|
# File: datatrove-main/src/datatrove/data.py |
|
"""""" |
|
from dataclasses import dataclass, field |
|
from typing import Generator, NewType |
|
|
|
class MediaType: |
|
IMAGE = 0 |
|
VIDEO = 1 |
|
AUDIO = 2 |
|
|
|
@dataclass |
|
class Media: |
|
type: int |
|
url: str |
|
alt: str | None = None |
|
local_path: str | None = None |
|
|
|
@dataclass |
|
class Document: |
|
text: str |
|
id: str |
|
media: list[Media] = field(default_factory=list) |
|
metadata: dict[str, str | int | float | bool] = field(default_factory=dict) |
|
DocumentsPipeline = NewType('DocumentsPipeline', Generator[Document, None, None] | None) |
|
|
|
# File: datatrove-main/src/datatrove/executor/base.py |
|
import dataclasses |
|
import json |
|
import random |
|
import time |
|
from abc import ABC, abstractmethod |
|
from collections import deque |
|
from collections.abc import Sequence |
|
from typing import Callable |
|
from datatrove.io import DataFolderLike, get_datafolder |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.utils.logging import add_task_logger, close_task_logger, get_random_str, get_timestamp, log_pipeline, logger |
|
from datatrove.utils.stats import PipelineStats |
|
|
|
class PipelineExecutor(ABC): |
|
|
|
@abstractmethod |
|
def __init__(self, pipeline: list[PipelineStep | Callable], logging_dir: DataFolderLike=None, skip_completed: bool=True, randomize_start_duration: int=0): |
|
self.pipeline: list[PipelineStep | Callable] = pipeline |
|
self.logging_dir = get_datafolder(logging_dir if logging_dir else f'logs/{get_timestamp()}_{get_random_str()}') |
|
self.skip_completed = skip_completed |
|
self.randomize_start_duration = randomize_start_duration |
|
|
|
@abstractmethod |
|
def run(self): |
|
pass |
|
|
|
@property |
|
@abstractmethod |
|
def world_size(self) -> int: |
|
return 0 |
|
|
|
def _run_for_rank(self, rank: int, local_rank: int=0) -> PipelineStats: |
|
if self.is_rank_completed(rank): |
|
logger.info(f'Skipping rank={rank!r} as it has already been completed.') |
|
return PipelineStats() |
|
logfile = add_task_logger(self.logging_dir, rank, local_rank) |
|
log_pipeline(self.pipeline) |
|
if self.randomize_start_duration > 0: |
|
time.sleep(random.randint(0, self.randomize_start_duration)) |
|
try: |
|
pipelined_data = None |
|
for pipeline_step in self.pipeline: |
|
if callable(pipeline_step): |
|
pipelined_data = pipeline_step(pipelined_data, rank, self.world_size) |
|
elif isinstance(pipeline_step, Sequence) and (not isinstance(pipeline_step, str)): |
|
pipelined_data = pipeline_step |
|
else: |
|
raise ValueError |
|
if pipelined_data: |
|
deque(pipelined_data, maxlen=0) |
|
logger.success(f'Processing done for rank={rank!r}') |
|
stats = PipelineStats(self.pipeline) |
|
with self.logging_dir.open(f'stats/{rank:05d}.json', 'w') as f: |
|
stats.save_to_disk(f) |
|
logger.info(stats.get_repr(f'Task {rank}')) |
|
self.mark_rank_as_completed(rank) |
|
except Exception as e: |
|
logger.exception(e) |
|
raise e |
|
finally: |
|
close_task_logger(logfile) |
|
return stats |
|
|
|
def is_rank_completed(self, rank: int) -> bool: |
|
return self.skip_completed and self.logging_dir.isfile(f'completions/{rank:05d}') |
|
|
|
def mark_rank_as_completed(self, rank: int): |
|
self.logging_dir.open(f'completions/{rank:05d}', 'w').close() |
|
|
|
def get_incomplete_ranks(self, ranks=None) -> list[int]: |
|
completed = set(self.logging_dir.list_files('completions')) |
|
return list(filter(lambda rank: not self.skip_completed or f'completions/{rank:05d}' not in completed, ranks if ranks is not None else range(self.world_size))) |
|
|
|
def to_json(self, indent=4) -> str: |
|
data = self.__dict__ |
|
data['pipeline'] = [{a: b for (a, b) in x.__dict__.items() if a != 'stats'} for x in data['pipeline']] |
|
return json.dumps(data, indent=indent) |
|
|
|
def save_executor_as_json(self, indent: int=4): |
|
with self.logging_dir.open('executor.json', 'w') as f: |
|
json.dump(self, f, cls=ExecutorJSONEncoder, indent=indent) |
|
|
|
class ExecutorJSONEncoder(json.JSONEncoder): |
|
|
|
def default(self, o): |
|
if dataclasses.is_dataclass(o): |
|
return dataclasses.asdict(o) |
|
if isinstance(o, PipelineExecutor): |
|
return o.__dict__ | {'world_size': o.world_size} |
|
if isinstance(o, PipelineStep): |
|
return {a: b for (a, b) in o.__dict__.items() if a != 'stats'} |
|
return str(o) |
|
|
|
# File: datatrove-main/src/datatrove/executor/local.py |
|
import time |
|
from copy import deepcopy |
|
from functools import partial |
|
from typing import Callable |
|
import multiprocess |
|
from datatrove.executor.base import PipelineExecutor |
|
from datatrove.io import DataFolderLike |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.utils.logging import logger |
|
from datatrove.utils.stats import PipelineStats |
|
|
|
class LocalPipelineExecutor(PipelineExecutor): |
|
|
|
def __init__(self, pipeline: list[PipelineStep | Callable], tasks: int=1, workers: int=-1, logging_dir: DataFolderLike=None, depends: 'LocalPipelineExecutor'=None, skip_completed: bool=True, start_method: str='forkserver', local_tasks: int=-1, local_rank_offset: int=0, randomize_start_duration: int=0): |
|
super().__init__(pipeline, logging_dir, skip_completed, randomize_start_duration) |
|
self.tasks = tasks |
|
self.workers = workers if workers != -1 else tasks |
|
self.start_method = start_method |
|
self.local_tasks = local_tasks if local_tasks != -1 else tasks |
|
self.local_rank_offset = local_rank_offset |
|
self.depends = depends |
|
if self.local_rank_offset + self.local_tasks > self.tasks: |
|
raise ValueError(f'Local tasks go beyond the total tasks (local_rank_offset + local_tasks = {self.local_rank_offset + self.local_tasks} > {self.tasks} = tasks)') |
|
self._launched = False |
|
|
|
def _launch_run_for_rank(self, rank: int, ranks_q, completed=None, completed_lock=None) -> PipelineStats: |
|
local_rank = ranks_q.get() |
|
try: |
|
return self._run_for_rank(rank, local_rank) |
|
finally: |
|
if completed and completed_lock: |
|
with completed_lock: |
|
completed.value += 1 |
|
logger.info(f'{completed.value}/{self.world_size} tasks completed.') |
|
ranks_q.put(local_rank) |
|
|
|
def run(self): |
|
assert not self.depends or isinstance(self.depends, LocalPipelineExecutor), 'depends= must be a LocalPipelineExecutor' |
|
if self.depends: |
|
if not self.depends._launched: |
|
logger.info(f'Launching dependency job "{self.depends}"') |
|
self.depends.run() |
|
while (incomplete := len(self.depends.get_incomplete_ranks())) > 0: |
|
logger.info(f'Dependency job still has {incomplete}/{self.depends.world_size} tasks. Waiting...') |
|
time.sleep(2 * 60) |
|
self._launched = True |
|
if all(map(self.is_rank_completed, range(self.local_rank_offset, self.local_rank_offset + self.local_tasks))): |
|
logger.info(f'Not doing anything as all {self.local_tasks} tasks have already been completed.') |
|
return |
|
self.save_executor_as_json() |
|
mg = multiprocess.Manager() |
|
ranks_q = mg.Queue() |
|
for i in range(self.workers): |
|
ranks_q.put(i) |
|
ranks_to_run = self.get_incomplete_ranks(range(self.local_rank_offset, self.local_rank_offset + self.local_tasks)) |
|
if (skipped := (self.local_tasks - len(ranks_to_run))) > 0: |
|
logger.info(f'Skipping {skipped} already completed tasks') |
|
if self.workers == 1: |
|
pipeline = self.pipeline |
|
stats = [] |
|
for rank in ranks_to_run: |
|
self.pipeline = deepcopy(pipeline) |
|
stats.append(self._launch_run_for_rank(rank, ranks_q)) |
|
else: |
|
completed_counter = mg.Value('i', skipped) |
|
completed_lock = mg.Lock() |
|
ctx = multiprocess.get_context(self.start_method) |
|
with ctx.Pool(self.workers) as pool: |
|
stats = list(pool.imap_unordered(partial(self._launch_run_for_rank, ranks_q=ranks_q, completed=completed_counter, completed_lock=completed_lock), ranks_to_run)) |
|
stats = sum(stats, start=PipelineStats()) |
|
with self.logging_dir.open('stats.json', 'wt') as statsfile: |
|
stats.save_to_disk(statsfile) |
|
logger.success(stats.get_repr(f'All {self.local_tasks} tasks')) |
|
return stats |
|
|
|
@property |
|
def world_size(self) -> int: |
|
return self.tasks |
|
|
|
# File: datatrove-main/src/datatrove/executor/slurm.py |
|
from __future__ import annotations |
|
import json |
|
import math |
|
import os |
|
import signal |
|
import subprocess |
|
import sys |
|
import tempfile |
|
import textwrap |
|
import time |
|
from copy import deepcopy |
|
from typing import Callable |
|
import dill |
|
from dill import CONTENTS_FMODE |
|
from datatrove.executor.base import PipelineExecutor |
|
from datatrove.io import DataFolderLike |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.utils.logging import get_random_str, get_timestamp, logger |
|
|
|
def requeue_handler(signum, _frame): |
|
signame = signal.Signals(signum).name |
|
logger.warning(f'Received signal {signum} ({signame}). Requeueing and exiting...') |
|
subprocess.run(['scontrol', 'requeue', os.environ.get('SLURM_JOB_ID')]) |
|
sys.exit(15) |
|
|
|
class SlurmPipelineExecutor(PipelineExecutor): |
|
|
|
def __init__(self, pipeline: list[PipelineStep | Callable], tasks: int, time: str, partition: str, cpus_per_task: int=1, mem_per_cpu_gb: int=2, workers: int=-1, job_name: str='data_processing', qos: str='normal', env_command: str=None, condaenv: str=None, venv_path: str=None, sbatch_args: dict | None=None, max_array_size: int=1001, depends: SlurmPipelineExecutor | None=None, depends_job_id: str | None=None, logging_dir: DataFolderLike=None, skip_completed: bool=True, slurm_logs_folder: str=None, max_array_launch_parallel: bool=False, stagger_max_array_jobs: int=0, run_on_dependency_fail: bool=False, randomize_start_duration: int=0, requeue_signals: tuple[str] | None=('SIGUSR1',), mail_type: str='ALL', mail_user: str=None, requeue: bool=True, srun_args: dict=None, tasks_per_job: int=1): |
|
super().__init__(pipeline, logging_dir, skip_completed, randomize_start_duration) |
|
self.tasks = tasks |
|
self.workers = workers |
|
self.partition = partition |
|
self.cpus_per_task = cpus_per_task |
|
self.mem_per_cpu_gb = mem_per_cpu_gb |
|
self.tasks_per_job = tasks_per_job |
|
self.time = time |
|
self.job_name = job_name |
|
self.qos = qos |
|
self.env_command = env_command |
|
self.condaenv = condaenv |
|
self.venv_path = venv_path |
|
self.depends = depends |
|
self.depends_job_id = depends_job_id |
|
self._sbatch_args = sbatch_args if sbatch_args else {} |
|
self.max_array_size = max_array_size |
|
self.max_array_launch_parallel = max_array_launch_parallel |
|
self.stagger_max_array_jobs = stagger_max_array_jobs |
|
self.run_on_dependency_fail = run_on_dependency_fail |
|
self.randomize_start_duration = randomize_start_duration |
|
self.job_id = None |
|
self.requeue_signals = requeue_signals |
|
self.mail_type = mail_type |
|
self.mail_user = mail_user |
|
self.srun_args = srun_args |
|
self.slurm_logs_folder = slurm_logs_folder if slurm_logs_folder else f'slurm_logs/{self.job_name}/{get_timestamp()}_{get_random_str()}' if not self.logging_dir.is_local() else self.logging_dir.resolve_paths('slurm_logs') |
|
self.requeue = requeue |
|
|
|
def run(self): |
|
if 'SLURM_ARRAY_TASK_ID' in os.environ: |
|
slurm_rank = int(os.environ['SLURM_ARRAY_TASK_ID']) + self.max_array_size * int(os.environ.get('RUN_OFFSET', 0)) |
|
ranks_to_run_range = (slurm_rank * self.tasks_per_job, (slurm_rank + 1) * self.tasks_per_job) |
|
with self.logging_dir.open('ranks_to_run.json', 'r') as ranks_to_run_file: |
|
all_ranks = json.load(ranks_to_run_file) |
|
if ranks_to_run_range[0] >= len(all_ranks): |
|
return |
|
for ss in self.requeue_signals or []: |
|
signal.signal(signal.Signals[ss], requeue_handler) |
|
for rank_to_run in range(*ranks_to_run_range): |
|
if rank_to_run >= len(all_ranks): |
|
break |
|
rank = all_ranks[rank_to_run] |
|
self._run_for_rank(rank) |
|
else: |
|
self.launch_job() |
|
|
|
def launch_merge_stats(self): |
|
launch_slurm_job(self.get_launch_file_contents({**self.get_sbatch_args(), 'cpus-per-task': 1, 'mem-per-cpu': '1G', 'dependency': f'afterok:{self.job_id}'}, f"merge_stats {self.logging_dir.resolve_paths('stats')} -o {self.logging_dir.resolve_paths('stats.json')}")) |
|
|
|
@property |
|
def dependency(self) -> str: |
|
dependency = [] |
|
if self.depends_job_id: |
|
dependency.append(f"{('afterany' if self.run_on_dependency_fail else 'afterok')}:{self.depends_job_id}") |
|
if self.job_id and (not self.max_array_launch_parallel): |
|
dependency.append(f'afterany:{self.job_id}') |
|
return ','.join(dependency) |
|
|
|
def launch_job(self): |
|
assert not self.depends or isinstance(self.depends, SlurmPipelineExecutor), 'depends= must be a SlurmPipelineExecutor' |
|
if self.depends: |
|
if not self.depends.job_id: |
|
logger.info(f'Launching dependency job "{self.depends.job_name}"') |
|
self.depends.launch_job() |
|
if self.depends.job_id != -1: |
|
self.depends_job_id = self.depends.job_id |
|
self.depends = None |
|
ranks_to_run = self.get_incomplete_ranks() |
|
if len(ranks_to_run) == 0: |
|
logger.info(f'Skipping launch of {self.job_name} as all {self.tasks} tasks have already been completed.') |
|
self.job_id = -1 |
|
return |
|
executor = deepcopy(self) |
|
with self.logging_dir.open('executor.pik', 'wb') as executor_f: |
|
dill.dump(executor, executor_f, fmode=CONTENTS_FMODE) |
|
self.save_executor_as_json() |
|
with self.logging_dir.open('ranks_to_run.json', 'w') as ranks_to_run_file: |
|
json.dump(ranks_to_run, ranks_to_run_file) |
|
nb_jobs_to_launch = math.ceil(len(ranks_to_run) / self.tasks_per_job) |
|
max_array = min(nb_jobs_to_launch, self.max_array_size) if self.max_array_size != -1 else nb_jobs_to_launch |
|
srun_args_str = ' '.join([f'--{k}={v}' for (k, v) in self.srun_args.items()]) if self.srun_args else '' |
|
launch_file_contents = self.get_launch_file_contents(self.get_sbatch_args(max_array), f"srun {srun_args_str} -l launch_pickled_pipeline {self.logging_dir.resolve_paths('executor.pik')}") |
|
with self.logging_dir.open('launch_script.slurm', 'w') as launchscript_f: |
|
launchscript_f.write(launch_file_contents) |
|
logger.info(f'''Launching Slurm job {self.job_name} ({len(ranks_to_run)} tasks) with launch script "{self.logging_dir.resolve_paths('launch_script.slurm')}"''') |
|
launched_jobs = 0 |
|
while launched_jobs * max_array < nb_jobs_to_launch: |
|
if launched_jobs and self.max_array_launch_parallel and (self.stagger_max_array_jobs > 0): |
|
time.sleep(self.stagger_max_array_jobs) |
|
args = [f'--export=ALL,RUN_OFFSET={launched_jobs}'] |
|
if self.dependency: |
|
args.append(f'--dependency={self.dependency}') |
|
self.job_id = launch_slurm_job(launch_file_contents, *args) |
|
launched_jobs += 1 |
|
logger.info(f'Slurm job launched successfully with (last) id={self.job_id}.') |
|
self.launch_merge_stats() |
|
|
|
def get_sbatch_args(self, max_array: int=1) -> dict: |
|
os.makedirs(self.slurm_logs_folder, exist_ok=True) |
|
slurm_logfile = os.path.join(self.slurm_logs_folder, '%A_%a.out') |
|
sbatch_args = {'cpus-per-task': self.cpus_per_task, 'mem-per-cpu': f'{self.mem_per_cpu_gb}G', 'partition': self.partition, 'job-name': self.job_name, 'time': self.time, 'output': slurm_logfile, 'error': slurm_logfile, 'array': f"0-{max_array - 1}{(f'%{self.workers}' if self.workers != -1 else '')}", **({'mail-type': self.mail_type, 'mail-user': self.mail_user} if self.mail_user else {}), **self._sbatch_args} |
|
if self.requeue: |
|
sbatch_args['requeue'] = '' |
|
if self.qos: |
|
sbatch_args['qos'] = self.qos |
|
return sbatch_args |
|
|
|
def get_launch_file_contents(self, sbatch_args: dict, run_script: str) -> str: |
|
args = '\n'.join([f'#SBATCH --{k}={v}' if v else f'#SBATCH --{k}' for (k, v) in sbatch_args.items()]) |
|
env_command = self.env_command if self.env_command else f'conda init bash\n conda activate {self.condaenv}\n source ~/.bashrc' if self.condaenv else f'source {self.venv_path}' if self.venv_path else '' |
|
return '#!/bin/bash\n' + args + textwrap.dedent(f'\n echo "Starting data processing job {self.job_name}"\n {env_command}\n set -xe\n export PYTHONUNBUFFERED=TRUE\n {run_script}\n ') |
