inference_state['temp_output_dict_per_obj'][obj_idx]
        is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
        storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs'
        (current_out, _) = self._run_single_frame_inference(inference_state=inference_state, output_dict=obj_output_dict, frame_idx=frame_idx, batch_size=1, is_init_cond_frame=is_init_cond_frame, point_inputs=None, mask_inputs=mask_inputs, reverse=reverse, run_mem_encoder=False)
        obj_temp_output_dict[storage_key][frame_idx] = current_out
        obj_ids = inference_state['obj_ids']
        consolidated_out = self._consolidate_temp_output_across_obj(inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=False, consolidate_at_video_res=True)
        (_, video_res_masks) = self._get_orig_video_res_output(inference_state, consolidated_out['pred_masks_video_res'])
        return (frame_idx, obj_ids, video_res_masks)

    def _get_orig_video_res_output(self, inference_state, any_res_masks):
        device = inference_state['device']
        video_H = inference_state['video_height']
        video_W = inference_state['video_width']
        any_res_masks = any_res_masks.to(device, non_blocking=True)
        if any_res_masks.shape[-2:] == (video_H, video_W):
            video_res_masks = any_res_masks
        else:
            video_res_masks = torch.nn.functional.interpolate(any_res_masks, size=(video_H, video_W), mode='bilinear', align_corners=False)
        if self.non_overlap_masks:
            video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
        return (any_res_masks, video_res_masks)

    def _consolidate_temp_output_across_obj(self, inference_state, frame_idx, is_cond, run_mem_encoder, consolidate_at_video_res=False):
        batch_size = self._get_obj_num(inference_state)
        storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs'
        if consolidate_at_video_res:
            assert not run_mem_encoder, 'memory encoder cannot run at video resolution'
            consolidated_H = inference_state['video_height']
            consolidated_W = inference_state['video_width']
            consolidated_mask_key = 'pred_masks_video_res'
        else:
            consolidated_H = consolidated_W = self.image_size // 4
            consolidated_mask_key = 'pred_masks'
        consolidated_out = {'maskmem_features': None, 'maskmem_pos_enc': None, consolidated_mask_key: torch.full(size=(batch_size, 1, consolidated_H, consolidated_W), fill_value=NO_OBJ_SCORE, dtype=torch.float32, device=inference_state['storage_device']), 'obj_ptr': torch.full(size=(batch_size, self.hidden_dim), fill_value=NO_OBJ_SCORE, dtype=torch.float32, device=inference_state['device'])}
        empty_mask_ptr = None
        for obj_idx in range(batch_size):
            obj_temp_output_dict = inference_state['temp_output_dict_per_obj'][obj_idx]
            obj_output_dict = inference_state['output_dict_per_obj'][obj_idx]
            out = obj_temp_output_dict[storage_key].get(frame_idx, None)
            if out is None:
                out = obj_output_dict['cond_frame_outputs'].get(frame_idx, None)
            if out is None:
                out = obj_output_dict['non_cond_frame_outputs'].get(frame_idx, None)
            if out is None:
                if run_mem_encoder:
                    if empty_mask_ptr is None:
                        empty_mask_ptr = self._get_empty_mask_ptr(inference_state, frame_idx)
                    consolidated_out['obj_ptr'][obj_idx:obj_idx + 1] = empty_mask_ptr
                continue
            obj_mask = out['pred_masks']
            consolidated_pred_masks = consolidated_out[consolidated_mask_key]
            if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
                consolidated_pred_masks[obj_idx:obj_idx + 1] = obj_mask
            else:
                resized_obj_mask = torch.nn.functional.interpolate(obj_mask, size=consolidated_pred_masks.shape[-2:], mode='bilinear', align_corners=False)
                consolidated_pred_masks[obj_idx:obj_idx + 1] = resized_obj_mask
            consolidated_out['obj_ptr'][obj_idx:obj_idx + 1] = out['obj_ptr']
        if run_mem_encoder:
            device = inference_state['device']
            high_res_masks = torch.nn.functional.interpolate(consolidated_out['pred_masks'].to(device, non_blocking=True), size=(self.image_size, self.image_size), mode='bilinear', align_corners=False)
            if self.non_overlap_masks_for_mem_enc:
                high_res_masks = self._apply_non_overlapping_constraints(high_res_masks)
            (maskmem_features, maskmem_pos_enc) = self._run_memory_encoder(inference_state=inference_state, frame_idx=frame_idx, batch_size=batch_size, high_res_masks=high_res_masks, is_mask_from_pts=True)
            consolidated_out['maskmem_features'] = maskmem_features
            consolidated_out['maskmem_pos_enc'] = maskmem_pos_enc
        return consolidated_out

