File size: 61,161 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 |
# File: transformers-bloom-inference-main/bloom-inference-scripts/bloom-accelerate-inference.py import argparse import gc import math import os import time import torch import torch.distributed as dist from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--local_rank', required=False, type=int, help='used by dist launchers') parser.add_argument('--name', type=str, help='Name path', required=True) parser.add_argument('--batch_size', default=1, type=int, help='batch size') parser.add_argument('--benchmark', action='store_true', help='additionally run benchmark') parser.add_argument('--greedy', action='store_true') parser.add_argument('--top-k', type=int, default=0) parser.add_argument('--top-p', type=float, default=0.0) parser.add_argument('--dtype', type=str, help='float16 or int8', choices=['int8', 'float16'], default='float16') return parser.parse_args() t_start = time.time() num_tokens = 100 args = get_args() local_rank = int(os.getenv('LOCAL_RANK', '0')) world_size = torch.cuda.device_count() rank = local_rank def print_rank0(*msg): if rank != 0: return print(*msg) print_rank0(f'Using {world_size} gpus') model_name = args.name print_rank0(f'Loading model {model_name}') tokenizer = AutoTokenizer.from_pretrained(model_name) dtype = torch.bfloat16 if model_name in ['bigscience/bloom', 'bigscience/bigscience-small-testing'] else torch.float16 infer_dtype = args.dtype if infer_dtype == 'int8': dtype = torch.int8 kwargs = dict(device_map='auto') def get_world_size() -> int: if dist.is_initialized(): return dist.get_world_size() else: return 1 if get_world_size() > 1: kwargs['device_map'] = 'balanced_low_0' if infer_dtype == 'int8': print_rank0('Using `load_in_8bit=True` to use quanitized model') kwargs['load_in_8bit'] = True else: kwargs['torch_dtype'] = dtype model = AutoModelForCausalLM.from_pretrained(model_name, **kwargs) if args.benchmark: t_ready = time.time() print_rank0(f'*** Starting to generate {num_tokens} tokens with bs={args.batch_size}') input_sentences = ['DeepSpeed is a machine learning framework', 'He is working on', 'He has a', 'He got all', 'Everyone is happy and I can', 'The new movie that got Oscar this year', 'In the far far distance from our galaxy,', 'Peace is the only way'] if args.batch_size > len(input_sentences): input_sentences *= math.ceil(args.batch_size / len(input_sentences)) generate_kwargs = dict(max_new_tokens=num_tokens, do_sample=False) print_rank0(f'Generate args {generate_kwargs}') inputs = input_sentences[:args.batch_size] def generate(): input_tokens = tokenizer.batch_encode_plus(inputs, return_tensors='pt', padding=True) for t in input_tokens: if torch.is_tensor(input_tokens[t]): input_tokens[t] = input_tokens[t].to('cuda:0') outputs = model.generate(**input_tokens, **generate_kwargs) input_tokens_lengths = [x.shape[0] for x in input_tokens.input_ids] output_tokens_lengths = [x.shape[0] for x in outputs] total_new_tokens = [o - i for (i, o) in zip(input_tokens_lengths, output_tokens_lengths)] outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) return zip(inputs, outputs, total_new_tokens) print_rank0('*** Running generate') t_generate_start = time.time() generated = generate() t_generate_span = time.time() - t_generate_start for (i, o, _) in generated: print_rank0(f"{'-' * 60}\nin={i}\nout={o}\n") if args.benchmark: torch.cuda.empty_cache() gc.collect() print_rank0('*** Running benchmark') for i in range(1): _ = generate() torch.cuda.synchronize() t0 = time.time() cycles = 5 total_new_tokens_generated = 0 for i in range(cycles): generated = generate() total_new_tokens_generated += sum((new_tokens for (_, _, new_tokens) in generated)) torch.cuda.synchronize() throughput = (time.time() - t0) / total_new_tokens_generated print_rank0(f'\n*** Performance stats:\nThroughput per token including tokenize: {throughput * 1000:.2f} msecs\nStart to ready to generate: {t_ready - t_start:.3f} secs\nTokenize and generate {total_new_tokens_generated} (bs={args.batch_size}) tokens: {t_generate_span:.3f} secs\nStart to finish: {t_ready - t_start + t_generate_span:.3f} secs\n') # File: transformers-bloom-inference-main/bloom-inference-scripts/bloom-ds-inference.py import gc import io import json import math import os import time from argparse import ArgumentParser from pathlib import Path import torch import torch.distributed as dist import deepspeed from huggingface_hub import snapshot_download from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer from transformers.models.bloom.modeling_bloom import BloomBlock as BloomBlock from transformers.utils import is_offline_mode tp_presharded_models = ['microsoft/bloom-deepspeed-inference-int8', 'microsoft/bloom-deepspeed-inference-fp16'] t_start = time.time() num_tokens = 100 parser = ArgumentParser() parser.add_argument('--name', required=True, type=str, help='model_name') parser.add_argument('--dtype', type=str, help='float16 or int8', choices=['int8', 'float16'], default='float16') parser.add_argument('--local_rank', required=False, type=int, help='used by dist launchers') parser.add_argument('--batch_size', default=1, type=int, help='batch size') parser.add_argument('--benchmark', action='store_true', help='additionally run benchmark') args = parser.parse_args() local_rank = int(os.getenv('LOCAL_RANK', '0')) world_size = int(os.getenv('WORLD_SIZE', '1')) deepspeed.init_distributed('nccl') rank = dist.get_rank() def print_rank0(*msg): if rank != 0: return print(*msg) def get_repo_root(model_name_or_path): if is_offline_mode(): print_rank0('Offline mode: forcing local_files_only=True') if rank == 0: snapshot_download(model_name_or_path, local_files_only=is_offline_mode(), cache_dir=os.getenv('TRANSFORMERS_CACHE', None), ignore_patterns=['*.safetensors']) dist.barrier() return snapshot_download(model_name_or_path, local_files_only=is_offline_mode(), cache_dir=os.getenv('TRANSFORMERS_CACHE', None), ignore_patterns=['*.safetensors']) def get_checkpoint_files(model_name_or_path): cached_repo_dir = get_repo_root(model_name_or_path) file_list = [str(entry) for entry in Path(cached_repo_dir).rglob('*.