|
|
|
@property |
|
def world_size(self) -> int: |
|
return self.tasks |
|
|
|
def launch_slurm_job(launch_file_contents, *args): |
|
with tempfile.NamedTemporaryFile('w') as f: |
|
f.write(launch_file_contents) |
|
f.flush() |
|
return subprocess.check_output(['sbatch', *args, f.name]).decode('utf-8').split()[-1] |
|
|
|
# File: datatrove-main/src/datatrove/io.py |
|
import os.path |
|
from glob import has_magic |
|
from typing import IO, Callable, TypeAlias |
|
from fsspec import AbstractFileSystem |
|
from fsspec import open as fsspec_open |
|
from fsspec.callbacks import NoOpCallback, TqdmCallback |
|
from fsspec.core import get_fs_token_paths, strip_protocol, url_to_fs |
|
from fsspec.implementations.cached import CachingFileSystem |
|
from fsspec.implementations.dirfs import DirFileSystem |
|
from fsspec.implementations.local import LocalFileSystem |
|
from huggingface_hub import HfFileSystem, cached_assets_path |
|
from datatrove.utils._import_utils import check_required_dependencies |
|
from datatrove.utils.logging import logger |
|
|
|
class OutputFileManager: |
|
|
|
def __init__(self, fs, mode: str='wt', compression: str | None='infer'): |
|
self.fs = fs |
|
self.mode = mode |
|
self.compression = compression |
|
self._output_files = {} |
|
|
|
def get_file(self, filename): |
|
if filename not in self._output_files: |
|
self._output_files[filename] = self.fs.open(filename, mode=self.mode, compression=self.compression) |
|
return self._output_files[filename] |
|
|
|
def get_open_files(self): |
|
return self._output_files |
|
|
|
def pop(self, filename): |
|
file = self.get_file(filename) |
|
self._output_files.pop(filename) |
|
return file |
|
|
|
def write(self, filename, data): |
|
self.get_file(filename).write(data) |
|
|
|
def __enter__(self): |
|
return self |
|
|
|
def close(self): |
|
for file in self._output_files.values(): |
|
file.close() |
|
self._output_files.clear() |
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb): |
|
self.close() |
|
|
|
class DataFolder(DirFileSystem): |
|
|
|
def __init__(self, path: str, fs: AbstractFileSystem | None=None, auto_mkdir: bool=True, **storage_options): |
|
super().__init__(path=path, fs=fs if fs else url_to_fs(path, **storage_options)[0]) |
|
self.auto_mkdir = auto_mkdir |
|
|
|
def list_files(self, subdirectory: str='', recursive: bool=True, glob_pattern: str | None=None, include_directories: bool=False) -> list[str]: |
|
if glob_pattern and (not has_magic(glob_pattern)): |
|
glob_pattern = f'*{glob_pattern}' |
|
extra_options = {} |
|
if isinstance(_get_true_fs(self.fs), HfFileSystem): |
|
extra_options['expand_info'] = False |
|
if include_directories and (not glob_pattern): |
|
extra_options['withdirs'] = True |
|
return sorted([f for (f, info) in (self.find(subdirectory, maxdepth=1 if not recursive else None, detail=True, **extra_options) if not glob_pattern else self.glob(self.fs.sep.join([subdirectory, glob_pattern]) if subdirectory else glob_pattern, maxdepth=1 if not recursive else None, detail=True, **extra_options)).items() if include_directories or info['type'] != 'directory']) |
|
|
|
def get_shard(self, rank: int, world_size: int, **kwargs) -> list[str]: |
|
return self.list_files(**kwargs)[rank::world_size] |
|
|
|
def resolve_paths(self, paths) -> list[str] | str: |
|
if isinstance(paths, str): |
|
if isinstance(self.fs, LocalFileSystem): |
|
return self.fs._strip_protocol(self._join(paths)) |
|
return self.fs.unstrip_protocol(self._join(paths)) |
|
return list(map(self.resolve_paths, paths)) |
|
|
|
def get_output_file_manager(self, **kwargs) -> OutputFileManager: |
|
return OutputFileManager(self, **kwargs) |
|
|
|
def open_files(self, paths, mode='rb', **kwargs): |
|
return [self.open(path, mode=mode, **kwargs) for path in paths] |
|
|
|
def open(self, path, mode='rb', *args, **kwargs): |
|
if self.auto_mkdir and ('w' in mode or 'a' in mode): |
|
self.fs.makedirs(self.fs._parent(self._join(path)), exist_ok=True) |
|
return super().open(path, *args, mode=mode, **kwargs) |
|
|
|
def is_local(self): |
|
return isinstance(self.fs, LocalFileSystem) |
|
|
|
def get_datafolder(data: DataFolder | str | tuple[str, dict] | tuple[str, AbstractFileSystem]) -> DataFolder: |
|
if isinstance(data, DataFolder): |
|
return data |
|
if isinstance(data, str): |
|
return DataFolder(data) |
|
if isinstance(data, tuple) and isinstance(data[0], str) and isinstance(data[1], dict): |
|
return DataFolder(data[0], **data[1]) |
|
if isinstance(data, tuple) and isinstance(data[0], str) and isinstance(data[1], AbstractFileSystem): |
|
return DataFolder(data[0], fs=data[1]) |
|
raise ValueError('You must pass a DataFolder instance, a str path, a (str path, fs_init_kwargs) or (str path, fs object)') |
|
|
|
def open_file(file: IO | str, mode='rt', **kwargs): |
|
if isinstance(file, str): |
|
return fsspec_open(file, mode, **kwargs) |
|
return file |
|
|
|
def file_exists(path: str): |
|
(fs, a, fpath) = get_fs_token_paths(path) |
|
return fs.exists(fpath[0]) |
|
|
|
def download_file(remote_path: str, local_path: str, progress: bool=True): |
|
(fs, _, paths) = get_fs_token_paths(remote_path) |
|
fs.get_file(paths[0], local_path, callback=TqdmCallback(tqdm_kwargs={'desc': f'↓ Downloading {os.path.basename(remote_path)}', 'unit': 'B', 'unit_scale': True, 'unit_divisor': 1024, 'miniters': 1}) if progress else NoOpCallback()) |
|
|
|
def safely_create_file(file_to_lock: str, do_processing: Callable): |
|
check_required_dependencies('io', ['fasteners']) |
|
from fasteners import InterProcessLock |
|
completed_file = f'{file_to_lock}.completed' |
|
if os.path.exists(completed_file): |
|
return |
|
with InterProcessLock(f'{file_to_lock}.lock'): |
|
if not os.path.exists(completed_file): |
|
do_processing() |
|
open(completed_file, 'a').close() |
|
|
|
def cached_asset_path_or_download(remote_path: str, progress: bool=True, namespace: str='default', subfolder: str='default', desc: str='file'): |
|
download_dir = cached_assets_path(library_name='datatrove', namespace=namespace, subfolder=subfolder) |
|
local_path = os.path.join(download_dir, strip_protocol(remote_path).replace('/', '_')) |
|
|
|
def do_download_file(): |
|
logger.info(f'⬇️ Downloading {desc} from "{remote_path}"...') |
|
download_file(remote_path, local_path, progress) |
|
logger.info(f'⬇️ Downloaded {desc} to "{local_path}".') |
|
safely_create_file(local_path, do_download_file) |
|
return local_path |
|
DataFolderLike: TypeAlias = str | tuple[str, dict] | DataFolder |
|
DataFileLike: TypeAlias = str | tuple[str, dict] |
|
|
|
def get_shard_from_paths_file(paths_file: DataFileLike, rank: int, world_size): |
|
kwargs = {} |
|
if isinstance(paths_file, tuple): |
|
(paths_file, kwargs) = paths_file |
|
with open_file(paths_file, mode='rt', **kwargs) as f: |
|
for (pathi, path) in enumerate(f): |
|
if (pathi - rank) % world_size == 0: |
|
yield path.strip() |
|
|
|
def _get_true_fs(fs: AbstractFileSystem): |
|
if isinstance(fs, CachingFileSystem): |
|
return fs.fs |
|
return fs |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/base.py |
|
from abc import ABC, abstractmethod |
|
from itertools import chain |
|
from datatrove.data import Document, DocumentsPipeline |
|
from datatrove.utils._import_utils import check_required_dependencies |
|
from datatrove.utils.stats import Stats |
|
|
|
class PipelineStep(ABC): |
|
name: str = None |
|
type: str = None |
|
|
|
def __new__(cls, *args, **kwargs): |
|
required_dependencies = chain.from_iterable((getattr(t, '_requires_dependencies', []) for t in cls.mro())) |
|
if required_dependencies: |
|
check_required_dependencies(cls.__name__, required_dependencies) |
|
return super().__new__(cls) |
|
|
|
def __init__(self): |
|
super().__init__() |
|
self.stats = Stats(str(self)) |
|
|
|
def stat_update(self, *labels, value: int=1, unit: str=None): |
|
for label in labels: |
|
self.stats[label].update(value, unit) |
|
|
|
def update_doc_stats(self, document: Document): |
|
self.stat_update('doc_len', value=len(document.text), unit='doc') |
|
if (token_count := document.metadata.get('token_count', None)): |
|
self.stat_update('doc_len_tokens', value=token_count, unit='doc') |
|
|
|
def track_time(self, unit: str=None): |
|
if unit: |
|
self.stats.time_stats.unit = unit |
|
return self.stats.time_stats |
|
|
|
def __repr__(self): |
|
return f'{self.type}: {self.name}' |
|
|
|
@abstractmethod |
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
if data: |
|
yield from data |
|
|
|
def __call__(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
return self.run(data, rank, world_size) |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/decont/n_grams.py |
|
"""""" |
|
import os |
|
from collections import defaultdict |
|
from concurrent.futures import ThreadPoolExecutor |
|
from dataclasses import dataclass, field |
|
from typing import Tuple |
|
import numpy as np |
|
from datatrove.data import Document, DocumentsPipeline |
|
from datatrove.io import DataFolderLike, file_exists, get_datafolder, open_file |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.pipeline.filters.base_filter import BaseFilter |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
from datatrove.utils.binaryio import read_np_from_file |
|
from datatrove.utils.hashing import HashConfig, create_hash_func |
|
from datatrove.utils.logging import logger |
|
from datatrove.utils.text import TextNormConfig, ngrams, simplify_text |
|
from datatrove.utils.typeshelper import Languages |
|
from datatrove.utils.word_tokenizers import load_word_tokenizer |
|
|
|
@dataclass |
|
class NGramsDecontConfig: |
|
n_grams: int = 12 |
|
find_query_ngrams: bool = False |
|
find_overlap_ngrams: bool = True |
|
norm_config: TextNormConfig = field(default_factory=TextNormConfig) |
|
hash_config: HashConfig = field(default_factory=HashConfig) |
|
|
|
class NGramsDecontIndexer(PipelineStep): |
|
type = '🦠 - DECONT' |
|
name = '💥 N-grams build index' |
|
_requires_dependencies = ['lighteval'] |
|
|
|
def __init__(self, output_folder: DataFolderLike, lighteval_tasks: str | list[str] | None=None, custom_lighteval_tasks: str | None=None, config: NGramsDecontConfig=None, language: str=Languages.english): |
|
super().__init__() |
|
self.output_folder = get_datafolder(output_folder) |
|
if isinstance(lighteval_tasks, str): |
|
if file_exists(lighteval_tasks): |
|
with open_file(lighteval_tasks, 'rt') as f: |
|
self.lighteval_tasks = f.read().strip().splitlines() |
|
else: |
|
self.lighteval_tasks = [lighteval_tasks] |
|
else: |
|
self.lighteval_tasks = lighteval_tasks |
|
self.custom_lighteval_tasks = custom_lighteval_tasks |
|
self.config = config or NGramsDecontConfig() |
|
self.tokenizer = load_word_tokenizer(language) |
|
self.hash_func = create_hash_func(self.config.hash_config) |
|
|
|
def compute_hashes(self, label: str, query: str | None=None) -> list[int]: |
|
label_tokens = self.tokenizer.word_tokenize(simplify_text(label, self.config.norm_config)) |
|
ngrams_to_compute = list(ngrams(label_tokens, self.config.n_grams)) |
|
if query is not None: |
|
query_tokens = self.tokenizer.word_tokenize(simplify_text(query, self.config.norm_config)) |
|
if self.config.find_query_ngrams: |
|
ngrams_to_compute.extend(ngrams(query_tokens, self.config.n_grams)) |
|
if self.config.find_overlap_ngrams: |
|
'' |
|
ngrams_to_compute.extend([query_tokens[-self.config.n_grams + 1 + i:] + label_tokens[:i + 1] for i in range(self.config.n_grams - 1) if len(query_tokens) >= self.config.n_grams - 1 - i and len(label_tokens) >= i + 1]) |
|
return list(map(self.hash_func, map(' '.join, ngrams_to_compute))) |
|
|
|
def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1): |
|
if world_size != 1: |
|
raise ValueError('Decontamination index building requires a single worker.') |
|
hashes = defaultdict(set) |
|
if data: |
|
for doc in data: |
|
if not self.config.find_query_ngrams and 'query' not in doc.metadata: |
|
raise ValueError("only_label_ngrams is False but could not find 'query' field in documents metadata") |
|
hashes[doc.metadata.get('task', 'input')].update(self.compute_hashes(doc.text, doc.metadata.get('query', None))) |
|
from lighteval.tasks.lighteval_task import LightevalTask |
|
from lighteval.tasks.registry import Registry |
|
task_dict = Registry(cache_dir=os.getenv('HF_HOME')).get_task_dict(self.lighteval_tasks, custom_tasks=self.custom_lighteval_tasks) |
|
LightevalTask.load_datasets(task_dict.values()) |
|
for (task_name, task) in task_dict.items(): |
|
for eval_doc in task.eval_docs(): |
|
try: |
|
golds = eval_doc.get_golds() |
|
query = eval_doc.query |
|
except Exception as e: |
|
logger.warning(f'Error while fetching doc data: {e}') |
|
continue |
|
for gold in golds: |
|
hashes[task_name].update(self.compute_hashes(gold, query)) |
|
for (task_name, task_hashes) in hashes.items(): |
|
hashes_array = np.array(list(task_hashes), dtype=self.config.hash_config.np_descr) |
|
logger.info(f'Saving {len(task_hashes)} hashes for {task_name}') |
|
with self.output_folder.open(f"{task_name.replace(' ', '_')}.index.hashes", mode='wb') as f: |
|
if self.output_folder.is_local(): |
|
hashes_array.tofile(f) |
|
else: |
|
f.write(hashes_array.tobytes()) |
|
|
|
class NGramsDecontFilter(BaseFilter): |
|
type = '🦠 - DECONT' |
|
name = '💥 N-grams decontaminate' |
|
|
|
def __init__(self, index_folder: DataFolderLike, config: NGramsDecontConfig=None, exclusion_writer: DiskWriter=None, language: str=Languages.english): |
|
super().__init__() |
|
self.index_folder = get_datafolder(index_folder) |
|
self.config = config or NGramsDecontConfig() |
|
self.exclusion_writer = exclusion_writer |
|
self.language = language |
|
self._index_hashes = None |
|
self.hash_func = create_hash_func(self.config.hash_config) |
|
self.tokenizer = load_word_tokenizer(language) |
|
|
|
def load_index_hashes(self): |
|
|
|
def load_index_from_file(file): |
|
with self.index_folder.open(file, mode='rb') as f: |
|
return (file, read_np_from_file(f, np.dtype(self.config.hash_config.np_descr), self.index_folder.is_local()).tolist()) |
|
with ThreadPoolExecutor() as pool: |
|
hashes = pool.map(load_index_from_file, self.index_folder.list_files()) |
|
self._index_hashes = {} |
|
for (filename, hashlist) in hashes: |
|
taskname = filename.removesuffix('.index.hashes') |
|
logger.info(f'Loading {len(hashlist)} hashes for {taskname}') |
|
for hash in hashlist: |
|
self._index_hashes[hash] = taskname |
|
|
|
def filter(self, doc: Document) -> bool | Tuple[bool, str]: |
|
if self._index_hashes is None: |
|
self.load_index_hashes() |
|
text_tokens = self.tokenizer.word_tokenize(simplify_text(doc.text, self.config.norm_config)) |
|
ngrams_to_compute = list(ngrams(text_tokens, self.config.n_grams)) |
|
for n_gram in map(' '.join, ngrams_to_compute): |
|
task = self._index_hashes.get(self.hash_func(n_gram), None) |
|
if task is not None: |
|
doc.metadata['contaminated_ngram'] = n_gram |
|
doc.metadata['contaminated_task'] = task |
|
self.stat_update(f'contaminated_{task}') |
|
if ':' in task: |
|
self.stat_update(f"contaminated_tg_{task[:task.index(':')]}") |
|
return (False, 'contaminated') |
|
return True |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/dedup/__init__.py |
|
from .bloom_filter import SingleBloomFilter |
|
from .exact_substrings import ESDatasetToSequence, ESMergeSequences, ESRangeRemover |
|
from .minhash import MinhashBuildIndex, MinhashConfig, MinhashDedupBuckets, MinhashDedupCluster, MinhashDedupFilter, MinhashDedupSignature |
|
from .sentence_dedup import SentDedupConfig, SentenceDedupFilter, SentenceDedupSignature, SentenceFindDedups |
|
from .url_dedup import UrlDedupConfig, UrlDedupFilter, UrlDedupSignature, UrlFindDedups |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/dedup/bloom_filter.py |
|
import contextlib |
|
import math |
|
from dataclasses import dataclass, field |
|
import numpy as np |
|
from datatrove.data import Document, DocumentsPipeline |
|
from datatrove.io import DataFolderLike, get_datafolder |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