    def _get_empty_mask_ptr(self, inference_state, frame_idx):
        batch_size = 1
        mask_inputs = torch.zeros((batch_size, 1, self.image_size, self.image_size), dtype=torch.float32, device=inference_state['device'])
        (_, _, current_vision_feats, current_vision_pos_embeds, feat_sizes) = self._get_image_feature(inference_state, frame_idx, batch_size)
        current_out = self.track_step(frame_idx=frame_idx, is_init_cond_frame=True, current_vision_feats=current_vision_feats, current_vision_pos_embeds=current_vision_pos_embeds, feat_sizes=feat_sizes, point_inputs=None, mask_inputs=mask_inputs, output_dict={}, num_frames=inference_state['num_frames'], track_in_reverse=False, run_mem_encoder=False, prev_sam_mask_logits=None)
        return current_out['obj_ptr']

    @torch.inference_mode()
    def propagate_in_video_preflight(self, inference_state):
        inference_state['tracking_has_started'] = True
        batch_size = self._get_obj_num(inference_state)
        temp_output_dict_per_obj = inference_state['temp_output_dict_per_obj']
        output_dict = inference_state['output_dict']
        consolidated_frame_inds = inference_state['consolidated_frame_inds']
        for is_cond in [False, True]:
            storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs'
            temp_frame_inds = set()
            for obj_temp_output_dict in temp_output_dict_per_obj.values():
                temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
            consolidated_frame_inds[storage_key].update(temp_frame_inds)
            for frame_idx in temp_frame_inds:
                consolidated_out = self._consolidate_temp_output_across_obj(inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True)
                output_dict[storage_key][frame_idx] = consolidated_out
                self._add_output_per_object(inference_state, frame_idx, consolidated_out, storage_key)
                clear_non_cond_mem = self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1)
                if clear_non_cond_mem:
                    self._clear_non_cond_mem_around_input(inference_state, frame_idx)
            for obj_temp_output_dict in temp_output_dict_per_obj.values():
                obj_temp_output_dict[storage_key].clear()
        for frame_idx in output_dict['cond_frame_outputs']:
            output_dict['non_cond_frame_outputs'].pop(frame_idx, None)
        for obj_output_dict in inference_state['output_dict_per_obj'].values():
            for frame_idx in obj_output_dict['cond_frame_outputs']:
                obj_output_dict['non_cond_frame_outputs'].pop(frame_idx, None)
        for frame_idx in consolidated_frame_inds['cond_frame_outputs']:
            assert frame_idx in output_dict['cond_frame_outputs']
            consolidated_frame_inds['non_cond_frame_outputs'].discard(frame_idx)
        all_consolidated_frame_inds = consolidated_frame_inds['cond_frame_outputs'] | consolidated_frame_inds['non_cond_frame_outputs']
        input_frames_inds = set()
        for point_inputs_per_frame in inference_state['point_inputs_per_obj'].values():
            input_frames_inds.update(point_inputs_per_frame.keys())
        for mask_inputs_per_frame in inference_state['mask_inputs_per_obj'].values():
            input_frames_inds.update(mask_inputs_per_frame.keys())
        assert all_consolidated_frame_inds == input_frames_inds