[bp][it][n]') if entry.is_file()] return file_list model_name = args.name infer_dtype = args.dtype tp_presharded_mode = True if model_name in tp_presharded_models else False print_rank0(f'*** Loading the model {model_name}') tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) kernel_inject = True if kernel_inject: dtype = torch.float16 else: dtype = torch.bfloat16 if args.benchmark: torch.cuda.empty_cache() gc.collect() deepspeed.runtime.utils.see_memory_usage('pre-from-pretrained', force=True) with deepspeed.OnDevice(dtype=dtype, device='meta'): model = AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16) if args.benchmark: deepspeed.runtime.utils.see_memory_usage('post-from-pretrained', force=True) model = model.eval() if args.benchmark: torch.cuda.empty_cache() gc.collect() deepspeed.runtime.utils.see_memory_usage('post-init-ds-zero-init', force=True) checkpoints_json = 'checkpoints.json' def write_checkpoints_json(): checkpoint_files = get_checkpoint_files(model_name) if rank == 0: data = {'type': 'BLOOM', 'checkpoints': checkpoint_files, 'version': 1.0} json.dump(data, open(checkpoints_json, 'w')) if args.benchmark: torch.cuda.empty_cache() gc.collect() deepspeed.runtime.utils.see_memory_usage('pre-ds-inference-init', force=True) if kernel_inject: kwargs = dict(replace_with_kernel_inject=True) else: kwargs = dict(injection_policy={BloomBlock: ('self_attention.dense', 'mlp.dense_4h_to_h')}) repo_root = get_repo_root(model_name) if tp_presharded_mode: checkpoints_json = os.path.join(repo_root, 'ds_inference_config.json') else: write_checkpoints_json() dist.barrier() model = deepspeed.init_inference(model, mp_size=world_size, base_dir=repo_root, dtype=getattr(torch, infer_dtype), checkpoint=checkpoints_json, **kwargs) if args.benchmark: torch.cuda.empty_cache() gc.collect() deepspeed.runtime.utils.see_memory_usage('post-ds-inference-init', force=True) model = model.module if args.benchmark: t_ready = time.time() print_rank0(f'*** Starting to generate {num_tokens} tokens with bs={args.batch_size}') input_sentences = ['DeepSpeed is a machine learning framework', 'He is working on', 'He has a', 'He got all', 'Everyone is happy and I can', 'The new movie that got Oscar this year', 'In the far far distance from our galaxy,', 'Peace is the only way'] if args.batch_size > len(input_sentences): input_sentences *= math.ceil(args.batch_size / len(input_sentences)) generate_kwargs = dict(max_new_tokens=num_tokens, do_sample=False) print_rank0(f'Generate args {generate_kwargs}') inputs = input_sentences[:args.batch_size] def generate(): input_tokens = tokenizer.batch_encode_plus(inputs, return_tensors='pt', padding=True) for t in input_tokens: if torch.is_tensor(input_tokens[t]): input_tokens[t] = input_tokens[t].to(torch.cuda.current_device()) outputs = model.generate(**input_tokens, **generate_kwargs) input_tokens_lengths = [x.shape[0] for x in input_tokens.input_ids] output_tokens_lengths = [x.shape[0] for x in outputs] total_new_tokens = [o - i for (i, o) in zip(input_tokens_lengths, output_tokens_lengths)] outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) return zip(inputs, outputs, total_new_tokens) print_rank0('*** Running generate warmup') _ = generate() print_rank0('*** Running generate') t_generate_start = time.time() generated = generate() t_generate_span = time.time() - t_generate_start for (i, o, _) in generated: print_rank0(f"{'-' * 60}\nin={i}\nout={o}\n") if args.benchmark: torch.cuda.empty_cache() gc.collect() deepspeed.runtime.utils.see_memory_usage('end-of-run', force=True) if args.benchmark: print_rank0('*** Running benchmark') for i in range(1): _ = generate() torch.cuda.synchronize() t0 = time.time() cycles = 5 total_new_tokens_generated = 0 for i in range(cycles): generated = generate() total_new_tokens_generated += sum((new_tokens for (_, _, new_tokens) in generated)) torch.cuda.synchronize() throughput = (time.time() - t0) / total_new_tokens_generated print_rank0(f'\n*** Performance stats:\nThroughput per token including tokenize: {throughput * 1000:.2f} msecs\nStart to ready to generate: {t_ready - t_start:.3f} secs\nTokenize and generate {total_new_tokens_generated} (bs={args.batch_size}) tokens: {t_generate_span:.3f} secs\nStart to finish: {t_ready - t_start + t_generate_span:.3f} secs\n') # File: transformers-bloom-inference-main/bloom-inference-scripts/bloom-ds-zero-inference.py import gc import math import os import time from argparse import ArgumentParser import torch import torch.distributed as dist import deepspeed from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer from transformers.deepspeed import HfDeepSpeedConfig from transformers.models.bloom.modeling_bloom import BloomBlock as BloomBlock t_start = time.time() num_tokens = 100 parser = ArgumentParser() parser.add_argument('--name', required=True, type=str, help='model_name') parser.add_argument('--local_rank', required=False, type=int, help='used by dist launchers') parser.add_argument('--batch_size', default=1, type=int, help='batch size') parser.add_argument('--benchmark', action='store_true', help='additionally run benchmark') parser.add_argument('--cpu_offload', action='store_true', help='whether to activate CPU offload') parser.add_argument('--nvme_offload_path', help='whether to activate NVME offload and the path on nvme') args = parser.parse_args() local_rank = int(os.getenv('LOCAL_RANK', '0')) world_size = int(os.getenv('WORLD_SIZE', '1')) deepspeed.init_distributed('nccl') rank = dist.get_rank() def print_rank0(*msg): if rank != 0: return print(*msg) model_name = args.name print_rank0(f'*** Loading the model {model_name}') tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) dtype = torch.bfloat16 if model_name in ['bigscience/bloom', 'bigscience/bigscience-small-testing'] else torch.float16 model_hidden_size = config.hidden_size train_batch_size = 1 * world_size ds_config = {'fp16': {'enabled': dtype == torch.float16}, 'bf16': {'enabled': dtype == torch.bfloat16}, 'zero_optimization': {'stage': 3, 'overlap_comm': True, 'contiguous_gradients': True, 'reduce_bucket_size': model_hidden_size * model_hidden_size, 'stage3_prefetch_bucket_size': 0.9 * model_hidden_size * model_hidden_size, 'stage3_param_persistence_threshold': 0}, 'steps_per_print': 2000, 'train_batch_size': train_batch_size, 'train_micro_batch_size_per_gpu': 1, 'wall_clock_breakdown': False} if args.cpu_offload and args.nvme_offload_path: raise ValueError('Use one of --cpu_offload or --nvme_offload_path and not both') if args.cpu_offload: ds_config['zero_optimization']['offload_param'] = dict(device='cpu', pin_memory=True) if args.nvme_offload_path: ds_config['zero_optimization']['offload_param'] = dict(device='nvme', pin_memory=True, nvme_path=args.nvme_offload_path, buffer_size=4000000000.0) dschf = HfDeepSpeedConfig(ds_config) if args.benchmark: torch.cuda.empty_cache() gc.collect() deepspeed.runtime.utils.see_memory_usage('pre-from-pretrained', force=True) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) if args.benchmark: deepspeed.runtime.utils.see_memory_usage('post-from-pretrained', force=True) model = model.eval() print_rank0(ds_config) ds_engine = deepspeed.initialize(model=model, config_params=ds_config)[0] ds_engine.module.eval() model = ds_engine.module if args.benchmark: t_ready = time.time() deepspeed.runtime.utils.see_memory_usage('start-of-generate', force=True) print_rank0(f'*** Starting to generate {num_tokens} tokens with bs={args.batch_size}') input_sentences = ['DeepSpeed is a machine learning framework', 'He is working on', 'He has a', 'He got all', 'Everyone is happy and I can', 'The new movie that got Oscar this year', 'In the far far distance from our galaxy,', 'Peace is the only way'] if args.batch_size > len(input_sentences): input_sentences *= math.ceil(args.batch_size / len(input_sentences)) generate_kwargs = dict(max_new_tokens=num_tokens, do_sample=False) print_rank0(f'Generate args {generate_kwargs}') inputs = input_sentences[:args.batch_size] def generate(): input_tokens = tokenizer.batch_encode_plus(inputs, return_tensors='pt', padding=True) for t in input_tokens: if torch.is_tensor(input_tokens[t]): input_tokens[t] = input_tokens[t].to(torch.cuda.current_device()) outputs = model.generate(**input_tokens, **generate_kwargs) input_tokens_lengths = [x.shape[0] for x in input_tokens.input_ids] output_tokens_lengths = [x.shape[0] for x in outputs] total_new_tokens = [o - i for (i, o) in zip(input_tokens_lengths, output_tokens_lengths)] outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) return zip(inputs, outputs, total_new_tokens) print_rank0('*** Running generate') t_generate_start = time.time() pairs = generate() t_generate_span = time.time() - t_generate_start for (i, o, _) in pairs: print_rank0(f"{'-' * 60}\nin={i}\nout={o}\n") if args.benchmark: torch.cuda.empty_cache() gc.collect() deepspeed.runtime.utils.see_memory_usage('end-of-generate', force=True) print_rank0('*** Running benchmark') for i in range(1): _ = generate() torch.cuda.synchronize() t0 = time.time() cycles = 5 total_new_tokens_generated = 0 for i in range(cycles): generated = generate() total_new_tokens_generated += sum((new_tokens for (_, _, new_tokens) in generated)) torch.cuda.synchronize() total_new_tokens_generated *= world_size throughput = (time.time() - t0) / total_new_tokens_generated print_rank0(f'\n*** Performance stats:\nThroughput per token including tokenize: {throughput * 1000:.2f} msecs\nStart to ready to generate: {t_ready - t_start:.3f} secs\nTokenize and generate {total_new_tokens_generated} (bs={args.batch_size}) tokens: {t_generate_span:.3f} secs\nStart to finish: {t_ready - t_start + t_generate_span:.3f} secs\n') # File: transformers-bloom-inference-main/inference_server/benchmark.py import argparse import gc from functools import partial import torch from .constants import DS_INFERENCE, DS_ZERO from .model_handler.deployment import ModelDeployment from .models import start_inference_engine from .utils import GenerateRequest, create_generate_request, get_argument_parser, get_dummy_batch, get_world_size, parse_args, print_rank_0, run_and_log_time def benchmark_generation(model: ModelDeployment, request: GenerateRequest, cycles: int=5): total_new_tokens_generated = 0 for _ in range(cycles): response = model.generate(request=request) total_new_tokens_generated += sum((new_tokens for new_tokens in response.num_generated_tokens)) return total_new_tokens_generated def get_benchmark_results(benchmark_time: float, initialization_time: float, total_new_tokens_generated: int, batch_size: int, cycles: int) -> str: throughput = total_new_tokens_generated / benchmark_time latency = benchmark_time / cycles return f'\n*** Performance stats:\nThroughput (including tokenization) = {throughput:.2f} tokens/sec\nThroughput (including tokenization) = {1000 / throughput:.2f} msecs/token\nModel loading time = {initialization_time:.2f} secs\nTotal tokens generated = {total_new_tokens_generated} with batch size = {batch_size}\nLatency = {latency:.2f} secs\nModel loading time + generation time per batch = {initialization_time + latency:.2f} secs\n' def benchmark_end_to_end(args: argparse.Namespace) -> None: (model, initialization_time) = run_and_log_time(partial(ModelDeployment, args=args, grpc_allowed=False)) request = create_generate_request(get_dummy_batch(args.batch_size), args.generate_kwargs) print_rank_0(f'generate_kwargs = {args.generate_kwargs}') print_rank_0(f'batch_size = {args.batch_size}') response = model.generate(request=request) for (i, (o, _)) in zip(request.text, zip(response.text, response.num_generated_tokens)): print_rank_0(f"{'-' * 60}\nin = {i}\nout = {o}\n") if args.benchmark_cycles > 0: print_rank_0('*** Running benchmark') torch.cuda.empty_cache() gc.collect() model.generate(request=request) torch.cuda.synchronize() (total_new_tokens_generated, benchmark_time) = run_and_log_time(partial(benchmark_generation, model=model, request=request, cycles=args.benchmark_cycles)) if args.deployment_framework == DS_ZERO: total_new_tokens_generated *= get_world_size() print_rank_0(get_benchmark_results(benchmark_time, initialization_time, total_new_tokens_generated, args.batch_size, args.benchmark_cycles)) def get_args() -> argparse.Namespace: parser = get_argument_parser() group = parser.add_argument_group(title='launch config') group.add_argument('--benchmark_cycles', type=int, default=0, help='additionally run benchmark') group.add_argument('--local_rank', required=False, type=int, help='used by dist launchers') group.add_argument('--batch_size', default=1, type=int, help='batch size') group.add_argument('--cpu_offload', action='store_true', help='whether to activate CPU offload for DS ZeRO') args = parse_args(parser) launched_with_deepspeed = args.deployment_framework in [DS_INFERENCE, DS_ZERO] assert args.max_batch_size == None, 'max_batch_size is not supported with benchmark' if not launched_with_deepspeed: assert args.local_rank == None, 'local_rank must be None if not launched with DeepSpeed' if args.cpu_offload: assert args.deployment_framework == DS_ZERO, 'cpu_offload only works with DS_ZeRO' return args def main() -> None: args = get_args() start_inference_engine(args.deployment_framework) benchmark_end_to_end(args) if __name__ == '__main__': main() # File: transformers-bloom-inference-main/inference_server/cli.py import argparse import json import sys from .model_handler import ModelDeployment from .utils import get_argument_parser, parse_args, print_rank_0 def get_args() -> argparse.Namespace: parser = get_argument_parser() args = parse_args(parser) return args def main() -> None: args = get_args() model = ModelDeployment(args, True) generate_kwargs = args.generate_kwargs while True: input_text = input('Input text: ') if input('change generate_kwargs? [y/n] ') == 'y': while True: try: generate_kwargs = json.loads(input('Generate kwargs: ')) break except Exception as e: (e_type, e_message, _) = sys.exc_info() print('error =', e_type.