from datatrove.utils.hashing import HashConfig, create_hash_func |
|
from datatrove.utils.logging import logger |
|
from datatrove.utils.text import TextNormConfig, ngrams, simplify_text |
|
from datatrove.utils.typeshelper import Languages, StatHints |
|
from datatrove.utils.word_tokenizers import load_word_tokenizer |
|
_mersenne_prime = np.uint64((1 << 61) - 1) |
|
MAX_HASH = 1 << 32 - 1 |
|
|
|
@dataclass |
|
class BloomFilterConfig: |
|
m_bytes: int |
|
k: int = None |
|
expected_elements: int = None |
|
duplicate_threshold: float = 0.8 |
|
n_grams: int = 13 |
|
seed: int = 0 |
|
norm_config: TextNormConfig = field(default_factory=TextNormConfig) |
|
hash_config: HashConfig = field(default_factory=lambda : HashConfig(precision=32)) |
|
|
|
@property |
|
def m(self): |
|
return self.m_bytes * 8 |
|
|
|
def __post_init__(self): |
|
if self.k is None: |
|
self.k = get_optimal_k(self.m, expected_elements=self.expected_elements) |
|
|
|
def get_optimal_k(size_in_bytes: int, expected_elements: int) -> int: |
|
assert expected_elements, f'if expected_elements={expected_elements!r} then k must be given' |
|
m = size_in_bytes * 8 |
|
k = m / expected_elements * np.log(2) |
|
return math.ceil(k) |
|
|
|
def get_false_positive_prob(size_in_bytes: int, n: int, k: int) -> float: |
|
m = size_in_bytes * 8 |
|
return (1.0 - (1.0 - 1.0 / m) ** (k * n)) ** k |
|
|
|
class SingleBloomFilter(PipelineStep): |
|
type = '🫂 - DEDUPS' |
|
name = '\U0001fab7 Bloom-filter' |
|
|
|
def __init__(self, output_folder: DataFolderLike, config: BloomFilterConfig, save_bloom_filter: bool=False, exclusion_writer: DiskWriter=None, language: str=Languages.english): |
|
super().__init__() |
|
self.output_folder = get_datafolder(output_folder) |
|
self.tokenizer = load_word_tokenizer(language) |
|
self.config = config |
|
self.bit_vector = bytearray([0] * self.config.m_bytes) |
|
self.save_bloom_filter = save_bloom_filter |
|
self.exclusion_writer = exclusion_writer |
|
assert self.config.hash_config.precision == 32, 'Bloom filter only supports 32-bit hashes' |
|
self.hash_fc = create_hash_func(self.config.hash_config) |
|
assert self.config.m < MAX_HASH |
|
self.total_shingles = 0 |
|
self._parameters = None |
|
assert self.config.m_bytes < MAX_HASH, f'MAX_HASH={MAX_HASH!r} is smaller than self.config.m_bytes={self.config.m_bytes!r}' |
|
if self.config.expected_elements: |
|
fp = get_false_positive_prob(self.config.m_bytes, n=self.config.expected_elements, k=self.config.k) |
|
if fp > 0.05: |
|
logger.warning(f'False probability = {fp:.3}') |
|
else: |
|
logger.info(f'False probability = {fp:.3}') |
|
self.language = language |
|
|
|
@property |
|
def parameters(self): |
|
if self._parameters is None: |
|
gen = np.random.RandomState(self.config.seed) |
|
self._parameters = (gen.randint(1, _mersenne_prime, dtype=np.uint64, size=(1, self.config.k)), gen.randint(0, _mersenne_prime, dtype=np.uint64, size=(1, self.config.k))) |
|
return self._parameters |
|
|
|
def get_shingles(self, text: str) -> np.ndarray: |
|
return np.fromiter([self.hash_fc(' '.join(x)) for x in ngrams(self.tokenizer.word_tokenize(simplify_text(text, self.config.norm_config)), self.config.n_grams)], dtype=np.uint64).reshape((-1, 1)) |
|
|
|
def get_indexes(self, shingles: np.ndarray) -> list[list[int]]: |
|
(a, b) = self.parameters |
|
phv = np.bitwise_and((shingles * a + b) % _mersenne_prime, self.config.m_bytes) |
|
return phv.tolist() |
|
|
|
def update_bf(self, indexes: list[int]): |
|
for index in indexes: |
|
(byte_index, bit_index) = divmod(index, 8) |
|
mask = 1 << bit_index |
|
self.bit_vector[byte_index] |= mask |
|
|
|
def query(self, indexes: list[int]) -> bool: |
|
for idx in indexes: |
|
(byte_index, bit_index) = divmod(idx, 8) |
|
mask = 1 << bit_index |
|
if self.bit_vector[byte_index] & mask == 0: |
|
return False |
|
return True |
|
|
|
def step(self, doc: Document) -> bool: |
|
shingles = self.get_shingles(doc.text) |
|
self.total_shingles += shingles.size |
|
if shingles.size == 0: |
|
return True |
|
shingle_indexes = self.get_indexes(shingles) |
|
duplicate_shingles = 0 |
|
indexes_to_update = [] |
|
for indexes in shingle_indexes: |
|
if self.query(indexes): |
|
duplicate_shingles += 1 |
|
else: |
|
indexes_to_update.extend(indexes) |
|
self.update_bf(indexes_to_update) |
|
if duplicate_shingles / len(shingles) > self.config.duplicate_threshold: |
|
self.stat_update(StatHints.dropped) |
|
return False |
|
return True |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1): |
|
with self.exclusion_writer if self.exclusion_writer else contextlib.nullcontext() as writer: |
|
for (doc_idx, doc) in enumerate(data): |
|
with self.track_time(): |
|
self.stat_update(StatHints.total) |
|
if not self.step(doc): |
|
self.stat_update(StatHints.dropped) |
|
if self.exclusion_writer: |
|
writer.write(doc, rank) |
|
continue |
|
self.stat_update(StatHints.forwarded) |
|
yield doc |
|
if self.save_bloom_filter: |
|
with self.output_folder.open('bloom_filter.bloom', mode='wb') as f: |
|
f.write(self.bit_vector) |
|
logger.info(f'self.total_shingles={self.total_shingles!r}') |
|
logger.info(f'False probability = {get_false_positive_prob(self.config.m_bytes, n=self.total_shingles, k=self.config.k):.3}') |
|
logger.info(f'Optimal K given total shingles = {get_optimal_k(self.config.m_bytes, self.total_shingles)}') |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/dedup/exact_substrings.py |
|
"""""" |
|
import struct |
|
from typing import BinaryIO, Generator |
|
import numpy as np |
|
from datatrove.io import DataFolderLike, get_datafolder |
|
from datatrove.pipeline.base import DocumentsPipeline, PipelineStep |
|
from datatrove.utils.logging import logger |
|
from ...utils.tokenization import PipelineStepWithTokenizer |
|
from ...utils.typeshelper import ExtensionHelperES as EH |
|
from ...utils.typeshelper import Languages |
|
from ...utils.word_tokenizers import load_word_tokenizer |
|
SEPARATOR_BYTES = 12 |
|
|
|
def prepare_doc(tokenizer, doc: str, rank: int, doc_id: int): |
|
tokens = tokenizer.encode(doc).ids |
|
tokens = np.fromiter(tokens, dtype=np.uint16, count=len(tokens)) |
|
b_doc = b'\xff\xff' + struct.pack('<I', doc_id) + b'\xff\xff' + struct.pack('<I', rank) + tokens.tobytes() |
|
return b_doc |
|
|
|
class ESDatasetToSequence(PipelineStepWithTokenizer): |
|
type = '🫂 - DEDUP' |
|
name = '🪞 - exact-substrings stage 1' |
|
|
|
def __init__(self, output_folder: DataFolderLike, tokenizer_name_or_path: str='gpt2'): |
|
super().__init__() |
|
self.output_folder = get_datafolder(output_folder) |
|
self.tokenizer_name_or_path = tokenizer_name_or_path |
|
|
|
def save_sizes(self, doc_lens: list[int], rank: int): |
|
with self.output_folder.open(f'{rank:05d}{EH.stage_1_sequence_size}', mode='wb') as f_lens: |
|
f_lens.write(struct.pack('Q' * len(doc_lens), *doc_lens)) |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1): |
|
doc_lens = [] |
|
with self.output_folder.open(f'{rank:05d}{EH.stage_1_sequence}', mode='wb') as f_sequence: |
|
i = -1 |
|
for (i, doc) in enumerate(data): |
|
with self.stats.time_stats: |
|
b_doc = prepare_doc(tokenizer=self.tokenizer, doc=doc.text, rank=rank, doc_id=i) |
|
doc_lens.append(len(b_doc)) |
|
f_sequence.write(b_doc) |
|
assert i < 2 ** 32, 'doc ID overflow' |
|
assert i + 1 == len(doc_lens), f'i={i!r} but len(doc_lens)={len(doc_lens)!r}' |
|
self.save_sizes(doc_lens, rank) |
|
|
|
class ESMergeSequences(PipelineStep): |
|
type = '🫂 - DEDUP' |
|
name = '🪞 - exact-substrings stage 2' |
|
|
|
def __init__(self, data_folder: DataFolderLike, tasks_stage_1: int, bytes_per_batch: int=int(500000000.0)): |
|
super().__init__() |
|
self.data_folder = get_datafolder(data_folder) |
|
self.tasks_stage_1 = tasks_stage_1 |
|
self.bytes_per_batch = bytes_per_batch |
|
|
|
def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1): |
|
bytes_per_sequence = [0] |
|
with self.stats.time_stats: |
|
assert world_size == 1, f"world_size={world_size!r} can't be greater than 1!" |
|
all_files: list[str] = self.data_folder.list_files(glob_pattern=EH.stage_1_sequence) |
|
assert len(all_files) == self.tasks_stage_1 |
|
with self.data_folder.open(f'dataset{EH.stage_2_big_sequence}', mode='wb') as f_sequence: |
|
for file in all_files: |
|
len_sequence = 0 |
|
with self.data_folder.open(file, 'rb') as f: |
|
while True: |
|
sequence = f.read(self.bytes_per_batch) |
|
f_sequence.write(sequence) |
|
len_sequence += len(sequence) |
|
if len(sequence) != self.bytes_per_batch: |
|
break |
|
bytes_per_sequence.append(bytes_per_sequence[-1] + len_sequence) |
|
with self.data_folder.open(f'bytes_offsets{EH.stage_2_bytes_offset}', mode='wb') as f_bytes: |
|
f_bytes.write(np.array([bytes_per_sequence], np.uint32).tobytes()) |
|
|
|
def read_bytes(x): |
|
return np.frombuffer(x[SEPARATOR_BYTES:], dtype=np.uint16).tolist() |
|
|
|
def sequence_reader(file: BinaryIO, size_file: BinaryIO) -> Generator[list, None, None]: |
|
with size_file as f_size: |
|
with file as f: |
|
while True: |
|
n_bytes = f_size.read(struct.calcsize('<Q')) |
|
if len(n_bytes) == 0: |
|
break |
|
assert len(n_bytes) == 8 |
|
n_bytes = struct.unpack('<Q', n_bytes)[0] |
|
yield f.read(n_bytes) |
|
|
|
class ESRangeRemover(PipelineStepWithTokenizer): |
|
type = '🫂 - DEDUP' |
|
name = '🪞 - exact-substrings stage 3' |
|
|
|
def __init__(self, sequence_folder: DataFolderLike, tokenizer_name_or_path: str='gpt2', min_doc_words: int=50, language: str=Languages.english): |
|
super().__init__() |
|
self.sequence_folder = get_datafolder(sequence_folder) |
|
self.tokenizer_name_or_path = tokenizer_name_or_path |
|
self.min_doc_words = min_doc_words |
|
self.sequence_bytes_offset = None |
|
self.dup_ranges = None |
|
self.rank = None |
|
self.exhausted_ranges = False |
|
self.bytes_counter = 0 |
|
self.range_idx = 0 |
|
self.language = language |
|
self.word_tokenizer = load_word_tokenizer(language) |
|
|
|
def reset(self): |
|
self.bytes_counter = 0 |
|
self.range_idx = 0 |
|
self.exhausted_ranges = False |
|
self.sequence_bytes_offset = None |
|
self.dup_ranges = None |
|
self.rank = None |
|
|
|
def get_sequence_bytes_offset(self): |
|
offset_array_file: str = self.sequence_folder.list_files(glob_pattern=EH.stage_2_bytes_offset)[0] |
|
with self.sequence_folder.open(offset_array_file, 'rb') as f: |
|
offset_array = f.read() |
|
self.sequence_bytes_offset = np.frombuffer(offset_array, dtype=np.uint32) |
|
logger.info(f'self.rank={self.rank!r}, -> self.sequence_bytes_offset[self.rank]={self.sequence_bytes_offset[self.rank]!r}') |
|
|
|
def get_bytearange(self, bytes_range_file: BinaryIO): |
|
with bytes_range_file as f: |
|
dup_ranges = f.read() |
|
dup_ranges = dup_ranges.split('\n') |
|
i = 0 |
|
for (i, x) in enumerate(dup_ranges): |
|
if x == 'out': |
|
break |
|
dup_ranges = dup_ranges[i + 1:-1] |
|
rank_dup_ranges = [] |
|
for br in dup_ranges: |
|
(a, b) = br.split(' ') |
|
(a, b) = (int(a), int(b)) |
|
if b > self.sequence_bytes_offset[self.rank + 1] + SEPARATOR_BYTES: |
|
break |
|
if b > self.sequence_bytes_offset[self.rank] + SEPARATOR_BYTES: |
|
(a, b) = (a - self.sequence_bytes_offset[self.rank], b - self.sequence_bytes_offset[self.rank]) |
|
rank_dup_ranges.append((a, b)) |
|
self.dup_ranges = rank_dup_ranges |
|
|
|
def get_all_files(self, rank: int, world_size: int): |
|
self.get_sequence_bytes_offset() |
|
sequence_file = self.sequence_folder.get_shard(rank, world_size, glob_pattern=EH.stage_1_sequence) |
|
docs_sizes_file = self.sequence_folder.get_shard(rank, world_size, glob_pattern=EH.stage_1_sequence_size) |
|
byte_range_file = self.sequence_folder.list_files(glob_pattern=EH.stage_3_bytes_ranges) |
|
assert all([len(sequence_file) == 1, len(docs_sizes_file) == 1, len(byte_range_file) == 1]), f'Need to run with n_tasks = n_files. len(sequence_file)={len(sequence_file)!r}, len(sequence_file)={len(sequence_file)!r}, len(byte_range_file)={len(byte_range_file)!r}' |
|
(sequence_file, docs_sizes_file, byte_range_file) = (sequence_file[0], docs_sizes_file[0], byte_range_file[0]) |
|
self.get_bytearange(self.sequence_folder.open(byte_range_file, 'rt')) |
|
return (sequence_file, docs_sizes_file) |
|
|
|
def normalize_range(self, a, b, bytes_len): |
|
(a, b) = (a - self.bytes_counter, b - self.bytes_counter) |
|
a = max(SEPARATOR_BYTES, a) |
|
b = min(bytes_len, b) |
|
assert SEPARATOR_BYTES <= a < b <= bytes_len, f'SEPARATOR_BYTES={SEPARATOR_BYTES!r} < a={a!r} < b={b!r} < bytes_len={bytes_len!r} is NOT satisfied' |
|
if b % 2 == 1: |
|
b -= 1 |
|
if a % 2 == 1: |
|
a += 1 |
|
b = max(a, b) |
|
return (a, b) |
|
|
|
def get_duplicate_range(self, bytes_len: int): |
|
ranges = [] |
|
upper_limit = self.bytes_counter + bytes_len + SEPARATOR_BYTES |
|
if self.exhausted_ranges: |
|
return ranges |
|
while True: |
|
(a, b) = (self.dup_ranges[self.range_idx][0], self.dup_ranges[self.range_idx][1]) |
|
left = a < self.bytes_counter and self.bytes_counter + SEPARATOR_BYTES < b <= upper_limit |
|
centre = self.bytes_counter <= a < b <= upper_limit |
|
right = self.bytes_counter <= a < upper_limit - SEPARATOR_BYTES and upper_limit < b |
|
outside = a < self.bytes_counter < upper_limit < b |
|
if not any([left, centre, right, outside]): |
|
break |
|
assert sum([left, centre, right, outside]) == 1, f'left={left!r}, centre={centre!r}, right={right!r}, outside={outside!r}' |
|
if left: |
|
self.range_idx += 1 |
|
a = self.bytes_counter |
|
if centre: |
|
self.range_idx += 1 |
|
if right: |
|
ranges.append(self.normalize_range(a, upper_limit, bytes_len)) |
|
break |
|
if outside: |
|
ranges.append(self.normalize_range(self.bytes_counter, upper_limit, bytes_len)) |
|
break |
|
ranges.append(self.normalize_range(a, b, bytes_len)) |
|
if self.range_idx == len(self.dup_ranges): |
|
self.exhausted_ranges = True |
|
break |
|
return ranges |
|
|
|
def remove_duplicate(self, doc, bytes_content): |
|
n_bytes = len(bytes_content) |
|
duplicates_ranges = self.get_duplicate_range(n_bytes) |
|
duplicates = [] |
|
for (byte_a, byte_b) in duplicates_ranges: |
|
dup_sentence = self.tokenizer.decode(np.frombuffer(bytes_content[byte_a:byte_b], dtype=np.uint16).tolist()) |
|
duplicates.append(dup_sentence) |
|
if duplicates: |
|
text = doc.text |
|
for d in duplicates: |
|
text = text.replace(d, '') |
|
doc.text = text |
|
self.bytes_counter += len(bytes_content) |
|
if len(self.word_tokenizer.word_tokenize(doc.text)) < self.min_doc_words: |
|
return False |
|
return True |
|
|
|
def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
self.reset() |
|
self.rank = rank |
|
(sequence_file, size_file) = self.get_all_files(rank=self.rank, world_size=world_size) |
|
if not self.dup_ranges: |
|
return |
|
for (doc, doc_content) in zip(data, sequence_reader(self.sequence_folder.open(sequence_file, 'rb'), self.sequence_folder.open(size_file, 'rb'))): |
|
with self.stats.time_stats: |
|
assert doc.text == self.tokenizer.decode(read_bytes(doc_content), skip_special_tokens=False), f'{doc.text}\n\n{self.tokenizer.decode(read_bytes(doc_content))}' |
|
to_yield = self.remove_duplicate(doc, doc_content) |
|
if to_yield: |
|
self.update_doc_stats(doc) |
|
yield doc |
|
assert self.bytes_counter == self.sequence_bytes_offset[rank + 1] - self.sequence_bytes_offset[rank], f'got self.bytes_counter={self.bytes_counter!r}, expected = {self.sequence_bytes_offset[rank + 1] - self.sequence_bytes_offset[rank]}' |
|
assert self.exhausted_ranges, 'One or more duplicate ranges have not been used' |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/dedup/minhash.py |
|
import contextlib |
|
import heapq |
|
import os |
|
import re |
|
import struct |
|
from dataclasses import dataclass, field |
|
from pathlib import Path |
|
from typing import Generator |
|
import numpy as np |
|
from fsspec.spec import AbstractBufferedFile |
|
from datatrove.data import DocumentsPipeline |
|
from datatrove.io import DataFolderLike, get_datafolder |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
from datatrove.utils.binaryio import read_tuples_from_file, seek_to_start |
|