    @torch.inference_mode()
    def propagate_in_video(self, inference_state, start_frame_idx=None, max_frame_num_to_track=None, reverse=False):
        self.propagate_in_video_preflight(inference_state)
        output_dict = inference_state['output_dict']
        consolidated_frame_inds = inference_state['consolidated_frame_inds']
        obj_ids = inference_state['obj_ids']
        num_frames = inference_state['num_frames']
        batch_size = self._get_obj_num(inference_state)
        if len(output_dict['cond_frame_outputs']) == 0:
            raise RuntimeError('No points are provided; please add points first')
        clear_non_cond_mem = self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1)
        if start_frame_idx is None:
            start_frame_idx = min(output_dict['cond_frame_outputs'])
        if max_frame_num_to_track is None:
            max_frame_num_to_track = num_frames
        if reverse:
            end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
            if start_frame_idx > 0:
                processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
            else:
                processing_order = []
        else:
            end_frame_idx = min(start_frame_idx + max_frame_num_to_track, num_frames - 1)
            processing_order = range(start_frame_idx, end_frame_idx + 1)
        for frame_idx in tqdm(processing_order, desc='propagate in video'):
            if frame_idx in consolidated_frame_inds['cond_frame_outputs']:
                storage_key = 'cond_frame_outputs'
                current_out = output_dict[storage_key][frame_idx]
                pred_masks = current_out['pred_masks']
                if clear_non_cond_mem:
                    self._clear_non_cond_mem_around_input(inference_state, frame_idx)
            elif frame_idx in consolidated_frame_inds['non_cond_frame_outputs']:
                storage_key = 'non_cond_frame_outputs'
                current_out = output_dict[storage_key][frame_idx]
                pred_masks = current_out['pred_masks']
            else:
                storage_key = 'non_cond_frame_outputs'
                (current_out, pred_masks) = self._run_single_frame_inference(inference_state=inference_state, output_dict=output_dict, frame_idx=frame_idx, batch_size=batch_size, is_init_cond_frame=False, point_inputs=None, mask_inputs=None, reverse=reverse, run_mem_encoder=True)
                output_dict[storage_key][frame_idx] = current_out
            self._add_output_per_object(inference_state, frame_idx, current_out, storage_key)
            inference_state['frames_already_tracked'][frame_idx] = {'reverse': reverse}
            (_, video_res_masks) = self._get_orig_video_res_output(inference_state, pred_masks)
            yield (frame_idx, obj_ids, video_res_masks)

    def _add_output_per_object(self, inference_state, frame_idx, current_out, storage_key):
        maskmem_features = current_out['maskmem_features']
        assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)
        maskmem_pos_enc = current_out['maskmem_pos_enc']
        assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)
        output_dict_per_obj = inference_state['output_dict_per_obj']
        for (obj_idx, obj_output_dict) in output_dict_per_obj.items():
            obj_slice = slice(obj_idx, obj_idx + 1)
            obj_out = {'maskmem_features': None, 'maskmem_pos_enc': None, 'pred_masks': current_out['pred_masks'][obj_slice], 'obj_ptr': current_out['obj_ptr'][obj_slice]}
            if maskmem_features is not None:
                obj_out['maskmem_features'] = maskmem_features[obj_slice]
            if maskmem_pos_enc is not None:
                obj_out['maskmem_pos_enc'] = [x[obj_slice] for x in maskmem_pos_enc]
            obj_output_dict[storage_key][frame_idx] = obj_out

    @torch.inference_mode()
    def reset_state(self, inference_state):
        self._reset_tracking_results(inference_state)
        inference_state['obj_id_to_idx'].clear()
        inference_state['obj_idx_to_id'].clear()
        inference_state['obj_ids'].clear()
        inference_state['point_inputs_per_obj'].clear()
        inference_state['mask_inputs_per_obj'].clear()
        inference_state['output_dict_per_obj'].clear()
        inference_state['temp_output_dict_per_obj'].clear()