__name__) print('message =', e_message) continue response = model.generate(text=[input_text], generate_kwargs=generate_kwargs) print_rank_0('Output text:', response.text[0]) print_rank_0('Generated tokens:', response.num_generated_tokens[0]) if __name__ == '__main__': main() # File: transformers-bloom-inference-main/inference_server/download_model.py import argparse from inference_server.models import get_hf_model_class from transformers import AutoConfig, AutoTokenizer def get_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--model_name', type=str, required=True, help='model to use') parser.add_argument('--model_class', type=str, required=True, help='model class to use') args = parser.parse_args() return args def main() -> None: args = get_args() print('downloading', args.model_name) AutoConfig.from_pretrained(args.model_name) AutoTokenizer.from_pretrained(args.model_name) get_hf_model_class(args.model_class).from_pretrained(args.model_name) if __name__ == '__main__': main() # File: transformers-bloom-inference-main/inference_server/model_handler/deployment.py """""" import argparse import asyncio import subprocess import time from typing import List import grpc from ..constants import DS_INFERENCE, DS_ZERO from ..models import get_model_class, load_tokenizer from ..utils import ForwardRequest, ForwardResponse, GenerateResponse, TokenizeRequest, TokenizeResponse, create_generate_request, get_cuda_visible_devices, get_str_dtype, get_world_size, print_rank_0 from .grpc_utils.pb import generation_pb2, generation_pb2_grpc class ModelDeployment: def __init__(self, args: argparse.Namespace, grpc_allowed: bool=False): self.cuda_visible_devices = get_cuda_visible_devices() self.num_gpus = get_world_size() self.use_grpc_server = self.should_use_grpc(args.deployment_framework, grpc_allowed) if self.use_grpc_server: self.tokenizer = load_tokenizer(args.model_name) self.initialize_ports() self.dtype_proto_field = {str: 'svalue', int: 'ivalue', float: 'fvalue', bool: 'bvalue'} self._initialize_service(args) self._wait_until_server_is_live() self.asyncio_loop = asyncio.get_event_loop() self._initialize_grpc_client() else: self.model = get_model_class(args.deployment_framework)(args) print_rank_0('model loaded') def should_use_grpc(self, deployment_framework: str, grpc_allowed: bool) -> bool: if grpc_allowed and get_world_size() > 1: return deployment_framework in [DS_INFERENCE, DS_ZERO] return False def initialize_ports(self): self.ports = [] for i in range(self.num_gpus): self.ports.append(50950 + self.cuda_visible_devices[i]) def _is_socket_open(self, port): import socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) result = sock.connect_ex(('0.0.0.0', port)) sock.close() return result == 0 def _is_server_process_alive(self): if self.process is None: return True try: self.process.wait(1) except subprocess.TimeoutExpired as err: is_alive = True else: is_alive = False return is_alive def _wait_until_server_is_live(self): sockets_open = False while not sockets_open: sockets_open = self._is_socket_open(self.ports[0]) process_alive = self._is_server_process_alive() if not process_alive: raise RuntimeError('server crashed for some reason, unable to proceed') time.sleep(4) print_rank_0('waiting for server to start...') print_rank_0(f'server has started on {self.ports[0]}') def dict_to_proto(self, generate_kwargs: dict) -> dict: result = {} for (k, v) in generate_kwargs.items(): if v is not None: x = generation_pb2.Value() setattr(x, self.dtype_proto_field[type(v)], v) result[k] = x return result def _initialize_service(self, args: argparse.Namespace): if self._is_socket_open(self.ports[0]): raise RuntimeError(f'Server is already running on port {self.ports}, please shutdown or use different port.') if args.deployment_framework in [DS_INFERENCE, DS_ZERO]: ports = ' '.join(map(str, self.ports)) cmd = f'inference_server.model_handler.launch --model_name {args.model_name} --deployment_framework {args.deployment_framework} --dtype {get_str_dtype(args.dtype)} --port {ports} --model_class {args.model_class}' if args.max_batch_size is not None: cmd += f' --max_batch_size {args.max_batch_size}' if args.max_input_length is not None: cmd += f' --max_input_length {args.max_input_length}' master_port = 29500 + min(self.cuda_visible_devices) cuda_visible_devices = ','.join(map(str, self.cuda_visible_devices)) cmd = f'deepspeed --master_port {master_port} --include localhost:{cuda_visible_devices} --module {cmd}' else: raise NotImplementedError(f'unsupported deployment_framework: {args.deployment_framework}') cmd = cmd.split(' ') self.process = subprocess.Popen(cmd) def _initialize_grpc_client(self): self.stubs = [] for i in self.ports: channel = grpc.aio.insecure_channel(f'localhost:{i}') stub = generation_pb2_grpc.GenerationServiceStub(channel) self.stubs.append(stub) async def generate_in_tensor_parallel(self, text: List[str], generate_kwargs: dict): responses = [] for i in range(self.num_gpus): responses.append(self.asyncio_loop.create_task(self.generate_async(i, text, generate_kwargs))) await responses[0] return responses[0] async def generate_async(self, stub_id: int, text: List[str], generate_kwargs: dict): req = generation_pb2.GenerationRequestProto(texts=text, generate_kwargs=generate_kwargs) response = await self.stubs[stub_id].Generate(req) return response async def forward_in_tensor_parallel(self, conditioning_text: List[str], response: List[str]): responses = [] for i in range(self.num_gpus): responses.append(self.asyncio_loop.create_task(self.forward_async(i, conditioning_text, response))) await responses[0] return responses[0] async def forward_async(self, stub_id: int, conditioning_text: List[str], response: List[str]): req = generation_pb2.ForwardRequestProto(conditioning_text=conditioning_text, response=response) response = await self.stubs[stub_id].Forward(req) return response def generate(self, **kwargs) -> GenerateResponse: if self.use_grpc_server: if 'request' in kwargs: text = kwargs['request'].text generate_kwargs = kwargs['request'].get_generate_kwargs() else: text = kwargs['text'] generate_kwargs = kwargs['generate_kwargs'] generate_kwargs = self.dict_to_proto(generate_kwargs) response = self.asyncio_loop.run_until_complete(self.generate_in_tensor_parallel(text, generate_kwargs)).result() if response.error: raise Exception(response.error) else: return GenerateResponse(text=[r for r in response.texts], num_generated_tokens=[n for n in response.num_generated_tokens]) else: if 'request' in kwargs: request = kwargs['request'] else: request = create_generate_request(**kwargs) response = self.model.generate(request) if isinstance(response, Exception): raise response else: return response def forward(self, request: ForwardRequest) -> ForwardResponse: if self.use_grpc_server: response = self.asyncio_loop.run_until_complete(self.forward_in_tensor_parallel(request.conditioning_text, request.response)).result() if response.error: raise Exception(response.error) else: return ForwardResponse(nll=response.nll) else: response = self.model.forward(request) if isinstance(response, Exception): raise response else: return response def tokenize(self, request: TokenizeRequest) -> TokenizeResponse: if self.use_grpc_server: response = self.tokenizer(request.text, padding=request.padding) response = TokenizeResponse(token_ids=response.input_ids, attention_mask=response.attention_mask) else: response = self.model.tokenize(request) return response # File: transformers-bloom-inference-main/inference_server/model_handler/grpc_utils/generation_server.py import os from concurrent import futures import torch import grpc from ...models import Model from ...utils import ForwardRequest, TokenizeRequest, create_generate_request, print_rank_0 from .pb import generation_pb2, generation_pb2_grpc class GenerationServer(generation_pb2_grpc.GenerationServiceServicer): def __init__(self, model: Model) -> None: self.model = model def _unpack_proto_query_kwargs(self, query_kwargs): query_kwargs = {k: getattr(v, v.WhichOneof('oneof_values')) for (k, v) in query_kwargs.items()} return query_kwargs def Generate(self, request, context): text = [r for r in request.texts] generate_kwargs = self._unpack_proto_query_kwargs(request.generate_kwargs) request = create_generate_request(text=text, generate_kwargs=generate_kwargs) local_rank = int(os.getenv('LOCAL_RANK', '0')) torch.cuda.set_device(local_rank) self.model.input_device = local_rank response = self.model.generate(request) if isinstance(response, Exception): response = generation_pb2.GenerationResponseProto(error=str(response), is_encoder_decoder=response.is_encoder_decoder) else: response = generation_pb2.GenerationResponseProto(texts=response.text, num_generated_tokens=response.num_generated_tokens, is_encoder_decoder=response.is_encoder_decoder) return response def Forward(self, request, context): conditioning_text = [r for r in request.conditioning_text] response = [r for r in request.response] request = ForwardRequest(conditioning_text=conditioning_text, response=response) local_rank = int(os.getenv('LOCAL_RANK', '0')) torch.cuda.set_device(local_rank) self.model.input_device = local_rank response = self.model.forward(request) if isinstance(response, Exception): response = generation_pb2.ForwardResponseProto(error=str(response), is_encoder_decoder=response.is_encoder_decoder) else: response = generation_pb2.ForwardResponseProto(nll=response.nll, is_encoder_decoder=response.is_encoder_decoder) return response def serve(inference_pipeline, port): server = grpc.server(futures.ThreadPoolExecutor(max_workers=1)) generation_pb2_grpc.add_GenerationServiceServicer_to_server(GenerationServer(inference_pipeline), server) server.add_insecure_port(f'[::]:{port}') print_rank_0('About to start server') server.start() print_rank_0('Started') server.wait_for_termination() # File: transformers-bloom-inference-main/inference_server/model_handler/grpc_utils/pb/generation_pb2.py """""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x10generation.proto\x12\ngeneration"_\n\x05Value\x12\x10\n\x06svalue\x18\x01 \x01(\tH\x00\x12\x10\n\x06ivalue\x18\x02 \x01(\x03H\x00\x12\x10\n\x06fvalue\x18\x03 \x01(\x02H\x00\x12\x10\n\x06bvalue\x18\x04 \x01(\x08H\x00B\x0e\n\x0coneof_values"\xc2\x01\n\x16GenerationRequestProto\x12\r\n\x05texts\x18\x01 \x03(\t\x12O\n\x0fgenerate_kwargs\x18\x02 \x03(\x0b26.generation.GenerationRequestProto.GenerateKwargsEntry\x1aH\n\x13GenerateKwargsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12 \n\x05value\x18\x02 \x01(\x0b2\x11.generation.Value:\x028\x01"q\n\x17GenerationResponseProto\x12\r\n\x05texts\x18\x01 \x03(\t\x12\x1c\n\x14num_generated_tokens\x18\x02 \x03(\x05\x12\r\n\x05error\x18\x03 \x01(\t\x12\x1a\n\x12is_encoder_decoder\x18\x04 \x01(\x08"B\n\x13ForwardRequestProto\x12\x19\n\x11conditioning_text\x18\x01 \x03(\t\x12\x10\n\x08response\x18\x02 \x03(\t"N\n\x14ForwardResponseProto\x12\x0b\n\x03nll\x18\x01 \x01(\x02\x12\r\n\x05error\x18\x02 \x01(\t\x12\x1a\n\x12is_encoder_decoder\x18\x03 \x01(\x082\xba\x01\n\x11GenerationService\x12U\n\x08Generate\x12".generation.GenerationRequestProto\x1a#.generation.GenerationResponseProto"\x00\x12N\n\x07Forward\x12\x1f.generation.ForwardRequestProto\x1a .generation.ForwardResponseProto"\x00b\x06proto3') _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'generation_pb2', globals()) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _GENERATIONREQUESTPROTO_GENERATEKWARGSENTRY._options = None _GENERATIONREQUESTPROTO_GENERATEKWARGSENTRY._serialized_options = b'8\x01' _VALUE._serialized_start = 32 _VALUE._serialized_end = 127 _GENERATIONREQUESTPROTO._serialized_start = 130 _GENERATIONREQUESTPROTO._serialized_end = 324 _GENERATIONREQUESTPROTO_GENERATEKWARGSENTRY._serialized_start = 252 _GENERATIONREQUESTPROTO_GENERATEKWARGSENTRY._serialized_end = 324 _GENERATIONRESPONSEPROTO._serialized_start = 326 _GENERATIONRESPONSEPROTO._serialized_end = 439 _FORWARDREQUESTPROTO._serialized_start = 441 _FORWARDREQUESTPROTO._serialized_end = 507 _FORWARDRESPONSEPROTO._serialized_start = 509 _FORWARDRESPONSEPROTO._serialized_end = 587 _GENERATIONSERVICE._serialized_start = 590 _GENERATIONSERVICE._serialized_end = 776 # File: transformers-bloom-inference-main/inference_server/model_handler/grpc_utils/pb/generation_pb2_grpc.py """""" import grpc from . import generation_pb2 as generation__pb2 class GenerationServiceStub(object): def __init__(self, channel): self.Generate = channel.unary_unary('/generation.GenerationService/Generate', request_serializer=generation__pb2.GenerationRequestProto.SerializeToString, response_deserializer=generation__pb2.GenerationResponseProto.FromString) self.Forward = channel.unary_unary('/generation.GenerationService/Forward', request_serializer=generation__pb2.ForwardRequestProto.SerializeToString, response_deserializer=generation__pb2.ForwardResponseProto.FromString) class GenerationServiceServicer(object): def Generate(self, request, context): context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Forward(self, request, context): context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_GenerationServiceServicer_to_server(servicer, server): rpc_method_handlers = {'Generate': grpc.unary_unary_rpc_method_handler(servicer.Generate, request_deserializer=generation__pb2.GenerationRequestProto.FromString, response_serializer=generation__pb2.GenerationResponseProto.SerializeToString), 'Forward': grpc.unary_unary_rpc_method_handler(servicer.Forward, request_deserializer=generation__pb2.ForwardRequestProto.FromString, response_serializer=generation__pb2.ForwardResponseProto.SerializeToString)} generic_handler = grpc.method_handlers_generic_handler('generation.GenerationService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) class GenerationService(object): @staticmethod def Generate(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/generation.GenerationService/Generate', generation__pb2.GenerationRequestProto.SerializeToString, generation__pb2.GenerationResponseProto.