from datatrove.utils.hashing import HashConfig, create_hash_func |
|
from datatrove.utils.logging import logger |
|
from datatrove.utils.text import TextNormConfig, ngrams, simplify_text |
|
from datatrove.utils.typeshelper import Languages, StatHints |
|
from datatrove.utils.word_tokenizers import load_word_tokenizer |
|
_mersenne_prime = np.uint64((1 << 61) - 1) |
|
'' |
|
SENTINEL = (1 << 32) - 1 |
|
|
|
@dataclass |
|
class MinhashConfig: |
|
n_grams: int = 5 |
|
num_buckets: int = 14 |
|
hashes_per_bucket: int = 8 |
|
seed: int = 1 |
|
norm_config: TextNormConfig = field(default_factory=TextNormConfig) |
|
hash_config: HashConfig = field(default_factory=HashConfig) |
|
|
|
def __str__(self): |
|
return f'{self.n_grams}ng_{self.num_buckets}bs_{self.hashes_per_bucket}hs_{self.hash_config}' |
|
|
|
@dataclass(order=True) |
|
class HashSig: |
|
sig: tuple[int] |
|
file_id: int |
|
file_stem: str |
|
doc_id: int |
|
reader_id: int |
|
|
|
def is_from_index(self): |
|
return self.reader_id != self.file_id |
|
|
|
def read_sigs(file: AbstractBufferedFile, reader_id: int, config: MinhashConfig, index_file: bool=False, min_hash: int=0, max_hash: int=_mersenne_prime, ensure_order: bool=True, lines_to_buffer: int=5) -> Generator: |
|
line_format = f"{config.hashes_per_bucket}{config.hash_config.struct_format}{('I' if not index_file else '')}" |
|
with file as f: |
|
if f.size == 0: |
|
return |
|
seek_to_start(f, min_hash, line_format, config.hash_config.struct_format) |
|
last = None |
|
file_stem = Path(file.path).name.removesuffix('.minhash.sig') |
|
for data in read_tuples_from_file(f, line_format, lines_to_buffer=lines_to_buffer): |
|
sigdata = data if index_file else data[:-1] |
|
assert sigdata[0] >= min_hash and (ensure_order is False or last is None or sigdata >= last), f'Hash order error. f.tell()={f.tell()!r}, min_hash={min_hash!r}, sigdata={sigdata!r}, last={last!r}' |
|
if sigdata[0] >= max_hash: |
|
break |
|
last = sigdata |
|
yield (HashSig(sig=sigdata, doc_id=-1, file_id=-1, reader_id=reader_id, file_stem=file_stem) if index_file else HashSig(sig=sigdata, doc_id=data[-1], file_id=reader_id, reader_id=reader_id, file_stem=file_stem)) |
|
|
|
class MinhashDedupSignature(PipelineStep): |
|
type = '🫂 - DEDUP' |
|
name = '🎯 MinHash stage 1' |
|
|
|
def __init__(self, output_folder: DataFolderLike, config: MinhashConfig=None, language: str=Languages.english): |
|
super().__init__() |
|
self.output_folder = get_datafolder(output_folder) |
|
self.config = config or MinhashConfig() |
|
self.num_hashes = self.config.num_buckets * self.config.hashes_per_bucket |
|
self._parameters = None |
|
self._hash_func = create_hash_func(self.config.hash_config) |
|
self.language = language |
|
self.word_tokenizer = load_word_tokenizer(language) |
|
|
|
@property |
|
def parameters(self): |
|
if self._parameters is None: |
|
gen = np.random.RandomState(self.config.seed) |
|
self._parameters = (gen.randint(1, _mersenne_prime, dtype=np.uint64, size=(1, self.num_hashes)), gen.randint(0, _mersenne_prime, dtype=np.uint64, size=(1, self.num_hashes))) |
|
return self._parameters |
|
|
|
def get_signature(self, shingles: np.ndarray) -> list[list[int]]: |
|
(a, b) = self.parameters |
|
phv = (shingles * a + b) % _mersenne_prime |
|
if self.config.hash_config.precision == 32: |
|
phv = np.bitwise_and(phv, self.config.hash_config.max) |
|
return [x.tolist() for x in np.split(np.min(phv, axis=0).astype(self.config.hash_config.np_dtype), self.config.num_buckets)] |
|
|
|
def get_shingles(self, text: str) -> np.ndarray: |
|
return np.fromiter([self._hash_func(' '.join(x)) for x in ngrams(self.word_tokenizer.word_tokenize(simplify_text(text, self.config.norm_config)), self.config.n_grams)], dtype=np.uint64).reshape((-1, 1)) |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1): |
|
buckets = [self.output_folder.open(f'bucket_{bi:03d}/{rank:05d}.minhash.sig', mode='wb') for bi in range(self.config.num_buckets)] |
|
with self.track_time(): |
|
for (doc_idx, doc) in enumerate(data): |
|
self.stat_update(StatHints.total) |
|
shingles = self.get_shingles(doc.text) |
|
if shingles.size != 0: |
|
sig = self.get_signature(shingles) |
|
for (bi, (bucket, bucket_sig)) in enumerate(zip(buckets, sig)): |
|
bucket.write(struct.pack(f'<{self.config.hashes_per_bucket}{self.config.hash_config.struct_format}I', *bucket_sig, doc_idx)) |
|
for file in buckets: |
|
file.close() |
|
logger.info('Sorting buckets...') |
|
for bi in range(len(buckets)): |
|
sigs = sorted(read_sigs(self.output_folder.open(f'bucket_{bi:03d}/{rank:05d}.minhash.sig', mode='rb'), -1, self.config, ensure_order=False, lines_to_buffer=-1)) |
|
with self.output_folder.open(f'bucket_{bi:03d}/{rank:05d}.minhash.sig', mode='wb') as fo: |
|
for sig in sigs: |
|
fo.write(struct.pack(f'<{self.config.hashes_per_bucket}{self.config.hash_config.struct_format}I', *sig.sig, sig.doc_id)) |
|
|
|
class MinhashDedupBuckets(PipelineStep): |
|
type = '🫂 - DEDUP' |
|
name = '🎯 MinHash stage 2' |
|
|
|
def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, index_folder: DataFolderLike=None, config: MinhashConfig=None, only_dedup_in_index: bool=True, create_index_name: str=None, lines_to_buffer: int=5): |
|
super().__init__() |
|
self.input_folder = get_datafolder(input_folder) |
|
self.output_folder = get_datafolder(output_folder) |
|
self.index_folder = get_datafolder(index_folder) if index_folder else None |
|
self.config = config or MinhashConfig() |
|
self.only_dedup_in_index = only_dedup_in_index |
|
self.create_index_name = create_index_name |
|
self.lines_to_buffer = lines_to_buffer |
|
|
|
def get_worker_hash_range(self, sig_files, rank, world_size): |
|
workers_per_bucket = world_size // self.config.num_buckets |
|
(bucket, bucket_worker) = divmod(rank, workers_per_bucket) |
|
(hash_min, hash_max) = (0, _mersenne_prime if self.config.hash_config.precision == 64 else self.config.hash_config.max) |
|
if workers_per_bucket > 1 and len(sig_files): |
|
with self.input_folder.open(sig_files[0], mode='rb') as f: |
|
line_size = struct.calcsize(f'{self.config.hashes_per_bucket}{self.config.hash_config.struct_format}I') |
|
(L, rem) = divmod(f.size, line_size) |
|
assert rem == 0, 'file size not divisible by line size' |
|
assert L >= workers_per_bucket, f'tried to use workers_per_bucket={workers_per_bucket!r} but there are only {L} lines' |
|
if bucket_worker > 0: |
|
f.seek(line_size * (L // workers_per_bucket) * bucket_worker, os.SEEK_SET) |
|
hash_min = struct.unpack(self.config.hash_config.struct_format, f.read(struct.calcsize(self.config.hash_config.struct_format)))[0] |
|
if bucket_worker + 1 < workers_per_bucket: |
|
f.seek(line_size * (L // workers_per_bucket) * (bucket_worker + 1), os.SEEK_SET) |
|
hash_max = struct.unpack(self.config.hash_config.struct_format, f.read(struct.calcsize(self.config.hash_config.struct_format)))[0] |
|
return (hash_min, hash_max) |
|
|
|
def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1): |
|
assert data is None, 'You should not use an input block before MinhashDedupBuckets' |
|
assert world_size % self.config.num_buckets == 0, 'Number of tasks must be divisible by num_buckets' |
|
workers_per_bucket = world_size // self.config.num_buckets |
|
(bucket, bucket_worker) = divmod(rank, workers_per_bucket) |
|
with self.track_time(): |
|
sig_files = self.input_folder.list_files(subdirectory=f'bucket_{bucket:03d}') |
|
(hash_min, hash_max) = self.get_worker_hash_range(sig_files, rank, world_size) |
|
logger.info(f'Running worker {bucket_worker + 1}/{workers_per_bucket} on bucket {bucket:03d}. Hash range: {[hash_min, hash_max]}') |
|
sig_readers = [read_sigs(file, file_i, self.config, min_hash=hash_min, max_hash=hash_max, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.input_folder.open_files(sig_files, mode='rb'))] |
|
own_index_regex = re.compile(f'bucket_{bucket:03d}/{self.create_index_name}_\\d{{2}}.minhash.index') |
|
index_files = [filename for filename in self.index_folder.list_files(subdirectory=f'bucket_{bucket:03d}') if not self.create_index_name or not own_index_regex.fullmatch(filename)] if self.index_folder else None |
|
if index_files: |
|
logger.info(f"Found {len(index_files)} index file(s): {', '.join(index_files)}") |
|
sig_readers.extend([read_sigs(file, len(sig_readers) + file_i, self.config, index_file=True, min_hash=hash_min, max_hash=hash_max, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.index_folder.open_files(index_files, mode='rb'))]) |
|
pq = [x for x in [next(sig_reader, None) for sig_reader in sig_readers] if x is not None] |
|
heapq.heapify(pq) |
|
logger.info('Finished initializing signatures priority queue.') |
|
out_index = None |
|
if self.index_folder and self.create_index_name: |
|
out_index = self.index_folder.open(f'bucket_{bucket:03d}/{self.create_index_name}_{bucket_worker:02d}.minhash.index', mode='wb') |
|
with self.output_folder.open(f'{bucket:05d}_{bucket_worker:02d}.dups', mode='wb') as out_f: |
|
last: HashSig | None = None |
|
while pq: |
|
v: HashSig = heapq.heappop(pq) |
|
assert last is None or v >= last, f'Sig queue sort error. v={v!r} < last={last!r}' |
|
if not v.is_from_index(): |
|
if last and last.sig == v.sig: |
|
if last.is_from_index(): |
|
out_f.write(struct.pack('<4I', SENTINEL, SENTINEL, int(v.file_stem), v.doc_id)) |
|
self.stat_update('index_match', 'total_matches') |
|
elif not index_files or not self.only_dedup_in_index: |
|
out_f.write(struct.pack('<4I', int(last.file_stem), last.doc_id, int(v.file_stem), v.doc_id)) |
|
self.stat_update('total_matches') |
|
elif out_index: |
|
out_index.write(struct.pack(f'<%d{self.config.hash_config.struct_format}' % self.config.hashes_per_bucket, *v.sig)) |
|
last = v |
|
next_sig = next(sig_readers[v.reader_id], None) |
|
if next_sig: |
|
assert next_sig >= v, f'Next sig sort error. next_sig={next_sig!r} < v={v!r}' |
|
heapq.heappush(pq, next_sig) |
|
if out_index: |
|
out_index.close() |
|
|
|
class MinhashDedupCluster(PipelineStep): |
|
type = '🫂 - DEDUP' |
|
name = '🎯 MinHash stage 3' |
|
|
|
def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, config: MinhashConfig=None, save_cluster_id: bool=False, ignore_index_matches: bool=False, lines_to_buffer: int=5): |
|
super().__init__() |
|
self.input_folder = get_datafolder(input_folder) |
|
self.output_folder = get_datafolder(output_folder) |
|
self.config = config or MinhashConfig() |
|
self.save_cluster_id = save_cluster_id |
|
self.ignore_index_matches = ignore_index_matches |
|
self.lines_to_buffer = lines_to_buffer |
|
|
|
def run(self, data: DocumentsPipeline=None, _: int=0, world_size: int=1): |
|
dup_files = self.input_folder.list_files(glob_pattern='*.dups') |
|
assert len(dup_files) % self.config.num_buckets == 0, 'Number of .dups files should be divisible by number of buckets' |
|
assert world_size == 1, 'World size must be 1 for clustering' |
|
union_set = {} |
|
|
|
def parent(x): |
|
if x not in union_set or union_set[x] == x: |
|
return x |
|
union_set[x] = parent(union_set[x]) |
|
return union_set[x] |
|
with self.track_time(): |
|
for dup_file in dup_files: |
|
with self.input_folder.open(dup_file, 'rb') as dupf: |
|
for (f1, d1, f2, d2) in read_tuples_from_file(dupf, '4I', lines_to_buffer=self.lines_to_buffer): |
|
(a, b) = ((f1, d1), (f2, d2)) |
|
if self.ignore_index_matches and a == (SENTINEL, SENTINEL): |
|
continue |
|
union_set[parent(b)] = parent(a) |
|
ci = 0 |
|
cluster_ids = {} |
|
with self.output_folder.get_output_file_manager(mode='wb') as output_mg: |
|
for node in sorted(union_set.keys()): |
|
self.stat_update('duplicates') |
|
(file, doc) = node |
|
p = parent(node) |
|
if node != p: |
|
output_mg.write(f'{file:06d}.remove', struct.pack('<I', doc)) |
|
self.stat_update('to_remove') |
|
if self.save_cluster_id: |
|
if p not in cluster_ids: |
|
cluster_ids[p] = ci |
|
ci += 1 |
|
self.stat_update('clusters') |
|
output_mg.write(f'{file:06d}.clusters', struct.pack('<I', doc)) |
|
output_mg.write(f'{file:06d}.clusters', struct.pack('<I', cluster_ids[p])) |
|
|
|
class MinhashDedupFilter(PipelineStep): |
|
type = '🫂 - DEDUP' |
|
name = '🎯 MinHash stage 4' |
|
|
|
def __init__(self, input_folder: DataFolderLike, exclusion_writer: DiskWriter=None, load_cluster_ids: bool=False, lines_to_buffer: int=5): |
|
super().__init__() |
|
self.data_folder = get_datafolder(input_folder) |
|
self.exclusion_writer = exclusion_writer |
|
self.load_cluster_ids = load_cluster_ids |
|
self.lines_to_buffer = lines_to_buffer |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1): |
|
clusters_data = self.data_folder.get_shard(rank, world_size, glob_pattern='*.clusters') |
|
assert not self.load_cluster_ids or len(clusters_data) <= 1, f'Must have exactly one .clusters file per task. Found {len(clusters_data)} files.' |
|
if not self.data_folder.isfile(f'{rank:06d}.remove'): |
|
logger.warning(f'No .remove file for rank={rank!r}.') |
|
for doc in data: |
|
self.stat_update(StatHints.total, StatHints.forwarded) |
|
yield doc |
|
return |
|
with self.data_folder.open(f'{rank:06d}.remove', 'rb') as f: |
|
with self.exclusion_writer if self.exclusion_writer else contextlib.nullcontext() as exc_writer: |
|
|
|
def get_next(): |
|
data = f.read(struct.calcsize('I')) |
|
if data: |
|
return struct.unpack('<I', data)[0] |
|
|
|
def load_clusters(): |
|
if clusters_data: |
|
with self.data_folder.open(clusters_data[0], 'rb') as clustersf: |
|
yield from read_tuples_from_file(clustersf, '2I', lines_to_buffer=self.lines_to_buffer) |
|
if self.load_cluster_ids: |
|
cluster_loader = load_clusters() |
|
next_cluster = next(cluster_loader, None) |
|
next_removal = get_next() |
|
for (idx, doc) in enumerate(data): |
|
with self.track_time(): |
|
if self.load_cluster_ids: |
|
if next_cluster and idx == next_cluster[0]: |
|
doc.metadata['minhash_cluster'] = next_cluster[1] |
|
next_cluster = next(cluster_loader, None) |
|
self.stat_update(StatHints.total) |
|
if next_removal == idx: |
|
self.stat_update(StatHints.dropped) |
|
if self.exclusion_writer: |
|
exc_writer.write(doc, rank) |
|
next_removal = get_next() |
|
continue |
|
self.stat_update(StatHints.forwarded) |
|
yield doc |
|
|
|
class MinhashBuildIndex(PipelineStep): |
|
type = '🫂 - DEDUP' |
|
name = '🎯 MinHash build index' |
|
|
|
def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, index_name: str, config: MinhashConfig=None, lines_to_buffer: int=5): |
|
super().__init__() |
|
self.input_folder = input_folder |
|
self.output_folder = output_folder |
|
self.config = config or MinhashConfig() |
|
self.index_name = index_name |
|
self.lines_to_buffer = lines_to_buffer |
|
|
|
def run(self, data: DocumentsPipeline=None, bucket: int=0, world_size: int=1): |
|
assert data is None, 'You should not use an input block before MinhashBuildIndex' |
|
assert world_size == self.config.num_buckets, 'You must run exactly one task per bucket' |
|
sig_files = self.input_folder.list_files(subdirectory=f'bucket_{bucket:03d}') |
|
sig_readers = [read_sigs(file, file_i, self.config, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.input_folder.open_files(sig_files, mode='rb'))] |
|
pq = [next(sig_reader) for sig_reader in sig_readers] |
|
heapq.heapify(pq) |
|
out_f = self.output_folder.open(f'bucket_{bucket:03d}/{self.index_name}.minhash.index', mode='wb') |
|
last: HashSig | None = None |
|
with self.track_time(): |
|
while pq: |
|
v: HashSig = heapq.heappop(pq) |
|
if not last or last.sig != v.sig: |
|
out_f.write(struct.pack(f'<%d{self.config.hash_config.struct_format}' % self.config.hashes_per_bucket, *v.sig)) |
|
last = v |
|
next_sig = next(sig_readers[v.file_id], None) |
|
if next_sig: |
|
heapq.heappush(pq, next_sig) |
|
out_f.close() |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/dedup/sentence_dedup.py |
|
"""""" |
|
import contextlib |
|
import dataclasses |
|
import heapq |
|
import struct |
|
from concurrent.futures import ThreadPoolExecutor |
|
from dataclasses import dataclass, field |
|
from pathlib import Path |
|
from typing import BinaryIO, Generator |
|
import numpy as np |
|