    def _reset_tracking_results(self, inference_state):
        for v in inference_state['point_inputs_per_obj'].values():
            v.clear()
        for v in inference_state['mask_inputs_per_obj'].values():
            v.clear()
        for v in inference_state['output_dict_per_obj'].values():
            v['cond_frame_outputs'].clear()
            v['non_cond_frame_outputs'].clear()
        for v in inference_state['temp_output_dict_per_obj'].values():
            v['cond_frame_outputs'].clear()
            v['non_cond_frame_outputs'].clear()
        inference_state['output_dict']['cond_frame_outputs'].clear()
        inference_state['output_dict']['non_cond_frame_outputs'].clear()
        inference_state['consolidated_frame_inds']['cond_frame_outputs'].clear()
        inference_state['consolidated_frame_inds']['non_cond_frame_outputs'].clear()
        inference_state['tracking_has_started'] = False
        inference_state['frames_already_tracked'].clear()

    def _get_image_feature(self, inference_state, frame_idx, batch_size):
        (image, backbone_out) = inference_state['cached_features'].get(frame_idx, (None, None))
        if backbone_out is None:
            device = inference_state['device']
            image = inference_state['images'][frame_idx].to(device).float().unsqueeze(0)
            backbone_out = self.forward_image(image)
            inference_state['cached_features'] = {frame_idx: (image, backbone_out)}
        expanded_image = image.expand(batch_size, -1, -1, -1)
        expanded_backbone_out = {'backbone_fpn': backbone_out['backbone_fpn'].copy(), 'vision_pos_enc': backbone_out['vision_pos_enc'].copy()}
        for (i, feat) in enumerate(expanded_backbone_out['backbone_fpn']):
            expanded_backbone_out['backbone_fpn'][i] = feat.expand(batch_size, -1, -1, -1)
        for (i, pos) in enumerate(expanded_backbone_out['vision_pos_enc']):
            pos = pos.expand(batch_size, -1, -1, -1)
            expanded_backbone_out['vision_pos_enc'][i] = pos
        features = self._prepare_backbone_features(expanded_backbone_out)
        features = (expanded_image,) + features
        return features

    def _run_single_frame_inference(self, inference_state, output_dict, frame_idx, batch_size, is_init_cond_frame, point_inputs, mask_inputs, reverse, run_mem_encoder, prev_sam_mask_logits=None):
        (_, _, current_vision_feats, current_vision_pos_embeds, feat_sizes) = self._get_image_feature(inference_state, frame_idx, batch_size)
        assert point_inputs is None or mask_inputs is None
        current_out = self.track_step(frame_idx=frame_idx, is_init_cond_frame=is_init_cond_frame, current_vision_feats=current_vision_feats, current_vision_pos_embeds=current_vision_pos_embeds, feat_sizes=feat_sizes, point_inputs=point_inputs, mask_inputs=mask_inputs, output_dict=output_dict, num_frames=inference_state['num_frames'], track_in_reverse=reverse, run_mem_encoder=run_mem_encoder, prev_sam_mask_logits=prev_sam_mask_logits)
        storage_device = inference_state['storage_device']
        maskmem_features = current_out['maskmem_features']
        if maskmem_features is not None:
            maskmem_features = maskmem_features.to(torch.bfloat16)
            maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
        pred_masks_gpu = current_out['pred_masks']
        if self.fill_hole_area > 0:
            pred_masks_gpu = fill_holes_in_mask_scores(pred_masks_gpu, self.fill_hole_area)
        pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
        maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
        obj_ptr = current_out['obj_ptr']
        compact_current_out = {'maskmem_features': maskmem_features, 'maskmem_pos_enc': maskmem_pos_enc, 'pred_masks': pred_masks, 'obj_ptr': obj_ptr}
        return (compact_current_out, pred_masks_gpu)

    def _run_memory_encoder(self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts):
        (_, _, current_vision_feats, _, feat_sizes) = self._get_image_feature(inference_state, frame_idx, batch_size)
        (maskmem_features, maskmem_pos_enc) = self._encode_new_memory(current_vision_feats=current_vision_feats, feat_sizes=feat_sizes, pred_masks_high_res=high_res_masks, is_mask_from_pts=is_mask_from_pts)
        storage_device = inference_state['storage_device']
        maskmem_features = maskmem_features.to(torch.bfloat16)
        maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
        maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, {'maskmem_pos_enc': maskmem_pos_enc})
        return (maskmem_features, maskmem_pos_enc)