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Forward(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/generation.GenerationService/Forward', generation__pb2.ForwardRequestProto.SerializeToString, generation__pb2.ForwardResponseProto.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) # File: transformers-bloom-inference-main/inference_server/model_handler/launch.py """""" import argparse import torch.distributed as dist from ..models import get_model_class, start_inference_engine from ..utils import get_argument_parser, parse_args from .grpc_utils.generation_server import serve def get_args() -> argparse.Namespace: parser = get_argument_parser() group = parser.add_argument_group(title='launch config') group.add_argument('--local_rank', required=False, type=int, help='used by dist launchers') group.add_argument('--cpu_offload', action='store_true', help='whether to activate CPU offload for DS ZeRO') group.add_argument('--ports', nargs='+', help='GRPC ports') args = parse_args(parser) return args def main(): args = get_args() start_inference_engine(args.deployment_framework) model = get_model_class(args.deployment_framework)(args) serve(model, args.ports[dist.get_rank()]) if __name__ == '__main__': main() # File: transformers-bloom-inference-main/inference_server/models/__init__.py from ..constants import DS_INFERENCE, DS_ZERO, HF_ACCELERATE, HF_CPU from .model import Model, get_hf_model_class, load_tokenizer def get_model_class(deployment_framework: str): if deployment_framework == HF_ACCELERATE: from .hf_accelerate import HFAccelerateModel return HFAccelerateModel elif deployment_framework == HF_CPU: from .hf_cpu import HFCPUModel return HFCPUModel elif deployment_framework == DS_INFERENCE: from .ds_inference import DSInferenceModel return DSInferenceModel elif deployment_framework == DS_ZERO: from .ds_zero import DSZeROModel return DSZeROModel else: raise ValueError(f'Unknown deployment framework {deployment_framework}') def start_inference_engine(deployment_framework: str) -> None: if deployment_framework in [DS_INFERENCE, DS_ZERO]: import deepspeed deepspeed.init_distributed('nccl') # File: transformers-bloom-inference-main/inference_server/models/ds_inference.py import glob import io import json import os from argparse import Namespace from functools import partial import torch import deepspeed from huggingface_hub import try_to_load_from_cache from transformers import AutoConfig from ..utils import get_world_size, run_rank_n from .model import Model, get_hf_model_class class DSInferenceModel(Model): def __init__(self, args: Namespace) -> None: super().__init__(args) with deepspeed.OnDevice(dtype=torch.float16, device='meta'): self.model = get_hf_model_class(args.model_class).from_config(AutoConfig.from_pretrained(args.model_name), torch_dtype=torch.bfloat16) self.model = self.model.eval() downloaded_model_path = get_model_path(args.model_name) if args.dtype in [torch.float16, torch.int8]: checkpoints_json = os.path.join(downloaded_model_path, 'ds_inference_config.json') if os.path.isfile(checkpoints_json): self.model = deepspeed.init_inference(self.model, mp_size=get_world_size(), base_dir=downloaded_model_path, dtype=args.dtype, checkpoint=checkpoints_json, replace_with_kernel_inject=True) else: with TemporaryCheckpointsJSON(downloaded_model_path) as checkpoints_json: self.model = deepspeed.init_inference(self.model, mp_size=get_world_size(), base_dir=downloaded_model_path, dtype=args.dtype, checkpoint=checkpoints_json, replace_with_kernel_inject=True) elif args.dtype == torch.bfloat16: raise NotImplementedError('bfloat16 is not yet supported') self.model = self.model.module self.input_device = torch.cuda.current_device() self.post_init(args.model_name) class TemporaryCheckpointsJSON: def __init__(self, model_path: str): self.tmp_directory = 'tmp' self.tmp_file = os.path.join(self.tmp_directory, 'checkpoints.json') self.model_path = model_path def write_checkpoints_json(self) -> None: print(self.model_path) with io.open(self.tmp_file, 'w', encoding='utf-8') as f: data = {'type': 'BLOOM', 'checkpoints': glob.glob(f'{self.model_path}/*.bin'), 'version': 1.0} json.dump(data, f) def __enter__(self): run_rank_n(os.makedirs, barrier=True)(self.tmp_directory, exist_ok=True) run_rank_n(self.write_checkpoints_json, barrier=True)() return self.tmp_file def __exit__(self, type, value, traceback): return def get_model_path(model_name: str): try: config_file = 'config.json' config_path = try_to_load_from_cache(model_name, config_file, cache_dir=os.getenv('TRANSFORMERS_CACHE')) if config_path is None: return model_name else: return os.path.dirname(config_path) except: return model_name # File: transformers-bloom-inference-main/inference_server/models/ds_zero.py from argparse import Namespace import torch import deepspeed from transformers import AutoConfig from transformers.deepspeed import HfDeepSpeedConfig from ..utils import get_world_size from .model import Model, get_hf_model_class class DSZeROModel(Model): def __init__(self, args: Namespace) -> None: super().__init__(args) config = AutoConfig.from_pretrained(args.model_name) train_micro_batch_size_per_gpu = 1 train_batch_size = train_micro_batch_size_per_gpu * get_world_size() ds_config = {'fp16': {'enabled': args.dtype == torch.float16}, 'bf16': {'enabled': args.dtype == torch.bfloat16}, 'zero_optimization': {'stage': 3, 'overlap_comm': True, 'contiguous_gradients': True, 'reduce_bucket_size': config.hidden_size * config.hidden_size, 'stage3_prefetch_bucket_size': 0.9 * config.hidden_size * config.hidden_size, 'stage3_param_persistence_threshold': 0}, 'steps_per_print': 2000, 'train_batch_size': train_batch_size, 'train_micro_batch_size_per_gpu': train_micro_batch_size_per_gpu, 'wall_clock_breakdown': False} if args.cpu_offload: ds_config['zero_optimization']['offload_param'] = {'device': 'cpu', 'pin_memory': True} dschf = HfDeepSpeedConfig(ds_config) self.model = get_hf_model_class(args.model_class).from_pretrained(args.model_name, torch_dtype=args.dtype) self.model = self.model.eval() self.model = deepspeed.initialize(model=self.model, config_params=ds_config)[0] self.model.module.eval() self.model = self.model.module self.input_device = torch.cuda.current_device() self.post_init(args.model_name) # File: transformers-bloom-inference-main/inference_server/models/hf_accelerate.py from argparse import Namespace import torch from ..utils import get_world_size from .model import Model, get_hf_model_class class HFAccelerateModel(Model): def __init__(self, args: Namespace) -> None: super().