from fsspec.spec import AbstractBufferedFile |
|
from tqdm import tqdm |
|
from datatrove.data import Document, DocumentsPipeline |
|
from datatrove.io import DataFolderLike, get_datafolder |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.utils.binaryio import read_np_from_file, read_tuples_from_file |
|
from datatrove.utils.hashing import HashConfig, create_hash_func |
|
from datatrove.utils.logging import logger |
|
from datatrove.utils.text import SPLIT_TEXT_SENTENCES, TextNormConfig, ngrams, simplify_text, split_into_parts |
|
from datatrove.utils.typeshelper import ExtensionHelperSD, Languages, StatHints |
|
from ...utils.word_tokenizers import load_word_tokenizer |
|
from ..writers.disk_base import DiskWriter |
|
|
|
@dataclass |
|
class SentDedupConfig: |
|
n_sentences: int = 3 |
|
split_sentences: bool = True |
|
only_dedup_in_index: bool = True |
|
min_doc_words: int = 50 |
|
min_num_sentences: int = 3 |
|
min_words_to_remove_span: int = 0 |
|
norm_config: TextNormConfig = field(default_factory=TextNormConfig) |
|
hash_config: HashConfig = field(default_factory=HashConfig) |
|
|
|
@dataclass(order=True) |
|
class HashSig: |
|
hash_value: int |
|
doc_id: int |
|
file_id: int = None |
|
sent_id: int = None |
|
file_stem: str = None |
|
|
|
def is_from_index(self): |
|
return self.doc_id == self.sent_id == -1 |
|
|
|
class SentenceDedupSignature(PipelineStep): |
|
type = '🫂 - DEDUPS' |
|
name = '💥 sentence-deduplication stage 1' |
|
|
|
def __init__(self, output_folder: DataFolderLike, finder_workers: int=1, config: SentDedupConfig=None, language: str=Languages.english): |
|
super().__init__() |
|
self.output_folder = get_datafolder(output_folder) |
|
if finder_workers <= 0: |
|
raise ValueError('finder_workers must be >= 1') |
|
elif finder_workers > 1: |
|
logger.warning(f'Remember to also set the name of tasks of the finder block to finder_workers={finder_workers!r}!') |
|
self.finder_workers = finder_workers |
|
self.config = config or SentDedupConfig() |
|
self.hash_fc = create_hash_func(config.hash_config) |
|
self.language = language |
|
self.tokenizer = load_word_tokenizer(language) |
|
|
|
def save_hashes(self, rank: int, signatures): |
|
signatures = np.array(signatures, dtype=[('hash', self.config.hash_config.np_descr), ('doc', '<u4'), ('sent', '<u2')]) |
|
signatures.sort(axis=0) |
|
hashes_per_worker = self.config.hash_config.max // self.finder_workers |
|
left_idx = 0 |
|
for hash_i in range(self.finder_workers): |
|
with self.output_folder.open(f'{hash_i:04d}/{rank:05d}{ExtensionHelperSD.stage_1_signature}', mode='wb') as f: |
|
right_hash = (hash_i + 1) * hashes_per_worker if hash_i != self.finder_workers - 1 else self.config.hash_config.max |
|
right_idx = left_idx + signatures['hash'][left_idx:].searchsorted(right_hash, side='right') |
|
if right_idx > left_idx: |
|
if self.output_folder.is_local(): |
|
signatures[left_idx:right_idx].tofile(f) |
|
else: |
|
f.write(signatures[left_idx:right_idx].tobytes()) |
|
left_idx = right_idx |
|
if right_idx >= len(signatures): |
|
break |
|
|
|
def get_hashes(self, doc: Document, doc_idx: int) -> list[None] | list[tuple[int, int, int]]: |
|
sentences = self.tokenizer.sent_tokenize(doc.text) if self.config.split_sentences else doc.text.splitlines() |
|
if len(sentences) < self.config.n_sentences: |
|
return [] |
|
sentences_tokens = [simplify_text(sent, self.config.norm_config) for sent in sentences] |
|
n_sent_grams: list = [' '.join(x) for x in ngrams(sentences_tokens, self.config.n_sentences)] |
|
hashes = [(self.hash_fc(n_sent_gram), doc_idx, sentence_idx) for (sentence_idx, n_sent_gram) in enumerate(n_sent_grams) if n_sent_gram.strip() != ''] |
|
return hashes |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1): |
|
signatures = [] |
|
for (doc_idx, doc) in enumerate(data): |
|
with self.stats.time_stats: |
|
self.stat_update(StatHints.total) |
|
signatures.extend(self.get_hashes(doc, doc_idx)) |
|
self.save_hashes(rank, signatures) |
|
|
|
def read_sigs(file: AbstractBufferedFile, file_id: int, config: SentDedupConfig, index_file: bool=False, lines_to_buffer: int=5) -> Generator[HashSig, None, None]: |
|
line_format = f'{config.hash_config.struct_format}IH' if not index_file else config.hash_config.struct_format |
|
file_stem = Path(file.path).name.removesuffix(ExtensionHelperSD.stage_1_signature) |
|
last = None |
|
with file as f: |
|
for data in read_tuples_from_file(f, line_format, lines_to_buffer=lines_to_buffer): |
|
assert last is None or data[0] >= last, f'Hash order error. f.tell()={f.tell()!r}, data[0]={data[0]!r}, last={last!r}' |
|
last = data[0] |
|
yield (HashSig(hash_value=data[0], doc_id=-1, file_id=file_id, sent_id=-1, file_stem=file_stem) if index_file else HashSig(file_id=file_id, hash_value=data[0], doc_id=data[1], sent_id=data[2], file_stem=file_stem)) |
|
|
|
class SentenceFindDedups(PipelineStep): |
|
type = '🫂 - DEDUPS' |
|
name = '💥 sentence-deduplication stage 2' |
|
|
|
def __init__(self, data_folder: DataFolderLike, output_folder: DataFolderLike, index_folder: DataFolderLike=None, config: SentDedupConfig=None, lines_to_buffer: int=5): |
|
super().__init__() |
|
self.data_folder = get_datafolder(data_folder) |
|
self.output_folder = get_datafolder(output_folder) |
|
self.index_folder = get_datafolder(index_folder) if index_folder else None |
|
self.config = config or SentDedupConfig() |
|
self.lines_to_buffer = lines_to_buffer |
|
|
|
def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1): |
|
with self.stats.time_stats: |
|
if world_size == 1: |
|
sig_files = self.data_folder.list_files(glob_pattern='*/*' + ExtensionHelperSD.stage_1_signature) |
|
if any((not sig_file.startswith('0000/') for sig_file in sig_files)): |
|
raise ValueError(f'world_size={world_size!r} but found sig files for different hash buckets. Set tasks=finder_workers') |
|
else: |
|
sig_files = self.data_folder.list_files(subdirectory=f'{rank:04d}', glob_pattern=ExtensionHelperSD.stage_1_signature) |
|
sig_readers = [read_sigs(file, file_i, config=self.config, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(sig_files))] |
|
index_files = self.index_folder.list_files() if self.index_folder else None |
|
if index_files: |
|
logger.info(f"Found index file(s): {', '.join(index_files)}") |
|
sig_readers.extend([read_sigs(file, len(sig_readers) + file_i, config=self.config, index_file=True, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(index_files))]) |
|
logger.info(f'Initializing pq with {len(sig_readers)} files.') |
|
with ThreadPoolExecutor() as executor: |
|
pq = [x for x in tqdm(executor.map(lambda x: next(x, None), sig_readers), total=len(sig_readers), desc='Initializing pq...') if x] |
|
heapq.heapify(pq) |
|
logger.info('PQ initialized.') |
|
output_mg = self.output_folder.get_output_file_manager(mode='wb') |
|
packer = struct.Struct('<IH') |
|
last: HashSig | None = None |
|
while pq: |
|
v: HashSig = heapq.heappop(pq) |
|
if last and last.hash_value == v.hash_value and (not v.is_from_index()): |
|
out_filename = f'{rank:04d}/{v.file_stem}{ExtensionHelperSD.stage_2_duplicates}' |
|
if last.is_from_index() or not index_files or (not self.config.only_dedup_in_index): |
|
output_mg.write(out_filename, packer.pack(v.doc_id, v.sent_id)) |
|
last = v |
|
new_v = next(sig_readers[v.file_id], None) |
|
if new_v: |
|
heapq.heappush(pq, new_v) |
|
output_mg.close() |
|
|
|
class SentenceDedupFilter(PipelineStep): |
|
type = '🫂 - DEDUPS' |
|
name = '💥 sentence-deduplication stage 3' |
|
|
|
def __init__(self, data_folder: DataFolderLike, config: SentDedupConfig=None, exclusion_writer: DiskWriter=None, language: str=Languages.english): |
|
super().__init__() |
|
self.data_folder = get_datafolder(data_folder) |
|
self.config = config or SentDedupConfig() |
|
self.tokenizer = load_word_tokenizer(language) |
|
self.exclusion_writer = exclusion_writer |
|
self.language = language |
|
|
|
def read_duplicates(self, file: BinaryIO) -> np.ndarray: |
|
return read_np_from_file(file, dtype=np.dtype([('doc', '<u4'), ('sent', '<u2')]), is_local_file=self.data_folder.is_local()) |
|
|
|
def remove_dup_sentences(self, doc: Document, du_lines: np.ndarray) -> tuple[str, str]: |
|
sentence_spans = list(self.tokenizer.span_tokenize(doc.text)) if self.config.split_sentences else doc.text.splitlines() |
|
kept_sentences = [] |
|
original_formatted = [] |
|
last_s = 0 |
|
du_line_idx = 0 |
|
drop_until = 0 |
|
removed_span = [] |
|
for (idx, s) in enumerate(sentence_spans): |
|
line_text = doc.text[last_s:s[1]] if self.config.split_sentences else s |
|
if du_line_idx < len(du_lines): |
|
if du_lines[du_line_idx] < idx: |
|
raise ValueError('Error with duplicate line index') |
|
elif du_lines[du_line_idx] == idx: |
|
drop_until = idx + self.config.n_sentences |
|
du_line_idx += 1 |
|
if idx >= drop_until: |
|
if removed_span: |
|
original_formatted.append('<<<') |
|
if self.config.min_words_to_remove_span > 0 and len(self.tokenizer.word_tokenize('\n'.join(removed_span))) < self.config.min_words_to_remove_span: |
|
kept_sentences.extend(removed_span) |
|
removed_span.clear() |
|
kept_sentences.append(line_text) |
|
elif not removed_span: |
|
removed_span.append(line_text) |
|
original_formatted.append('>>>') |
|
original_formatted.append(line_text) |
|
if self.config.split_sentences: |
|
last_s = s[1] |
|
if removed_span: |
|
original_formatted.append('<<<') |
|
if self.config.min_words_to_remove_span > 0 and len(self.tokenizer.word_tokenize('\n'.join(removed_span))) < self.config.min_words_to_remove_span: |
|
kept_sentences.extend(removed_span) |
|
if len(kept_sentences) < len(sentence_spans): |
|
self.stat_update('removed_sentences', value=len(sentence_spans) - len(kept_sentences)) |
|
self.stat_update('original_sentences', value=len(sentence_spans)) |
|
merge_char = '' if self.config.split_sentences else '\n' |
|
return (merge_char.join(kept_sentences).lstrip(), merge_char.join(original_formatted)) |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
folders = self.data_folder.list_files(include_directories=True, recursive=False) |
|
files = [f for f in [f'{folder}/{rank:05d}{ExtensionHelperSD.stage_2_duplicates}' for folder in folders] if self.data_folder.exists(f)] |
|
logger.info(f'Loading duplicate indexes from {len(files)} results files.') |
|
all_dups = np.array([], dtype=[('doc', '<u4'), ('sent', '<u2')]) |
|
if files: |
|
with ThreadPoolExecutor() as pool: |
|
all_dups = np.concatenate(list(tqdm(pool.map(self.read_duplicates, self.data_folder.open_files(files)), total=len(files))), axis=0) |
|
all_dups.sort() |
|
(_, doc_starts) = np.unique(all_dups['doc'], return_index=True) |
|
logger.info('Loaded duplicate indexes.') |
|
dups_doc_i = 0 |
|
with self.exclusion_writer if self.exclusion_writer else contextlib.nullcontext() as writer: |
|
for (doc_idx, doc) in enumerate(data): |
|
self.stat_update(StatHints.total) |
|
with self.stats.time_stats: |
|
if dups_doc_i >= len(doc_starts) or all_dups['doc'][doc_starts[dups_doc_i]] > doc_idx: |
|
(filtered_text, original_formatted) = (doc.text, None) |
|
else: |
|
(sents_span_l, sents_span_r) = (doc_starts[dups_doc_i], doc_starts[dups_doc_i + 1] if dups_doc_i + 1 < len(doc_starts) else None) |
|
(filtered_text, original_formatted) = self.remove_dup_sentences(doc, all_dups['sent'][sents_span_l:sents_span_r]) |
|
dups_doc_i += 1 |
|
if (filtered_text == doc.text or ((self.config.min_doc_words <= 0 or len(self.tokenizer.word_tokenize(filtered_text)) >= self.config.min_doc_words) and (self.config.min_num_sentences <= 0 or len(split_into_parts(filtered_text, SPLIT_TEXT_SENTENCES, self.language)) >= self.config.min_num_sentences))) and filtered_text: |
|
self.update_doc_stats(doc) |
|
if not filtered_text == doc.text and writer: |
|
writer.write(dataclasses.replace(doc, text=original_formatted), rank=rank) |
|
doc.text = filtered_text |
|
yield doc |
|
elif writer: |
|
doc.text = original_formatted |
|
writer.write(doc, rank=rank) |
|
|
|
class SentenceDedupBuildIndex(PipelineStep): |
|
type = '🫂 - DEDUP' |
|
name = '💥 sentence-deduplication build index' |
|
|
|
def __init__(self, data_folder: DataFolderLike, output_folder: DataFolderLike, index_name: str, config: SentDedupConfig=None, lines_to_buffer: int=5): |
|
super().__init__() |
|
self.data_folder = get_datafolder(data_folder) |
|
self.output_folder = get_datafolder(output_folder) |
|
self.index_name = index_name |
|
self.lines_to_buffer = lines_to_buffer |
|
self.config = config or SentDedupConfig() |
|
|
|
def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1): |
|
assert world_size == 1, 'SentenceDedupBuildIndex can only run on a single worker.' |
|
with self.stats.time_stats: |
|
sig_files = self.data_folder.list_files(glob_pattern=ExtensionHelperSD.stage_1_signature) |
|
sig_readers = [read_sigs(file, file_i, self.config, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(sig_files))] |
|
pq = [next(sig_reader) for sig_reader in sig_readers] |
|
heapq.heapify(pq) |
|
with self.output_folder.open(f'{self.index_name}.{ExtensionHelperSD.index}', mode='wb') as out_f: |
|
last = None |
|
while pq: |
|
v: HashSig = heapq.heappop(pq) |
|
if last != v.hash_value: |
|
out_f.write(struct.pack(f'<{self.config.hash_config.struct_format}', v.hash_value)) |
|
last = v.hash_value |
|
new_v = next(sig_readers[v.file_id], None) |
|
if new_v: |
|
heapq.heappush(pq, new_v) |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/dedup/url_dedup.py |
|
"""""" |
|
import contextlib |
|
import heapq |
|
import struct |
|
from concurrent.futures import ThreadPoolExecutor |
|
from dataclasses import dataclass, field |
|
from functools import partial |
|
from pathlib import Path |
|
from typing import BinaryIO, Callable, Generator |
|
import numpy as np |
|
from fsspec.spec import AbstractBufferedFile |
|
from tqdm import tqdm |
|
from datatrove.data import Document, DocumentsPipeline |
|
from datatrove.io import DataFolderLike, get_datafolder |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.utils.binaryio import read_np_from_file, read_tuples_from_file |
|
from datatrove.utils.hashing import HashConfig, create_hash_func |
|
from datatrove.utils.logging import logger |
|
from datatrove.utils.typeshelper import ExtensionHelperSD, StatHints |
|
from ..writers.disk_base import DiskWriter |
|
|
|
@dataclass |
|
class UrlDedupConfig: |
|
url_normalizer: Callable[[str], str] | None = None |
|
document_priority: Callable[[Document], int] | None = None |
|
hash_config: HashConfig = field(default_factory=HashConfig) |
|
only_dedup_in_index: bool = True |
|
|
|
@dataclass(order=False) |
|
class HashSig: |
|
hash_value: int |
|
priority: int |
|
doc_id: int |
|
file_id: int |
|
file_stem: str |
|
|
|
def is_from_index(self): |
|
return self.doc_id == -1 and self.priority == 1 |
|
|
|
def __lt__(self, other: 'HashSig') -> bool: |
|
return (self.hash_value, -self.priority, self.doc_id) < (other.hash_value, -other.priority, other.doc_id) |
|
|
|
def get_sig_dtype(config: HashConfig) -> np.dtype: |
|
return np.dtype([('hash', config.np_dtype), ('priority', '<u2'), ('doc', '<u4')]) |
|
|
|
class UrlDedupSignature(PipelineStep): |
|
type = '🫂 - DEDUPS' |
|
name = '💥 url-deduplication stage 1' |
|
|
|
def __init__(self, output_folder: DataFolderLike, finder_workers: int=1, config: UrlDedupConfig | None=None): |
|
super().__init__() |
|
self.output_folder = get_datafolder(output_folder) |
|
if finder_workers <= 0: |
|
raise ValueError('finder_workers must be >= 1') |
|
elif finder_workers > 1: |
|
logger.warning(f'Remember to also set the number of tasks of the finder block to finder_workers={finder_workers!r}!') |
|
self.finder_workers = finder_workers |
|
self.config = config or UrlDedupConfig() |
|
self.hash_fc = create_hash_func(self.config.hash_config) |
|
|
|
def save_hashes(self, rank: int, signatures): |
|
sig_dtype = get_sig_dtype(self.config.hash_config) |
|
priority_max = np.iinfo(sig_dtype['priority']).max |
|
assert all((sig[1] >= 1 and sig[1] <= priority_max for sig in signatures)), f'priority must be between 1 and {priority_max}' |