    def _get_maskmem_pos_enc(self, inference_state, current_out):
        model_constants = inference_state['constants']
        out_maskmem_pos_enc = current_out['maskmem_pos_enc']
        if out_maskmem_pos_enc is not None:
            if 'maskmem_pos_enc' not in model_constants:
                assert isinstance(out_maskmem_pos_enc, list)
                maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
                model_constants['maskmem_pos_enc'] = maskmem_pos_enc
            else:
                maskmem_pos_enc = model_constants['maskmem_pos_enc']
            batch_size = out_maskmem_pos_enc[0].size(0)
            expanded_maskmem_pos_enc = [x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc]
        else:
            expanded_maskmem_pos_enc = None
        return expanded_maskmem_pos_enc

    def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
        r = self.memory_temporal_stride_for_eval
        frame_idx_begin = frame_idx - r * self.num_maskmem
        frame_idx_end = frame_idx + r * self.num_maskmem
        output_dict = inference_state['output_dict']
        non_cond_frame_outputs = output_dict['non_cond_frame_outputs']
        for t in range(frame_idx_begin, frame_idx_end + 1):
            non_cond_frame_outputs.pop(t, None)
            for obj_output_dict in inference_state['output_dict_per_obj'].values():
                obj_output_dict['non_cond_frame_outputs'].pop(t, None)

# File: segment-anything-2-coreml-conversion/sav_dataset/sav_evaluator.py
from argparse import ArgumentParser
from utils.sav_benchmark import benchmark
''
parser = ArgumentParser()
parser.add_argument('--gt_root', required=True, help="Path to the GT folder. For SA-V, it's sav_val/Annotations_6fps or sav_test/Annotations_6fps")
parser.add_argument('--pred_root', required=True, help='Path to a folder containing folders of masks to be evaluated, with exactly the same structure as gt_root')
parser.add_argument('-n', '--num_processes', default=16, type=int, help='Number of concurrent processes')
parser.add_argument('-s', '--strict', help='Make sure every video in the gt_root folder has a corresponding video in the prediction', action='store_true')
parser.add_argument('-q', '--quiet', help='Quietly run evaluation without printing the information out', action='store_true')
parser.add_argument('--do_not_skip_first_and_last_frame', help="In SA-V val and test, we skip the first and the last annotated frames in evaluation. Set this to true for evaluation on settings that doesn't skip first and last frames", action='store_true')
if __name__ == '__main__':
    args = parser.parse_args()
    benchmark([args.gt_root], [args.pred_root], args.strict, args.num_processes, verbose=not args.quiet, skip_first_and_last=not args.do_not_skip_first_and_last_frame)