__init__(args) kwargs = {'pretrained_model_name_or_path': args.model_name, 'device_map': 'auto'} if get_world_size() > 1: kwargs['device_map'] = 'balanced_low_0' if args.dtype == torch.int8: kwargs['load_in_8bit'] = True else: kwargs['torch_dtype'] = args.dtype self.model = get_hf_model_class(args.model_class).from_pretrained(**kwargs) self.model.requires_grad_(False) self.model.eval() self.input_device = 'cuda:0' self.post_init(args.model_name) # File: transformers-bloom-inference-main/inference_server/models/model.py import argparse import copy from typing import List, Union import torch import transformers from transformers import AutoConfig, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig from ..utils import ForwardRequest, ForwardResponse, GenerateRequest, GenerateResponse, TokenizeRequest, TokenizeResponse class Model: def __init__(self, args: argparse.Namespace) -> None: self.model = None self.input_device = None self.max_input_length = args.max_input_length self.max_batch_size = args.max_batch_size def post_init(self, model_name: str) -> None: self.is_encoder_decoder = AutoConfig.from_pretrained(model_name).is_encoder_decoder self.generation_config = GenerationConfig.from_model_config(AutoConfig.from_pretrained(model_name)) self.tokenizer = load_tokenizer(model_name) self.pad = self.tokenizer.pad_token_id self.prefix_token_id = self.tokenizer('A')['input_ids'][0] def get_generation_config(self, request: GenerateRequest) -> GenerationConfig: generation_config = copy.deepcopy(self.generation_config) request = dict(request) request_filtered = {} for (key, value) in request.items(): if value is not None and key not in ['text', 'remove_input_from_output']: request_filtered[key] = value request_filtered['return_dict_in_generate'] = True generation_config.update(**request_filtered) return generation_config def generate(self, request: GenerateRequest) -> Union[GenerateResponse, Exception]: try: batch_size = len(request.text) check_batch_size(batch_size, self.max_batch_size) input_tokens = self.tokenizer(request.text, return_tensors='pt', padding=True) max_input_length_in_batch = input_tokens.input_ids[0].shape[0] check_max_input_length(max_input_length_in_batch, self.max_input_length) for t in input_tokens: if torch.is_tensor(input_tokens[t]): input_tokens[t] = input_tokens[t].to(self.input_device) num_input_tokens = input_tokens['input_ids'].shape[1] generation_config = self.get_generation_config(request) output = self.model.generate(**input_tokens, generation_config=generation_config) output_tokens = output.sequences if self.is_encoder_decoder: num_generated_tokens = (output_tokens != self.pad).sum(dim=-1).tolist() generated_text = self.tokenizer.batch_decode(output_tokens, skip_special_tokens=True) else: generated_tokens = output_tokens[:, num_input_tokens:] num_generated_tokens = (generated_tokens != self.pad).sum(dim=-1).tolist() if request.remove_input_from_output: prefix_to_add = torch.tensor([[self.prefix_token_id]] * batch_size).to(self.input_device) generated_tokens = torch.cat([prefix_to_add, generated_tokens], dim=1) generated_text = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) generated_text = [i[1:] for i in generated_text] else: generated_text = self.tokenizer.batch_decode(output_tokens, skip_special_tokens=True) return GenerateResponse(text=generated_text, num_generated_tokens=num_generated_tokens, is_encoder_decoder=self.is_encoder_decoder) except Exception as exception: return exception def forward(self, request: ForwardRequest) -> Union[ForwardResponse, Exception]: def prepare_tensors(conditioning_tokens: List[List[int]], response_tokens: List[List[int]]): bs = len(conditioning_tokens) input_ids = [conditioning_tokens[i] + response_tokens[i] for i in range(bs)] attention_mask = [[1] * (len(conditioning_tokens[i]) + len(response_tokens[i])) for i in range(bs)] labels = [[-100] * len(conditioning_tokens[i]) + response_tokens[i] for i in range(bs)] input_ids = pad(input_ids, self.tokenizer.pad_token_id) attention_mask = pad(attention_mask, 0) labels = pad(labels, -100) return {'input_ids': torch.tensor(input_ids), 'attention_mask': torch.tensor(attention_mask), 'labels': torch.tensor(labels)} def pad(arrays: list, padding: int, max_length: int=None): if max_length is None: max_length = max(list(map(len, arrays))) arrays = [[padding] * (max_length - len(array)) + array for array in arrays] return arrays try: batch_size = len(request.conditioning_text) check_batch_size(batch_size, self.max_batch_size) conditioning_tokens = self.tokenizer(request.conditioning_text)['input_ids'] response_tokens = self.tokenizer(request.response)['input_ids'] max_length_in_batch = max([len(conditioning_tokens) + len(response_tokens)]) check_max_input_length(max_length_in_batch, self.max_input_length) input_tokens = prepare_tensors(conditioning_tokens, response_tokens) for t in input_tokens: if torch.is_tensor(input_tokens[t]): input_tokens[t] = input_tokens[t].to(self.input_device) loss = self.model(**input_tokens).loss return ForwardResponse(nll=loss.item(), is_encoder_decoder=self.is_encoder_decoder) except Exception as exception: return exception def tokenize(self, request: TokenizeRequest) -> TokenizeResponse: return TokenizeResponse(token_ids=self.tokenizer(request.text).input_ids, is_encoder_decoder=self.is_encoder_decoder) def check_max_input_length(input_token_length: int, max_input_length: int) -> None: if max_input_length is None: return if input_token_length > max_input_length: raise Exception(f'max supported input length = {max_input_length} for now') def check_batch_size(batch_size: int, max_batch_size: int) -> None: if max_batch_size is None: return if batch_size > max_batch_size: raise Exception(f'max supported batch size = {max_batch_size} for now') def get_hf_model_class(model_class: str) -> Union[AutoModelForCausalLM, AutoModelForSeq2SeqLM]: return getattr(transformers, model_class) def load_tokenizer(model_name: str) -> AutoTokenizer: tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left') if tokenizer.pad_token_id is None: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) return tokenizer # File: transformers-bloom-inference-main/inference_server/server.py import os from functools import partial from flask import Flask, request from flask_api import status from pydantic import BaseModel from .constants import HF_ACCELERATE from .model_handler.deployment import ModelDeployment from .utils import