|
signatures = np.array(signatures, dtype=sig_dtype) |
|
signatures['priority'] = -signatures['priority'] |
|
signatures.sort(axis=0) |
|
signatures['priority'] = -signatures['priority'] |
|
hashes_per_worker = self.config.hash_config.max // self.finder_workers |
|
left_idx = 0 |
|
for hash_i in range(self.finder_workers): |
|
with self.output_folder.open(f'{hash_i:04d}/{rank:05d}{ExtensionHelperSD.stage_1_signature}', mode='wb') as f: |
|
right_hash = (hash_i + 1) * hashes_per_worker if hash_i != self.finder_workers - 1 else np.iinfo(np.uint64).max |
|
right_idx = left_idx + signatures['hash'][left_idx:].searchsorted(right_hash, side='right') |
|
if right_idx > left_idx: |
|
bts = signatures[left_idx:right_idx].tobytes() |
|
f.write(bts) |
|
left_idx = right_idx |
|
if right_idx >= len(signatures): |
|
break |
|
|
|
def get_hashes(self, doc: Document, doc_idx: int) -> list[None] | list[tuple[int, int, int]]: |
|
normalized_url: str = self.config.url_normalizer(doc.metadata['url']) if self.config.url_normalizer else doc.metadata['url'] |
|
priority = self.config.document_priority(doc) if self.config.document_priority else 1 |
|
hashes = [(self.hash_fc(normalized_url), priority, doc_idx)] |
|
return hashes |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1): |
|
signatures = [] |
|
for (doc_idx, doc) in enumerate(data): |
|
with self.stats.time_stats: |
|
self.stat_update(StatHints.total) |
|
signatures.extend(self.get_hashes(doc, doc_idx)) |
|
self.save_hashes(rank, signatures) |
|
|
|
def read_sigs(file: AbstractBufferedFile, file_id: int, hash_config: HashConfig, index_file: bool=False, lines_to_buffer: int=5) -> Generator[HashSig, None, None]: |
|
last = None |
|
line_format = f'{hash_config.struct_format}HI' if not index_file else hash_config.struct_format |
|
with file as f: |
|
file_stem = Path(f.path).name.removesuffix(ExtensionHelperSD.stage_1_signature) |
|
for data in read_tuples_from_file(f, line_format, lines_to_buffer=lines_to_buffer): |
|
assert last is None or data[0] >= last, f'Hash order error. f.tell()={f.tell()!r}, data[0]={data[0]!r}, last={last!r}' |
|
last = data[0] |
|
yield (HashSig(hash_value=data[0], doc_id=-1, file_id=file_id, priority=-1, file_stem=file_stem) if index_file else HashSig(file_id=file_id, file_stem=file_stem, hash_value=data[0], priority=data[1], doc_id=data[2])) |
|
|
|
class UrlFindDedups(PipelineStep): |
|
type = '🫂 - DEDUPS' |
|
name = '💥 url-deduplication stage 2' |
|
|
|
def __init__(self, data_folder: DataFolderLike, output_folder: DataFolderLike, index_folder: DataFolderLike | None=None, config: UrlDedupConfig | None=None, lines_to_buffer: int=5): |
|
super().__init__() |
|
self.data_folder = get_datafolder(data_folder) |
|
self.output_folder = get_datafolder(output_folder) |
|
self.index_folder = get_datafolder(index_folder) if index_folder else None |
|
self.config = config or UrlDedupConfig() |
|
self.lines_to_buffer = lines_to_buffer |
|
|
|
def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1): |
|
with self.stats.time_stats: |
|
if world_size == 1: |
|
sig_files = self.data_folder.list_files(glob_pattern='*/*' + ExtensionHelperSD.stage_1_signature) |
|
if any((not sig_file.startswith('0000/') for sig_file in sig_files)): |
|
raise ValueError(f'world_size={world_size!r} but found sig files for different hash buckets. Set tasks=finder_workers') |
|
else: |
|
sig_files = self.data_folder.list_files(subdirectory=f'{rank:04d}', glob_pattern=ExtensionHelperSD.stage_1_signature) |
|
sig_readers = [read_sigs(file, file_i, self.config.hash_config, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(sig_files))] |
|
index_files = self.index_folder.list_files() if self.index_folder else None |
|
if index_files: |
|
logger.info(f"Found index file(s): {', '.join(index_files)}") |
|
sig_readers.extend([read_sigs(file, len(sig_readers) + file_i, self.config.hash_config, index_file=True, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(index_files))]) |
|
logger.info(f'Initializing pq with {len(sig_readers)} files.') |
|
with ThreadPoolExecutor() as executor: |
|
pq = [x for x in tqdm(executor.map(lambda x: next(x, None), sig_readers), total=len(sig_readers), desc='Initializing pq...') if x] |
|
heapq.heapify(pq) |
|
logger.info('PQ initialized.') |
|
output_mg = self.output_folder.get_output_file_manager(mode='wb') |
|
last: HashSig | None = None |
|
packer = struct.Struct('<I') |
|
while pq: |
|
v: HashSig = heapq.heappop(pq) |
|
if last and last.hash_value == v.hash_value and (not v.is_from_index()): |
|
out_filename = f'{rank:04d}/{v.file_stem}{ExtensionHelperSD.stage_2_duplicates}' |
|
if not index_files or last.is_from_index() or (not self.config.only_dedup_in_index): |
|
doc_id_bytes = packer.pack(v.doc_id) |
|
output_mg.write(out_filename, doc_id_bytes) |
|
last = v |
|
new_v = next(sig_readers[v.file_id], None) |
|
if new_v: |
|
heapq.heappush(pq, new_v) |
|
output_mg.close() |
|
|
|
class UrlDedupFilter(PipelineStep): |
|
type = '🫂 - DEDUPS' |
|
name = '💥 url-deduplication stage 3' |
|
|
|
def __init__(self, data_folder: DataFolderLike, config: UrlDedupConfig | None=None, exclusion_writer: DiskWriter | None=None): |
|
super().__init__() |
|
self.data_folder = get_datafolder(data_folder) |
|
self.config = config or UrlDedupConfig() |
|
self.exclusion_writer = exclusion_writer |
|
|
|
def read_duplicates(self, file: BinaryIO, dup_dtype: np.dtype) -> np.ndarray: |
|
with file as f: |
|
return read_np_from_file(f, dtype=dup_dtype, is_local_file=self.data_folder.is_local()) |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1): |
|
folders = self.data_folder.list_files(include_directories=True, recursive=False) |
|
files = [f for f in [f'{folder}/{rank:05d}{ExtensionHelperSD.stage_2_duplicates}' for folder in folders] if self.data_folder.exists(f)] |
|
logger.info(f'Loading duplicate indexes from {len(files)} results files.') |
|
dup_dtype = get_sig_dtype(self.config.hash_config)[2] |
|
all_dups = np.array([], dtype=dup_dtype) |
|
if files: |
|
with ThreadPoolExecutor() as pool: |
|
read_partial = partial(self.read_duplicates, dup_dtype=dup_dtype) |
|
all_dups = np.concatenate(list(tqdm(pool.map(read_partial, self.data_folder.open_files(files)), total=len(files))), axis=0) |
|
all_dups.sort() |
|
logger.info('Loaded duplicate indexes.') |
|
dups_doc_i = 0 |
|
with self.exclusion_writer if self.exclusion_writer else contextlib.nullcontext() as writer: |
|
with self.stats.time_stats: |
|
for (doc_idx, doc) in enumerate(data): |
|
self.stat_update(StatHints.total) |
|
with self.stats.time_stats: |
|
if dups_doc_i < all_dups.shape[0] and all_dups[dups_doc_i] == doc_idx: |
|
if writer: |
|
writer.write(doc, rank=rank) |
|
self.stat_update(StatHints.dropped) |
|
dups_doc_i += 1 |
|
else: |
|
self.stat_update(StatHints.forwarded) |
|
self.update_doc_stats(doc) |
|
yield doc |
|
|
|
class UrlDedupBuildIndex(PipelineStep): |
|
type = '🫂 - DEDUP' |
|
name = '💥 url-deduplication build index' |
|
|
|
def __init__(self, data_folder: DataFolderLike, output_folder: DataFolderLike, index_name: str, config: UrlDedupConfig | None=None, lines_to_buffer: int=5): |
|
super().__init__() |
|
self.data_folder = get_datafolder(data_folder) |
|
self.output_folder = get_datafolder(output_folder) |
|
self.index_name = index_name |
|
self.lines_to_buffer = lines_to_buffer |
|
self.config = config or UrlDedupConfig() |
|
|
|
def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1): |
|
assert world_size == 1, 'UrlDedupBuildIndex can only run on a single worker.' |
|
with self.stats.time_stats: |
|
sig_files = self.data_folder.list_files(glob_pattern=ExtensionHelperSD.stage_1_signature) |
|
sig_readers = [read_sigs(file, file_i, self.config.hash_config, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(sig_files))] |
|
pq = [next(sig_reader) for sig_reader in sig_readers] |
|
heapq.heapify(pq) |
|
with self.output_folder.open(f'{self.index_name}.{ExtensionHelperSD.index}', mode='wb') as out_f: |
|
last = None |
|
while pq: |
|
v: HashSig = heapq.heappop(pq) |
|
if last != v.hash_value: |
|
out_f.write(struct.pack(f'<{self.config.hash_config.struct_format}', v.hash_value)) |
|
last = v.hash_value |
|
new_v = next(sig_readers[v.file_id], None) |
|
if new_v: |
|
heapq.heappush(pq, new_v) |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/extractors/base.py |
|
from abc import abstractmethod |
|
from concurrent.futures import ThreadPoolExecutor |
|
from datatrove.data import DocumentsPipeline |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.utils.logging import logger |
|
from datatrove.utils.typeshelper import StatHints |
|
|
|
class BaseExtractor(PipelineStep): |
|
type = '🛢 - EXTRAC' |
|
|
|
@abstractmethod |
|
def __init__(self, timeout: float=0.1): |
|
super().__init__() |
|
self.timeout = timeout |
|
|
|
@abstractmethod |
|
def extract(self, text: str) -> str: |
|
pass |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
with ThreadPoolExecutor() as executor: |
|
for doc in data: |
|
self.stat_update(StatHints.total) |
|
with self.track_time(): |
|
future = executor.submit(self.extract, doc.text) |
|
try: |
|
doc.text = future.result(timeout=self.timeout) |
|
except TimeoutError: |
|
logger.warning('⏰ Timeout while cleaning record text. Skipping record.') |
|
continue |
|
except Exception as e: |
|
logger.warning(f'❌ Error "{e}" while cleaning record text. Skipping record.') |
|
continue |
|
if doc.text: |
|
self.stat_update(StatHints.forwarded) |
|
self.update_doc_stats(doc) |
|
yield doc |
|
else: |
|
self.stat_update(StatHints.dropped) |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/extractors/modular.py |
|
import re |
|
from .base import BaseExtractor |
|
|
|
class ReadabilityInscriptis(BaseExtractor): |
|
_requires_dependencies = ['inscriptis', ('readability', 'readability-lxml @ git+https://github.com/huggingface/python-readability.git@speedup')] |
|
|
|
def __init__(self, max_new_lines: int=2, min_text_length=25, min_text_score=20, timeout: float=0.1): |
|
from inscriptis.css_profiles import CSS_PROFILES |
|
from inscriptis.model.config import ParserConfig |
|
super().__init__(timeout) |
|
self.min_text_length = min_text_length |
|
self.min_text_score = min_text_score |
|
self.new_line_chars = '\n' * max_new_lines |
|
self.regex_excessive_lines = re.compile('(' + self.new_line_chars + '\n+)') |
|
self._parser_config = ParserConfig(css=CSS_PROFILES['strict']) |
|
|
|
def extract(self, text: str) -> str: |
|
from inscriptis import get_text |
|
from readability import Document as _Document |
|
parsed_doc = _Document(text, min_text_length=self.min_text_length, min_text_score=self.min_text_score) |
|
clean_html = parsed_doc.summary(html_partial=True) |
|
text = get_text(clean_html, self._parser_config).strip() |
|
return self.regex_excessive_lines.sub(self.new_line_chars, text) |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/extractors/trafilatura.py |
|
from .base import BaseExtractor |
|
|
|
class Trafilatura(BaseExtractor): |
|
name = '⛏ Trafilatura' |
|
_requires_dependencies = ['trafilatura'] |
|
|
|
def __init__(self, favour_precision: bool=True, include_images: bool=False, timeout: float=0.1, deduplicate: bool=True, **kwargs): |
|
super().__init__(timeout) |
|
self.favour_precision = favour_precision |
|
self.include_images = include_images |
|
self.deduplicate = deduplicate |
|
self.kwargs = kwargs |
|
if self.include_images: |
|
raise NotImplementedError |
|
|
|
def extract(self, text: str) -> str: |
|
from trafilatura import extract |
|
return extract(text, favor_precision=self.favour_precision, include_comments=False, deduplicate=self.deduplicate, **self.kwargs) |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/filters/__init__.py |
|
from .c4_filters import C4BadWordsFilter, C4ParagraphFilter, C4QualityFilter |
|
from .fasttext_filter import FastTextClassifierFilter |
|
from .fineweb_quality_filter import FineWebQualityFilter |
|
from .gopher_quality_filter import GopherQualityFilter |
|
from .gopher_repetition_filter import GopherRepetitionFilter |
|
from .lambda_filter import LambdaFilter |
|
from .language_filter import LanguageFilter |
|
from .regex_filter import RegexFilter |
|
from .sampler_filter import SamplerFilter |
|
from .unigram_log_probs import UnigramLogProbFilter |
|
from .url_filter import URLFilter |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/filters/base_filter.py |
|
import contextlib |
|
from abc import ABC, abstractmethod |
|
from typing import List, Tuple |
|
from loguru import logger |
|
from datatrove.data import Document, DocumentsPipeline |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
from datatrove.utils.batching import batched |
|
from datatrove.utils.typeshelper import StatHints |
|
|
|
def get_filter_result(res): |
|
(result, reason) = (res, None) |
|
if isinstance(result, tuple): |
|
(result, reason) = res |
|
return (result, reason) |
|
|
|
class BaseFilter(PipelineStep, ABC): |
|
type = '🔻 - FILTER' |
|
|
|
def __init__(self, exclusion_writer: DiskWriter=None, batch_size: int=1): |
|
super().__init__() |
|
self.exclusion_writer = exclusion_writer |
|
self.batch_size = batch_size |
|
if self.batch_size > 1 and type(self).filter_batch == BaseFilter.filter_batch: |
|
logger.warning(f'batch_size={batch_size!r} > 1 but {self} does not implement a custom filter_batch method.') |
|
|
|
@abstractmethod |
|
def filter(self, doc: Document) -> bool | Tuple[bool, str]: |
|
raise NotImplementedError |
|
|
|
def filter_batch(self, batch: List[Document]) -> List[bool | Tuple[bool, str]]: |
|
return list(map(self.filter, batch)) |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
with self.exclusion_writer if self.exclusion_writer else contextlib.nullcontext() as writer: |
|
for batch in batched(data, self.batch_size): |
|
if self.batch_size > 1: |
|
self.stat_update('batches') |
|
with self.track_time('batch' if self.batch_size > 1 else None): |
|
batch_filter_result = self.filter_batch(batch) |
|
for (doc, doc_filter_result) in zip(batch, batch_filter_result): |
|
self.stat_update(StatHints.total) |
|
(filter_result, reason) = get_filter_result(doc_filter_result) |
|
if filter_result: |
|
self.stat_update(StatHints.forwarded) |
|
self.update_doc_stats(doc) |
|
yield doc |
|
else: |
|
self.stat_update(StatHints.dropped) |
|
if reason: |
|
self.stat_update(f'dropped_{reason}') |
|
if self.exclusion_writer: |
|
if reason: |
|
doc.metadata['filter_reason'] = reason |
|
writer.write(doc, rank) |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/filters/c4_filters.py |
|
import heapq |
|
import re |
|
from numpy.random import default_rng |
|
from datatrove.data import Document |
|
from datatrove.io import cached_asset_path_or_download |
|
from datatrove.pipeline.filters.base_filter import BaseFilter |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
from datatrove.utils.typeshelper import Languages |
|
from datatrove.utils.word_tokenizers import load_word_tokenizer |
|
CITATION_REGEX = re.compile('\\[\\d*]|\\[edit]|\\[citation needed]') |
|
END_PUNCTUATION = ('.', '?', '!', '"', "'") |
|
ELLIPSIS = '...' |
|
POLICY_SUBSTRINGS = ['terms of use', 'privacy policy', 'cookie policy', 'uses cookies', 'use of cookies', 'use cookies'] |
|
|
|
class C4QualityFilter(BaseFilter): |
|
name = '⛰ C4 Quality' |
|
|
|
def __init__(self, exclusion_writer: DiskWriter=None, split_paragraph: bool=True, remove_citations: bool=True, filter_no_terminal_punct: bool=True, min_num_sentences: int=5, min_words_per_line: int=3, max_word_length: int=1000, filter_lorem_ipsum: bool=True, filter_javascript: bool=True, filter_curly_bracket: bool=True, filter_policy: bool=True, language: str=Languages.english): |
|
super().__init__(exclusion_writer) |
|
self.split_paragraph = split_paragraph |
|
self.remove_citations = remove_citations |
|
self.filter_no_terminal_punct = filter_no_terminal_punct |
|
self.min_num_sentences = min_num_sentences |
|
self.min_words_per_line = min_words_per_line |
|
self.max_word_length = max_word_length |
|
self.filter_lorem_ipsum = filter_lorem_ipsum |