# File: segment-anything-2-coreml-conversion/tools/vos_inference.py
import argparse
import os
import numpy as np
import torch
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor
DAVIS_PALETTE = b'\x00\x00\x00\x80\x00\x00\x00\x80\x00\x80\x80\x00\x00\x00\x80\x80\x00\x80\x00\x80\x80\x80\x80\x80@\x00\x00\xc0\x00\x00@\x80\x00\xc0\x80\x00@\x00\x80\xc0\x00\x80@\x80\x80\xc0\x80\x80\x00@\x00\x80@\x00\x00\xc0\x00\x80\xc0\x00\x00@\x80\x80@\x80\x00\xc0\x80\x80\xc0\x80@@\x00\xc0@\x00@\xc0\x00\xc0\xc0\x00@@\x80\xc0@\x80@\xc0\x80\xc0\xc0\x80\x00\x00@\x80\x00@\x00\x80@\x80\x80@\x00\x00\xc0\x80\x00\xc0\x00\x80\xc0\x80\x80\xc0@\x00@\xc0\x00@@\x80@\xc0\x80@@\x00\xc0\xc0\x00\xc0@\x80\xc0\xc0\x80\xc0\x00@@\x80@@\x00\xc0@\x80\xc0@\x00@\xc0\x80@\xc0\x00\xc0\xc0\x80\xc0\xc0@@@\xc0@@@\xc0@\xc0\xc0@@@\xc0\xc0@\xc0@\xc0\xc0\xc0\xc0\xc0 \x00\x00\xa0\x00\x00 \x80\x00\xa0\x80\x00 \x00\x80\xa0\x00\x80 \x80\x80\xa0\x80\x80`\x00\x00\xe0\x00\x00`\x80\x00\xe0\x80\x00`\x00\x80\xe0\x00\x80`\x80\x80\xe0\x80\x80 @\x00\xa0@\x00 \xc0\x00\xa0\xc0\x00 @\x80\xa0@\x80 \xc0\x80\xa0\xc0\x80`@\x00\xe0@\x00`\xc0\x00\xe0\xc0\x00`@\x80\xe0@\x80`\xc0\x80\xe0\xc0\x80 \x00@\xa0\x00@ \x80@\xa0\x80@ \x00\xc0\xa0\x00\xc0 \x80\xc0\xa0\x80\xc0`\x00@\xe0\x00@`\x80@\xe0\x80@`\x00\xc0\xe0\x00\xc0`\x80\xc0\xe0\x80\xc0 @@\xa0@@ \xc0@\xa0\xc0@ @\xc0\xa0@\xc0 \xc0\xc0\xa0\xc0\xc0`@@\xe0@@`\xc0@\xe0\xc0@`@\xc0\xe0@\xc0`\xc0\xc0\xe0\xc0\xc0\x00 \x00\x80 \x00\x00\xa0\x00\x80\xa0\x00\x00 \x80\x80 \x80\x00\xa0\x80\x80\xa0\x80@ \x00\xc0 \x00@\xa0\x00\xc0\xa0\x00@ \x80\xc0 \x80@\xa0\x80\xc0\xa0\x80\x00`\x00\x80`\x00\x00\xe0\x00\x80\xe0\x00\x00`\x80\x80`\x80\x00\xe0\x80\x80\xe0\x80@`\x00\xc0`\x00@\xe0\x00\xc0\xe0\x00@`\x80\xc0`\x80@\xe0\x80\xc0\xe0\x80\x00 @\x80 @\x00\xa0@\x80\xa0@\x00 \xc0\x80 \xc0\x00\xa0\xc0\x80\xa0\xc0@ @\xc0 @@\xa0@\xc0\xa0@@ \xc0\xc0 \xc0@\xa0\xc0\xc0\xa0\xc0\x00`@\x80`@\x00\xe0@\x80\xe0@\x00`\xc0\x80`\xc0\x00\xe0\xc0\x80\xe0\xc0@`@\xc0`@@\xe0@\xc0\xe0@@`\xc0\xc0`\xc0@\xe0\xc0\xc0\xe0\xc0  \x00\xa0 \x00 \xa0\x00\xa0\xa0\x00  \x80\xa0 \x80 \xa0\x80\xa0\xa0\x80` \x00\xe0 \x00`\xa0\x00\xe0\xa0\x00` \x80\xe0 \x80`\xa0\x80\xe0\xa0\x80 `\x00\xa0`\x00 \xe0\x00\xa0\xe0\x00 `\x80\xa0`\x80 \xe0\x80\xa0\xe0\x80``\x00\xe0`\x00`\xe0\x00\xe0\xe0\x00``\x80\xe0`\x80`\xe0\x80\xe0\xe0\x80  @\xa0 @ \xa0@\xa0\xa0@  \xc0\xa0 \xc0 \xa0\xc0\xa0\xa0\xc0` @\xe0 @`\xa0@\xe0\xa0@` \xc0\xe0 \xc0`\xa0\xc0\xe0\xa0\xc0 `@\xa0`@ \xe0@\xa0\xe0@ `\xc0\xa0`\xc0 \xe0\xc0\xa0\xe0\xc0``@\xe0`@`\xe0@\xe0\xe0@``\xc0\xe0`\xc0`\xe0\xc0\xe0\xe0\xc0'

def load_ann_png(path):
    mask = Image.open(path)
    palette = mask.getpalette()
    mask = np.array(mask).astype(np.uint8)
    return (mask, palette)

def save_ann_png(path, mask, palette):
    assert mask.dtype == np.uint8
    assert mask.ndim == 2
    output_mask = Image.fromarray(mask)
    output_mask.putpalette(palette)
    output_mask.save(path)