ForwardRequest, GenerateRequest, TokenizeRequest, get_exception_response, get_num_tokens_to_generate, get_torch_dtype, parse_bool, run_and_log_time class QueryID(BaseModel): generate_query_id: int = 0 tokenize_query_id: int = 0 forward_query_id: int = 0 class Args: def __init__(self) -> None: self.deployment_framework = os.getenv('DEPLOYMENT_FRAMEWORK', HF_ACCELERATE) self.model_name = os.getenv('MODEL_NAME') self.model_class = os.getenv('MODEL_CLASS') self.dtype = get_torch_dtype(os.getenv('DTYPE')) self.allowed_max_new_tokens = int(os.getenv('ALLOWED_MAX_NEW_TOKENS', 100)) self.max_input_length = int(os.getenv('MAX_INPUT_LENGTH', 512)) self.max_batch_size = int(os.getenv('MAX_BATCH_SIZE', 4)) self.debug = parse_bool(os.getenv('DEBUG', 'false')) args = Args() model = ModelDeployment(args, True) query_ids = QueryID() app = Flask(__name__) @app.route('/query_id/', methods=['GET']) def query_id(): return (query_ids.dict(), status.HTTP_200_OK) @app.route('/tokenize/', methods=['POST']) def tokenize(): try: x = request.get_json() x = TokenizeRequest(**x) (response, total_time_taken) = run_and_log_time(partial(model.tokenize, request=x)) response.query_id = query_ids.tokenize_query_id query_ids.tokenize_query_id += 1 response.total_time_taken = '{:.2f} msecs'.format(total_time_taken * 1000) return (response.dict(), status.HTTP_200_OK) except Exception: response = get_exception_response(query_ids.tokenize_query_id, args.debug) query_ids.tokenize_query_id += 1 return (response, status.HTTP_500_INTERNAL_SERVER_ERROR) @app.route('/generate/', methods=['POST']) def generate(): try: x = request.get_json() x = GenerateRequest(**x) x.max_new_tokens = get_num_tokens_to_generate(x.max_new_tokens, args.allowed_max_new_tokens) (response, total_time_taken) = run_and_log_time(partial(model.generate, request=x)) response.query_id = query_ids.generate_query_id query_ids.generate_query_id += 1 response.total_time_taken = '{:.2f} secs'.format(total_time_taken) return (response.dict(), status.HTTP_200_OK) except Exception: response = get_exception_response(query_ids.generate_query_id, args.debug) query_ids.generate_query_id += 1 return (response, status.HTTP_500_INTERNAL_SERVER_ERROR) @app.route('/forward/', methods=['POST']) def forward(): try: x = request.get_json() x = ForwardRequest(**x) if len(x.conditioning_text) != len(x.response): raise Exception('unequal number of elements in conditioning_text and response arguments') (response, total_time_taken) = run_and_log_time(partial(model.forward, request=x)) response.query_id = query_ids.forward_query_id query_ids.forward_query_id += 1 response.total_time_taken = '{:.2f} secs'.format(total_time_taken) return (response.dict(), status.HTTP_200_OK) except Exception: response = get_exception_response(query_ids.forward_query_id, args.debug) query_ids.forward_query_id += 1 return (response, status.HTTP_500_INTERNAL_SERVER_ERROR) # File: transformers-bloom-inference-main/server_request.py import argparse import requests def get_args() -> argparse.Namespace: parser = argparse.ArgumentParser() group = parser.add_argument_group(title='launch config') group.add_argument('--host', type=str, required=True, help='host address') group.add_argument('--port', type=int, required=True, help='port number') return parser.parse_args() def generate(url: str) -> None: url = url + '/generate/' request_body = {'text': ['DeepSpeed', 'DeepSpeed is a', 'DeepSpeed is a machine', 'DeepSpeed is a machine learning framework'], 'max_new_tokens': 40} response = requests.post(url=url, json=request_body, verify=False) print(response.json(), '\n') def tokenize(url: str) -> None: url = url + '/tokenize/' request_body = {'text': ['DeepSpeed is a', 'DeepSpeed is a machine learning framework']} response = requests.post(url=url, json=request_body, verify=False) print(response.json(), '\n') def forward(url: str) -> None: url = url + '/forward/' request_body = {'conditioning_text': ['DeepSpeed', 'DeepSpeed is a', 'DeepSpeed is a machine', 'DeepSpeed is a machine learning framework'], 'response': ['DeepSpeed', 'DeepSpeed is a', 'DeepSpeed is a machine', 'DeepSpeed is a machine learning framework']} response = requests.post(url=url, json=request_body, verify=False) print(response.json(), '\n') def query_id(url: str) -> None: url = url + '/query_id/' response = requests.get(url=url, verify=False) print(response.json(), '\n') def main(): args = get_args() url = 'http://{}:{}'.format(args.host, args.port) generate(url) tokenize(url) forward(url) query_id(url) if __name__ == '__main__': main() # File: transformers-bloom-inference-main/ui.py import argparse import requests from fastapi import FastAPI, Request from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import HTMLResponse, JSONResponse from fastapi.routing import APIRoute, Mount from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates from transformers import AutoTokenizer from uvicorn import run def get_args() -> argparse.Namespace: parser = argparse.ArgumentParser() group = parser.add_argument_group(title='launch config') group.add_argument('--ui_host', type=str, default='127.0.0.1', help='host address for UI') group.add_argument('--ui_port', type=int, default=5001, help='port number for UI') group.add_argument('--generation_backend_host', type=str, default='127.0.0.1', help='host address for generation server') group.add_argument('--generation_backend_port', type=int, default=5000, help='port number for generation server') return parser.parse_args() class Server: def __init__(self, args: argparse.Namespace): self.templates = Jinja2Templates(directory='templates') self.ui_host = args.ui_host self.ui_port = args.ui_port self.generation_backend_host = args.generation_backend_host self.generation_backend_port = args.generation_backend_port self.workers = 1 self.tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom') self.app = FastAPI(routes=[APIRoute('/', self.homepage, methods=['GET'], response_class=HTMLResponse), APIRoute('/generate/', self.generate, methods=['POST']), Mount('/static/', StaticFiles(directory='static'), name='static')], timeout=600) self.prefix_checkpoints_list = None def homepage(self, request: Request) -> HTMLResponse: return self.templates.TemplateResponse('index.html', {'request': request}) def generate(self, request: dict) -> JSONResponse: response = requests.post(f'http://{self.generation_backend_host}:{self.generation_backend_port}/generate', json=request, verify=False) return JSONResponse(content=response.json()) def run(self): self.app.add_middleware(CORSMiddleware, allow_origins=['*'], allow_credentials=True, allow_methods=['*'], allow_headers=['*']) run(self.app, host=self.ui_host, port=self.ui_port, workers=self.workers) def main() -> None: Server(get_args()).run() if __name__ == '__main__': main() |