|
self.filter_javascript = filter_javascript |
|
self.filter_curly_bracket = filter_curly_bracket |
|
self.filter_policy = filter_policy |
|
self.tokenizer = load_word_tokenizer(language) |
|
|
|
def filter(self, doc: Document) -> bool | tuple[bool, str]: |
|
lines = doc.text.splitlines() if self.split_paragraph else self.tokenizer.sent_tokenize(doc.text) |
|
num_sentences = 0 |
|
kept_lines = [] |
|
for line in lines: |
|
line = line.strip() |
|
words = line.split() |
|
self.stat_update('line-total') |
|
if self.max_word_length != -1 and any((len(word) > self.max_word_length for word in words)): |
|
self.stat_update('line-filter-too_long_word') |
|
continue |
|
if self.remove_citations: |
|
line = CITATION_REGEX.sub('', line) |
|
if self.filter_no_terminal_punct and (not line.endswith(END_PUNCTUATION) or line.endswith(ELLIPSIS)): |
|
self.stat_update('line-filter-no_terminal_punc') |
|
continue |
|
if len(words) < self.min_words_per_line: |
|
self.stat_update('line-filter-too_few_words') |
|
continue |
|
line_l = line.lower() |
|
if self.filter_lorem_ipsum and 'lorem ipsum' in line_l: |
|
return (False, 'lorem_ipsum') |
|
if self.filter_javascript and 'javascript' in line_l: |
|
self.stat_update('line-filter-javascript') |
|
continue |
|
if self.filter_curly_bracket and '{' in line: |
|
return (False, 'curly_bracket') |
|
if self.filter_policy and any((p in line_l for p in POLICY_SUBSTRINGS)): |
|
self.stat_update('line-filter-policy') |
|
continue |
|
if self.min_num_sentences != -1: |
|
num_sentences += len(self.tokenizer.sent_tokenize(line)) if self.split_paragraph else 1 |
|
kept_lines.append(line) |
|
self.stat_update('line-kept') |
|
if num_sentences < self.min_num_sentences: |
|
return (False, 'too_few_sentences') |
|
doc.text = ('\n' if self.split_paragraph else ' ').join(kept_lines).strip() |
|
return True |
|
|
|
class C4ParagraphFilter(BaseFilter): |
|
name = '⛰ C4 Paragraph' |
|
|
|
def __init__(self, exclusion_writer: DiskWriter=None): |
|
super().__init__(exclusion_writer) |
|
self.min_paragraphs = 3 |
|
self.min_paragraph_len = 200 |
|
self.line_delimiter = '\n' |
|
|
|
def paragraph_filter(self, page): |
|
lines = page.split(self.line_delimiter) |
|
if len(lines) < self.min_paragraphs or min(heapq.nlargest(3, [len(line) for line in lines])) < self.min_paragraph_len: |
|
return False |
|
return True |
|
|
|
def filter(self, doc: Document) -> bool | tuple[bool, str]: |
|
if not self.paragraph_filter(doc.text): |
|
return (False, f'< {self.min_paragraphs} paragraphs') |
|
return True |
|
_EN_BADWORDS_URL = 'https://raw.githubusercontent.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/25e679f03d96baa721cde20db9944649e8d0a844/en' |
|
_BADWORDS_URL = 'https://raw.githubusercontent.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/5faf2ba42d7b1c0977169ec3611df25a3c08eb13/' |
|
_BADWORDS_LANGS = ['ar', 'cs', 'da', 'de', 'en', 'eo', 'es', 'fa', 'fi', 'fil', 'fr', 'fr-CA-u-sd-caqc', 'hi', 'hu', 'it', 'ja', 'kab', 'ko', 'nl', 'no', 'pl', 'pt', 'ru', 'sv', 'th', 'tlh', 'tr', 'zh'] |
|
_BADWORDS_ALLOWLIST = {'ja': {'sm', 'グロ', '女の子'}, 'zh': {'性'}} |
|
|
|
class C4BadWordsFilter(BaseFilter): |
|
name = '⛰ C4 Badwords' |
|
|
|
def __init__(self, keep_fraction: float=0.0, fail_on_missing_language: bool=True, seed: int=None, default_language: str='en', exclusion_writer: DiskWriter=None): |
|
super().__init__(exclusion_writer) |
|
self.keep_fraction = keep_fraction |
|
self.fail_on_missing_language = fail_on_missing_language |
|
self._badwords_regex: dict[str, re.Pattern] = {} |
|
self.uniform = default_rng(seed).uniform |
|
self.default_language = default_language |
|
|
|
def _get_badwords(self, lang: str): |
|
if lang not in self._badwords_regex: |
|
if lang not in _BADWORDS_LANGS: |
|
if self.fail_on_missing_language: |
|
raise ValueError(f'There is not badwords list available for "{lang}". Set fail_on_missing_language=False to continue anyway.') |
|
else: |
|
return None |
|
local_path = cached_asset_path_or_download(_BADWORDS_URL + lang if lang != 'en' else _EN_BADWORDS_URL, namespace='filters', subfolder='c4_badwords') |
|
badwords: set[str] = set() |
|
with open(local_path, 'rt') as f: |
|
badwords.update((line.strip() for line in f)) |
|
for (lang, allowlist) in _BADWORDS_ALLOWLIST.items(): |
|
badwords -= allowlist |
|
words = [re.escape(w) for w in badwords] |
|
self._badwords_regex[lang] = re.compile('|'.join(words)) if lang in ('ja', 'th', 'zh') else re.compile('(?:\\W|^)({})(?:\\W|$)'.format('|'.join(words))) |
|
return self._badwords_regex[lang] |
|
|
|
def filter(self, doc: Document) -> bool | tuple[bool, str]: |
|
lang: str = doc.metadata.get('language', self.default_language) |
|
badwords_regex = self._get_badwords(lang) |
|
if badwords_regex is None: |
|
self.stat_update('missing_badwords_lang', f'missing_badwords_lang_{lang}') |
|
return True |
|
badwords_found = badwords_regex.search(doc.text.lower()) |
|
if badwords_found is not None: |
|
self.stat_update('documents_with_badwords', f'documents_with_badwords_{lang}') |
|
if self.keep_fraction > 0.0 and self.uniform() < self.keep_fraction: |
|
self.stat_update('document_kept_with_badwords', f'document_kept_with_badwords_{lang}') |
|
return True |
|
self.stat_update(f'document_removed_with_badwords_{lang}') |
|
return (False, 'document_removed_with_badwords') |
|
return True |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/filters/fasttext_filter.py |
|
from collections import defaultdict |
|
from typing import Tuple |
|
import numpy as np |
|
from datatrove.data import Document |
|
from datatrove.io import cached_asset_path_or_download |
|
from datatrove.pipeline.filters.base_filter import BaseFilter |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
from datatrove.utils.text import SPLIT_TEXT_DOCUMENTS, split_into_parts |
|
|
|
class FastTextClassifierFilter(BaseFilter): |
|
name = '🤖 fastText' |
|
_requires_dependencies = [('fasttext', 'fasttext-wheel'), 'fasteners'] |
|
|
|
def __init__(self, model_url: str, keep_labels: Tuple[str, float] | list[Tuple[str, float]] | None=None, remove_labels: Tuple[str, float] | list[Tuple[str, float]] | None=None, save_labels_in_metadata: bool=True, exclusion_writer: DiskWriter | None=None, newline_replacement='', filter_mode: str=SPLIT_TEXT_DOCUMENTS): |
|
super().__init__(exclusion_writer) |
|
self.model_url = model_url |
|
self.keep_labels = keep_labels |
|
self.remove_labels = remove_labels |
|
self.filter_mode = filter_mode |
|
if keep_labels and remove_labels: |
|
raise ValueError('You can only supply one of `keep_labels` or `remove_labels`.') |
|
self.newline_replacement = newline_replacement |
|
if keep_labels and isinstance(keep_labels[0], str): |
|
self.keep_labels = [keep_labels] |
|
if remove_labels and isinstance(remove_labels[0], str): |
|
self.remove_labels = [remove_labels] |
|
self.save_labels_in_metadata = save_labels_in_metadata |
|
self._model = None |
|
|
|
@property |
|
def model(self): |
|
if self._model is None: |
|
from fasttext.FastText import _FastText |
|
model_file = cached_asset_path_or_download(self.model_url, namespace='filters', subfolder='fasttext', desc='fast-text model') |
|
self._model = _FastText(model_file) |
|
available_labels = [x.removeprefix('__label__') for x in self._model.labels] |
|
for (label, _) in self.keep_labels or [] + self.remove_labels or []: |
|
if label not in available_labels: |
|
raise ValueError(f"Label '{label}' passed as keep_labels or remove_labels is not available in this FastText model. Available labels: {available_labels}") |
|
return self._model |
|
|
|
def filter(self, doc: Document) -> bool: |
|
|
|
def check_label_scores(unit_scores): |
|
if self.keep_labels: |
|
return any((unit_scores.get(f'__label__{label}', -9000000000.0) >= min_score for (label, min_score) in self.keep_labels)) |
|
else: |
|
return not self.remove_labels or not any((unit_scores.get(f'__label__{label}', -9000000000.0) >= min_score for (label, min_score) in self.remove_labels)) |
|
units = split_into_parts(doc.text, mode=self.filter_mode) |
|
kept_spans = [] |
|
label_scores = defaultdict(list) |
|
for unit in units: |
|
(labels, scores) = self.model.predict(unit.strip().replace('\n', self.newline_replacement), k=-1) |
|
if self.save_labels_in_metadata: |
|
for (label, score) in zip(labels, scores): |
|
label_scores[label].append(score) |
|
if check_label_scores(dict(zip(labels, scores))): |
|
kept_spans.append(unit) |
|
self.stat_update('kept_span') |
|
else: |
|
self.stat_update('removed_span') |
|
doc.text = ''.join(kept_spans) |
|
if self.save_labels_in_metadata: |
|
doc.metadata.update({label: np.mean(scores).item() for (label, scores) in label_scores.items()}) |
|
return not not doc.text.strip() |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/filters/fineweb_quality_filter.py |
|
from datatrove.pipeline.filters.base_filter import BaseFilter |
|
from datatrove.pipeline.filters.gopher_repetition_filter import find_duplicates |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
from datatrove.utils.typeshelper import Languages |
|
from datatrove.utils.word_tokenizers import load_word_tokenizer |
|
|
|
class FineWebQualityFilter(BaseFilter): |
|
name = '🍷 FineWeb Quality' |
|
|
|
def __init__(self, exclusion_writer: DiskWriter=None, line_punct_thr: float=0.12, line_punct_exclude_zero: bool=False, short_line_thr: float=0.67, short_line_length: int=30, char_duplicates_ratio: float=0.01, new_line_ratio: float=0.3, language: str=Languages.english): |
|
super().__init__(exclusion_writer) |
|
self.line_punct_thr = line_punct_thr |
|
self.line_punct_exclude_zero = line_punct_exclude_zero |
|
self.short_line_threshold = short_line_thr |
|
self.short_line_length = short_line_length |
|
self.char_duplicates_ratio = char_duplicates_ratio |
|
self.new_line_ratio = new_line_ratio |
|
self.tokenizer = load_word_tokenizer(language) |
|
|
|
def filter(self, doc) -> bool | tuple[bool, str]: |
|
stop_chars = ('.', "'", '"', '!', '?') |
|
lines = doc.text.split('\n') |
|
ratio = sum((1 for line in lines if line.endswith(stop_chars))) / len(lines) |
|
if ratio <= self.line_punct_thr and (not (ratio == 0 and self.line_punct_exclude_zero)): |
|
return (False, 'line_punct_ratio') |
|
ratio = sum((1 for line in lines if len(line) <= self.short_line_length)) / len(lines) |
|
if ratio >= self.short_line_threshold: |
|
return (False, 'short_line_ratio') |
|
non_empty_lines = [line for line in lines if line.strip() != ''] |
|
ratio = find_duplicates(non_empty_lines)[1] / len(doc.text.replace('\n', '')) |
|
if ratio >= self.char_duplicates_ratio: |
|
return (False, 'char_dup_ratio') |
|
words = self.tokenizer.word_tokenize(doc.text) |
|
new_line = doc.text.count('\n') |
|
if new_line / len(words) > self.new_line_ratio: |
|
return (False, 'list_ratio') |
|
return True |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/filters/gopher_quality_filter.py |
|
import numpy as np |
|
from datatrove.data import Document |
|
from datatrove.pipeline.filters.base_filter import BaseFilter |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
from datatrove.utils.text import PUNCTUATION_SET |
|
from datatrove.utils.typeshelper import Languages |
|
from datatrove.utils.word_tokenizers import load_word_tokenizer |
|
STOP_WORDS = ['the', 'be', 'to', 'of', 'and', 'that', 'have', 'with'] |
|
|
|
class GopherQualityFilter(BaseFilter): |
|
name = '🥇 Gopher Quality' |
|
|
|
def __init__(self, min_doc_words: int | None=50, max_doc_words: int | None=100000, min_avg_word_length: int | None=3, max_avg_word_length: int | None=10, max_symbol_word_ratio: float | None=0.1, max_bullet_lines_ratio: float | None=0.9, max_ellipsis_lines_ratio: float | None=0.3, max_non_alpha_words_ratio: float | None=0.8, min_stop_words: int | None=2, stop_words: list[str] | None=None, exclusion_writer: DiskWriter=None, language: str=Languages.english): |
|
super().__init__(exclusion_writer) |
|
self.min_doc_words = min_doc_words |
|
self.max_doc_words = max_doc_words |
|
self.min_avg_word_length = min_avg_word_length |
|
self.max_avg_word_length = max_avg_word_length |
|
self.max_symbol_word_ratio = max_symbol_word_ratio |
|
self.max_bullet_lines_ratio = max_bullet_lines_ratio |
|
self.max_ellipsis_lines_ratio = max_ellipsis_lines_ratio |
|
self.max_non_alpha_words_ratio = max_non_alpha_words_ratio |
|
self.min_stop_words = min_stop_words |
|
self.stop_words = set(STOP_WORDS if stop_words is None else stop_words) |
|
self.tokenizer = load_word_tokenizer(language) |
|
|
|
def filter(self, doc: Document) -> bool | tuple[bool, str]: |
|
text = doc.text |
|
words = self.tokenizer.word_tokenize(text) |
|
n_words = len(words) |
|
non_symbol_words = [w for w in words if any((ch not in PUNCTUATION_SET for ch in w))] |
|
n_non_symbol_words_words = len(non_symbol_words) |
|
if self.min_doc_words and n_non_symbol_words_words < self.min_doc_words: |
|
return (False, 'gopher_short_doc') |
|
if self.max_doc_words and n_non_symbol_words_words > self.max_doc_words: |
|
return (False, 'gopher_long_doc') |
|
avg_n_words = np.mean([len(w) for w in non_symbol_words]) |
|
if self.min_avg_word_length and avg_n_words < self.min_avg_word_length: |
|
return (False, 'gopher_below_avg_threshold') |
|
if self.max_avg_word_length and avg_n_words > self.max_avg_word_length: |
|
return (False, 'gopher_above_avg_threshold') |
|
if self.max_symbol_word_ratio and text.count('#') / n_words > self.max_symbol_word_ratio: |
|
return (False, 'gopher_too_many_hashes') |
|
if self.max_symbol_word_ratio and (text.count('...') + text.count('…')) / n_words > self.max_symbol_word_ratio: |
|
return (False, 'gopher_too_many_ellipsis') |
|
lines = text.splitlines() |
|
if self.max_bullet_lines_ratio and sum((s.lstrip().startswith('•') or s.lstrip().startswith('-') for s in lines)) / len(lines) > self.max_bullet_lines_ratio: |
|
return (False, 'gopher_too_many_bullets') |
|
if self.max_ellipsis_lines_ratio and sum((s.rstrip().endswith('...') or s.rstrip().endswith('…') for s in lines)) / len(lines) > self.max_ellipsis_lines_ratio: |
|
return (False, 'gopher_too_many_end_ellipsis') |
|
if self.max_non_alpha_words_ratio and sum([any((c.isalpha() for c in w)) for w in words]) / n_words < self.max_non_alpha_words_ratio: |
|
return (False, 'gopher_below_alpha_threshold') |
|
if self.min_stop_words and sum((w in self.stop_words for w in words)) < self.min_stop_words: |
|
return (False, 'gopher_enough_stop_words') |
|
return True |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/filters/gopher_repetition_filter.py |
|
import re |
|
from collections import Counter |
|
from datatrove.data import Document |
|
from datatrove.pipeline.filters.base_filter import BaseFilter |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
from datatrove.utils.typeshelper import Languages |
|
from datatrove.utils.word_tokenizers import load_word_tokenizer |
|
'' |
|
|
|
def get_n_grams(words: list[str], n: int) -> list[str]: |
|
return [' '.join(words[i:i + n]) for i in range(len(words) - n + 1)] |
|
|
|
def find_duplicates(x: list[str]) -> tuple[int, int]: |
|
unique_x = set() |
|
duplicate_chars = 0 |
|
duplicate_elements = 0 |
|
for element in x: |
|
if element in unique_x: |
|
duplicate_chars += len(element) |
|
duplicate_elements += 1 |
|
else: |
|
unique_x.add(element) |
|
return (duplicate_elements, duplicate_chars) |
|
|
|
def find_top_duplicate(x: list[str]) -> int: |
|
counter = Counter() |
|
for element in x: |
|
counter[element] += 1 |
|
top_n_gram = counter.most_common(1)[0] |
|
return len(top_n_gram[0]) * top_n_gram[1] |
|
|
|
def find_all_duplicate(words: list[str], n: int) -> int: |
|
n_words = len(words) |
|
unique = set() |
|
(repeated_chars, idx) = (0, 0) |
|
while idx < n_words - n + 1: |
|
n_gram = ''.join(words[idx:idx + n]) |
|
if n_gram in unique: |
|
repeated_chars += len(n_gram) |
|
idx += n |
|
else: |
|
unique.add(n_gram) |
|
idx += 1 |
|
assert repeated_chars <= len(''.join(words)) |
|
return repeated_chars |
|
|
|
class GopherRepetitionFilter(BaseFilter): |
|
name = '👯 Gopher Repetition' |
|
|