def get_per_obj_mask(mask):
    object_ids = np.unique(mask)
    object_ids = object_ids[object_ids > 0].tolist()
    per_obj_mask = {object_id: mask == object_id for object_id in object_ids}
    return per_obj_mask

def put_per_obj_mask(per_obj_mask, height, width):
    mask = np.zeros((height, width), dtype=np.uint8)
    object_ids = sorted(per_obj_mask)[::-1]
    for object_id in object_ids:
        object_mask = per_obj_mask[object_id]
        object_mask = object_mask.reshape(height, width)
        mask[object_mask] = object_id
    return mask

def load_masks_from_dir(input_mask_dir, video_name, frame_name, per_obj_png_file):
    if not per_obj_png_file:
        input_mask_path = os.path.join(input_mask_dir, video_name, f'{frame_name}.png')
        (input_mask, input_palette) = load_ann_png(input_mask_path)
        per_obj_input_mask = get_per_obj_mask(input_mask)
    else:
        per_obj_input_mask = {}
        for object_name in os.listdir(os.path.join(input_mask_dir, video_name)):
            object_id = int(object_name)
            input_mask_path = os.path.join(input_mask_dir, video_name, object_name, f'{frame_name}.png')
            (input_mask, input_palette) = load_ann_png(input_mask_path)
            per_obj_input_mask[object_id] = input_mask > 0
    return (per_obj_input_mask, input_palette)

def save_masks_to_dir(output_mask_dir, video_name, frame_name, per_obj_output_mask, height, width, per_obj_png_file, output_palette):
    os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
    if not per_obj_png_file:
        output_mask = put_per_obj_mask(per_obj_output_mask, height, width)
        output_mask_path = os.path.join(output_mask_dir, video_name, f'{frame_name}.png')
        save_ann_png(output_mask_path, output_mask, output_palette)
    else:
        for (object_id, object_mask) in per_obj_output_mask.items():
            object_name = f'{object_id:03d}'
            os.makedirs(os.path.join(output_mask_dir, video_name, object_name), exist_ok=True)
            output_mask = object_mask.reshape(height, width).astype(np.uint8)
            output_mask_path = os.path.join(output_mask_dir, video_name, object_name, f'{frame_name}.png')
            save_ann_png(output_mask_path, output_mask, output_palette)

@torch.inference_mode()
@torch.autocast(device_type='cuda', dtype=torch.bfloat16)
def vos_inference(predictor, base_video_dir, input_mask_dir, output_mask_dir, video_name, score_thresh=0.0, use_all_masks=False, per_obj_png_file=False):
    video_dir = os.path.join(base_video_dir, video_name)
    frame_names = [os.path.splitext(p)[0] for p in os.listdir(video_dir) if os.path.splitext(p)[-1] in ['.jpg', '.jpeg', '.JPG', '.JPEG']]
    frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
    inference_state = predictor.init_state(video_path=video_dir, async_loading_frames=False)
    height = inference_state['video_height']
    width = inference_state['video_width']
    input_palette = None
    if not use_all_masks:
        input_frame_inds = [0]
    else:
        if not per_obj_png_file:
            input_frame_inds = [idx for (idx, name) in enumerate(frame_names) if os.path.exists(os.path.join(input_mask_dir, video_name, f'{name}.png'))]
        else:
            input_frame_inds = [idx for object_name in os.listdir(os.path.join(input_mask_dir, video_name)) for (idx, name) in enumerate(frame_names) if os.path.exists(os.path.join(input_mask_dir, video_name, object_name, f'{name}.png'))]
        input_frame_inds = sorted(set(input_frame_inds))
    for input_frame_idx in input_frame_inds:
        (per_obj_input_mask, input_palette) = load_masks_from_dir(input_mask_dir=input_mask_dir, video_name=video_name, frame_name=frame_names[input_frame_idx], per_obj_png_file=per_obj_png_file)
        for (object_id, object_mask) in per_obj_input_mask.items():
            predictor.add_new_mask(inference_state=inference_state, frame_idx=input_frame_idx, obj_id=object_id, mask=object_mask)
    os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
    output_palette = input_palette or DAVIS_PALETTE
    video_segments = {}
    for (out_frame_idx, out_obj_ids, out_mask_logits) in predictor.propagate_in_video(inference_state):
        per_obj_output_mask = {out_obj_id: (out_mask_logits[i] > score_thresh).cpu().numpy() for (i, out_obj_id) in enumerate(out_obj_ids)}
        video_segments[out_frame_idx] = per_obj_output_mask
    for (out_frame_idx, per_obj_output_mask) in video_segments.items():
        save_masks_to_dir(output_mask_dir=output_mask_dir, video_name=video_name, frame_name=frame_names[out_frame_idx], per_obj_output_mask=per_obj_output_mask, height=height, width=width, per_obj_png_file=per_obj_png_file, output_palette=output_palette)

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--sam2_cfg', type=str, default='sam2_hiera_b+.yaml', help='SAM 2 model configuration file')
    parser.add_argument('--sam2_checkpoint', type=str, default='./checkpoints/sam2_hiera_b+.pt', help='path to the SAM 2 model checkpoint')
    parser.add_argument('--base_video_dir', type=str, required=True, help='directory containing videos (as JPEG files) to run VOS prediction on')
    parser.add_argument('--input_mask_dir', type=str, required=True, help='directory containing input masks (as PNG files) of each video')
    parser.add_argument('--video_list_file', type=str, default=None, help='text file containing the list of video names to run VOS prediction on')
    parser.add_argument('--output_mask_dir', type=str, required=True, help='directory to save the output masks (as PNG files)')
    parser.add_argument('--score_thresh', type=float, default=0.0, help='threshold for the output mask logits (default: 0.0)')
    parser.add_argument('--use_all_masks', action='store_true', help="whether to use all available PNG files in input_mask_dir (default without this flag: just the first PNG file as input to the SAM 2 model; usually we don't need this flag, since semi-supervised VOS evaluation usually takes input from the first frame only)")
    parser.add_argument('--per_obj_png_file', action='store_true', help='whether use separate per-object PNG files for input and output masks (default without this flag: all object masks are packed into a single PNG file on each frame following DAVIS format; note that the SA-V dataset stores each object mask as an individual PNG file and requires this flag)')
    parser.add_argument('--apply_postprocessing', action='store_true', help="whether to apply postprocessing (e.g. hole-filling) to the output masks (we don't apply such post-processing in the SAM 2 model evaluation)")
    args = parser.parse_args()
    hydra_overrides_extra = ['++model.non_overlap_masks=' + ('false' if args.per_obj_png_file else 'true')]
    predictor = build_sam2_video_predictor(config_file=args.sam2_cfg, ckpt_path=args.sam2_checkpoint, apply_postprocessing=args.apply_postprocessing, hydra_overrides_extra=hydra_overrides_extra)
    if args.use_all_masks:
        print('using all available masks in input_mask_dir as input to the SAM 2 model')
    else:
        print("using only the first frame's mask in input_mask_dir as input to the SAM 2 model")
    if args.video_list_file is not None:
        with open(args.video_list_file, 'r') as f:
            video_names = [v.strip() for v in f.readlines()]
    else:
        video_names = [p for p in os.listdir(args.base_video_dir) if os.path.isdir(os.path.join(args.base_video_dir, p))]
    print(f'running VOS prediction on {len(video_names)} videos:\n{video_names}')
    for (n_video, video_name) in enumerate(video_names):
        print(f'\n{n_video + 1}/{len(video_names)} - running on {video_name}')
        vos_inference(predictor=predictor, base_video_dir=args.base_video_dir, input_mask_dir=args.input_mask_dir, output_mask_dir=args.output_mask_dir, video_name=video_name, score_thresh=args.score_thresh, use_all_masks=args.use_all_masks, per_obj_png_file=args.per_obj_png_file)
    print(f'completed VOS prediction on {len(video_names)} videos -- output masks saved to {args.output_mask_dir}')
if __name__ == '__main__':
    main()