|
def __init__(self, dup_line_frac: float | None=0.3, dup_para_frac: float | None=0.3, dup_line_char_frac: float | None=0.2, dup_para_char_frac: float | None=0.2, top_n_grams: tuple[tuple[int, float]]=((2, 0.2), (3, 0.18), (4, 0.16)), dup_n_grams: tuple[tuple[int, float]]=((5, 0.15), (6, 0.14), (7, 0.13), (8, 0.12), (9, 0.11), (10, 0.1)), exclusion_writer: DiskWriter=None, language: str=Languages.english): |
|
super().__init__(exclusion_writer) |
|
self.dup_line_frac = dup_line_frac |
|
self.dup_para_frac = dup_para_frac |
|
self.dup_line_char_frac = dup_line_char_frac |
|
self.dup_para_char_frac = dup_para_char_frac |
|
self.top_n_grams = top_n_grams |
|
self.dup_n_grams = dup_n_grams |
|
self.paragraph_exp = re.compile('\\n{2,}') |
|
self._line_splitter = re.compile('\n+') |
|
self.tokenizer = load_word_tokenizer(language) |
|
|
|
def filter(self, doc: Document) -> bool | tuple[bool, str]: |
|
text = doc.text |
|
paragraphs = self.paragraph_exp.split(text.strip()) |
|
(paragraphs_duplicates, char_duplicates) = find_duplicates(paragraphs) |
|
if self.dup_para_frac and paragraphs_duplicates / len(paragraphs) > self.dup_para_frac: |
|
return (False, 'dup_para_frac') |
|
if self.dup_para_char_frac and char_duplicates / len(text) > self.dup_para_char_frac: |
|
return (False, 'dup_para_char_frac') |
|
lines = self._line_splitter.split(text) |
|
(line_duplicates, char_duplicates) = find_duplicates(lines) |
|
if self.dup_line_frac and line_duplicates / len(lines) > self.dup_line_frac: |
|
return (False, 'dup_line_frac') |
|
if self.dup_line_char_frac and char_duplicates / len(text) > self.dup_line_char_frac: |
|
return (False, 'dup_line_char_frac') |
|
words = self.tokenizer.word_tokenize(text) |
|
for (n, n_frac) in self.top_n_grams: |
|
n_grams = get_n_grams(words, n) |
|
if not n_grams: |
|
continue |
|
top_char_length = find_top_duplicate(n_grams) |
|
if top_char_length / len(text) > n_frac: |
|
return (False, f'top_{n}_gram') |
|
for (n, n_frac) in self.dup_n_grams: |
|
n_duplicates_char = find_all_duplicate(words, n) |
|
if n_duplicates_char / len(text) > n_frac: |
|
return (False, f'duplicated_{n}_n_grams') |
|
return True |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/filters/lambda_filter.py |
|
from typing import Callable |
|
from datatrove.data import Document |
|
from datatrove.pipeline.filters.base_filter import BaseFilter |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
|
|
class LambdaFilter(BaseFilter): |
|
name = '👤 Lambda' |
|
|
|
def __init__(self, filter_function: Callable[[Document], bool], exclusion_writer: DiskWriter=None): |
|
super().__init__(exclusion_writer) |
|
self.filter_function = filter_function |
|
|
|
def filter(self, doc: Document) -> bool: |
|
return self.filter_function(doc) |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/filters/language_filter.py |
|
from typing import Literal |
|
from datatrove.data import Document |
|
from datatrove.pipeline.filters.base_filter import BaseFilter |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
from datatrove.utils.lid import FT176LID, GlotLID |
|
|
|
class LanguageFilter(BaseFilter): |
|
name = '🌍 Language ID' |
|
_requires_dependencies = [('fasttext', 'fasttext-wheel'), 'fasteners'] |
|
|
|
def __init__(self, languages: list[str] | str | None=None, language_threshold: float=0.65, exclusion_writer: DiskWriter=None, backend: Literal['ft176', 'glotlid']='ft176', label_only: bool=False, keep_top_pairs_threshold: float=-1): |
|
super().__init__(exclusion_writer) |
|
self.language_threshold = language_threshold |
|
if isinstance(languages, str): |
|
languages = list(languages) |
|
self.languages = languages |
|
self.backend = backend |
|
self.model = FT176LID(languages) if backend == 'ft176' else GlotLID(languages) |
|
self.label_only = label_only |
|
self.keep_top_pairs_threshold = keep_top_pairs_threshold |
|
|
|
def filter(self, doc: Document) -> bool: |
|
(best_lang_pair, lang_pairs) = self.model.predict(doc) |
|
(lang, lang_score) = best_lang_pair |
|
if self.backend == 'glotlid': |
|
(lang, script) = lang.split('_') |
|
doc.metadata['language_script'] = script |
|
doc.metadata['language'] = lang |
|
doc.metadata['language_score'] = lang_score |
|
if self.keep_top_pairs_threshold != -1: |
|
for (key, value) in lang_pairs.items(): |
|
if value > self.keep_top_pairs_threshold: |
|
doc.metadata[f'top_language_{key}_score'] = value |
|
return self.label_only or (self.languages and any((score > self.language_threshold for score in lang_pairs.values()))) or (self.languages is None and lang_score > self.language_threshold) |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/filters/regex_filter.py |
|
import re |
|
from datatrove.data import Document |
|
from datatrove.pipeline.filters.base_filter import BaseFilter |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
|
|
class RegexFilter(BaseFilter): |
|
name = '🕵 Regex' |
|
|
|
def __init__(self, regex_exp: str, exclusion_writer: DiskWriter=None): |
|
super().__init__(exclusion_writer) |
|
self.regex = re.compile(regex_exp) |
|
|
|
def filter(self, doc: Document) -> bool: |
|
return not self.regex.search(doc.text) |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/filters/sampler_filter.py |
|
from numpy.random import default_rng |
|
from datatrove.data import Document |
|
from datatrove.pipeline.filters.base_filter import BaseFilter |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
|
|
class SamplerFilter(BaseFilter): |
|
name = '🎲 Sampler' |
|
|
|
def __init__(self, rate: float | None=0.5, seed: int=None, exclusion_writer: DiskWriter=None): |
|
"""""" |
|
super().__init__(exclusion_writer) |
|
self.rate = rate |
|
self.uniform = default_rng(seed).uniform |
|
|
|
def filter(self, doc: Document) -> bool | tuple[bool, str]: |
|
return self.uniform() < self.rate |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/filters/unigram_log_probs.py |
|
import csv |
|
import os |
|
import urllib.request |
|
import numpy as np |
|
from huggingface_hub import cached_assets_path |
|
from datatrove.data import Document |
|
from datatrove.pipeline.filters.base_filter import BaseFilter |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
from datatrove.utils.logging import logger |
|
from datatrove.utils.typeshelper import Languages |
|
from datatrove.utils.word_tokenizers import load_word_tokenizer |
|
UNIGRAM_DOWNLOAD = 'https://ai2-s2-research-public.s3-us-west-2.amazonaws.com/lucas/google-1T-unigram/unigram_freq.csv' |
|
|
|
class UnigramLogProbFilter(BaseFilter): |
|
name = '🧑\u200d🍳 Unigram log-prob filter' |
|
|
|
def __init__(self, logprobs_threshold: float=-10, exclusion_writer: DiskWriter=None, language: str=Languages.english): |
|
super().__init__(exclusion_writer) |
|
self.logprobs_threshold = logprobs_threshold |
|
self.unigram_frequencies = self.get_frequencies() |
|
self.tokenizer = load_word_tokenizer(language) |
|
|
|
def get_frequencies(self): |
|
download_dir = cached_assets_path(library_name='datatrove', namespace='filters', subfolder='unigram_logprob_filter') |
|
unigram_freq_file = os.path.join(download_dir, 'unigram_freq.csv') |
|
if not os.path.isfile(unigram_freq_file): |
|
logger.info('⬇️ Downloading unigram-frequencies ...') |
|
urllib.request.urlretrieve(UNIGRAM_DOWNLOAD, unigram_freq_file) |
|
words = [] |
|
counts = [] |
|
with open(unigram_freq_file, encoding='utf-8', newline='') as f: |
|
csv_reader = csv.DictReader(f) |
|
for row in csv_reader: |
|
words.append(row['word']) |
|
counts.append(int(row['count'])) |
|
total_count = sum(counts) |
|
return {word: count / total_count for (word, count) in zip(words, counts)} |
|
|
|
def get_logprob(self, doc): |
|
words = self.tokenizer.word_tokenize(doc.text) |
|
freqs = [self.unigram_frequencies.get(word.lower(), 1e-09) for word in words] |
|
if len(freqs) == 0: |
|
return 0 |
|
return sum([np.log(f) for f in freqs]) / len(freqs) |
|
|
|
def filter(self, doc: Document) -> bool: |
|
return self.get_logprob(doc) > self.logprobs_threshold |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/filters/url_filter.py |
|
import os |
|
import re |
|
import tarfile |
|
from typing import Iterable |
|
from huggingface_hub import cached_assets_path |
|
from datatrove.data import Document |
|
from datatrove.io import safely_create_file |
|
from datatrove.utils._import_utils import ASSETS_PATH |
|
from datatrove.utils.logging import logger |
|
from ..writers.disk_base import DiskWriter |
|
from .base_filter import BaseFilter |
|
normalizer = re.compile('[^a-zA-Z0-9]+') |
|
|
|
def normalize(text, replace=''): |
|
return normalizer.sub(replace, text).lower() |
|
|
|
def parse_list(line, do_normalize=True): |
|
return {normalize(x) if do_normalize else x.strip() for x in line if x[0] != '#'} |
|
|
|
def get_list(abs_path: str, file_name: str, extra: set, do_normalize: bool=True): |
|
with open(os.path.join(abs_path, file_name)) as f: |
|
return parse_list(f, do_normalize).union(extra) |
|
|
|
class URLFilter(BaseFilter): |
|
name = '😈 Url-filter' |
|
_requires_dependencies = ['tldextract', 'fasteners', ('ahocorasick', 'pyahocorasick')] |
|
|
|
def __init__(self, soft_word_threshold: int=2, extra_domains: Iterable=None, extra_urls: Iterable=None, banned_words: Iterable=None, banned_subwords: Iterable=None, soft_banned_words: Iterable=None, use_integrated_lists: bool=True, exclusion_writer: DiskWriter=None): |
|
import ahocorasick |
|
from tldextract import TLDExtract |
|
super().__init__(exclusion_writer) |
|
self.soft_word_threshold = soft_word_threshold |
|
self.block_listed_domains = parse_list(extra_domains, do_normalize=False) if extra_domains else set() |
|
self.block_listed_url = parse_list(extra_urls, do_normalize=False) if extra_urls else set() |
|
self.banned_words = parse_list(banned_words) if banned_words else set() |
|
self.banned_subwords = parse_list(banned_subwords) if banned_subwords else set() |
|
self.soft_banned_words = parse_list(soft_banned_words) if soft_banned_words else set() |
|
self.use_integrated_lists = use_integrated_lists |
|
self._downloaded = False |
|
self.tldextractor = TLDExtract() |
|
self.banned_subwords_automaton = ahocorasick.Automaton(ahocorasick.STORE_INTS) |
|
for word in self.banned_subwords: |
|
self.banned_subwords_automaton.add_word(word, len(self.banned_subwords_automaton)) |
|
if not self.use_integrated_lists: |
|
self.banned_subwords_automaton.make_automaton() |
|
|
|
def download_data(self): |
|
if self._downloaded or not self.use_integrated_lists: |
|
return |
|
download_dir = cached_assets_path(library_name='datatrove', namespace='filters', subfolder='url_filter') |
|
file_to_lock = os.path.join(download_dir, 'url_filterblacklists.tar.gz') |
|
|
|
def do_extract(): |
|
logger.info('💥 Extracting url filter blacklists...') |
|
with tarfile.open(os.path.join(ASSETS_PATH, 'url_filterblacklists.tar.gz'), 'r:gz') as tar: |
|
tar.extractall(download_dir) |
|
logger.info('💥 Extracted url filter blacklists.') |
|
safely_create_file(file_to_lock, do_extract) |
|
self.block_listed_domains = get_list(download_dir, 'adult/domains', self.block_listed_domains, do_normalize=False) |
|
self.block_listed_url = get_list(download_dir, 'adult/urls', self.block_listed_url, do_normalize=False) |
|
self.banned_words = get_list(ASSETS_PATH, 'banned_words.txt', self.banned_words) |
|
self.banned_subwords = get_list(ASSETS_PATH, 'banned_subwords.txt', self.banned_subwords) |
|
self.soft_banned_words = get_list(ASSETS_PATH, 'soft_banned_words.txt', self.soft_banned_words) |
|
for word in self.banned_subwords: |
|
self.banned_subwords_automaton.add_word(word, len(self.banned_subwords_automaton)) |
|
self.banned_subwords_automaton.make_automaton() |
|
self._downloaded = True |
|
|
|
def filter(self, document: Document) -> bool | tuple[bool, str]: |
|
self.download_data() |
|
url = document.metadata.get('url') |
|
assert url, 'Document does not have url in its metadata' |
|
url_info = self.tldextractor(url) |
|
if url_info.registered_domain in self.block_listed_domains: |
|
return (False, 'domain') |
|
if url_info.fqdn in self.block_listed_domains: |
|
return (False, 'subdomain') |
|
if url in self.block_listed_url: |
|
return (False, 'url') |
|
url_words = set(normalizer.split(url)) |
|
if any((word in url_words for word in self.banned_words)): |
|
return (False, 'hard_blacklisted') |
|
nb_soft_words = sum([word in url_words for word in self.soft_banned_words]) |
|
if nb_soft_words >= self.soft_word_threshold: |
|
return (False, 'soft_blacklisted') |
|
normalized_space = normalize(url) |
|
if self.banned_subwords and next(self.banned_subwords_automaton.iter(normalized_space), False): |
|
return (False, 'blacklisted_subword') |
|
return True |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/formatters/base.py |
|
from abc import ABC, abstractmethod |
|
from datatrove.data import DocumentsPipeline |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.utils.typeshelper import StatHints |
|
|
|
class BaseFormatter(PipelineStep, ABC): |
|
type = '✂️ - FORMAT' |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
@abstractmethod |
|
def format(self, text: str) -> str: |
|
return text |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
for doc in data: |
|
self.stat_update(StatHints.total) |
|
with self.track_time(): |
|
doc.text = self.format(doc.text) |
|
yield doc |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/formatters/pii.py |
|
import ipaddress |
|
import re |
|
from functools import partial |
|
from typing import Callable |
|
from datatrove.pipeline.formatters.base import BaseFormatter |
|
|
|
class PIIReplacer: |
|
|
|
def __init__(self, regex: str, replacements: tuple[str, ...] | str, validator: Callable[[str], bool] | None=None): |
|
self.regex: re.Pattern = re.compile(regex) |
|
self.replacements = replacements if type(replacements) is tuple else tuple(replacements) if not isinstance(replacements, str) else (replacements,) |
|
self.validator = validator |
|
self._replace_i = 0 |
|
|
|
def replace(self, text: str): |
|
|
|
def get_replacement(matchobj): |
|
if self.validator and (not self.validator(matchobj.group(0))): |
|
return matchobj.group(0) |
|
replacement = self.replacements[self._replace_i] |
|
self._replace_i = (self._replace_i + 1) % len(self.replacements) |
|
return replacement |
|
return self.regex.sub(get_replacement, text) |
|
|
|
def public_ip_validator(ip, public_only: bool=True) -> bool: |
|
try: |
|
ip = ipaddress.ip_address(ip) |
|
return not public_only or ip.is_global |
|
except ValueError: |
|
return False |
|
|
|
class PIIFormatter(BaseFormatter): |
|
name = '📞 PII' |
|
|
|
def __init__(self, remove_emails: bool=True, remove_ips: bool=True, only_remove_public_ips: bool=True, email_replacement: tuple[str, ...] | str=('[email protected]', '[email protected]'), ip_replacement: tuple[str, ...] | str=('22.214.171.124', '126.96.36.199', '188.8.131.52', '184.108.40.206', '220.127.116.11', '18.104.22.168')): |
|
super().__init__() |
|
self.remove_emails = remove_emails |
|
self.remove_ips = remove_ips |
|
self.emails_replacer = PIIReplacer("\\b[A-Za-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\.[A-Za-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:(?:[A-Za-z0-9](?:[A-Za-z0-9-]*[A-Za-z0-9])?\\.)+[A-Za-z0-9](?:[A-Za-z0-9-]*[A-Za-z0-9])?|\\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[A-Za-z0-9-]*[A-Za-z0-9]:)])", email_replacement) |
|
self.ip_replacer = PIIReplacer('(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)', validator=partial(public_ip_validator, public_only=only_remove_public_ips), replacements=ip_replacement) |
|
|
|
def format(self, text: str) -> str: |
|
if self.remove_emails: |
|
text = self.emails_replacer.replace(text) |
|
if self.remove_ips: |
|
text = self.ip_replacer.replace(text) |
|
return text |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/formatters/symbol_lines_remover.py |
|
from ...utils.text import PUNCTUATION_SET |
|
from .base import BaseFormatter |
|
|
|
class SymbolLinesFormatter(BaseFormatter): |
|
name = ' ⚞ Symbol Lines Remover' |
|
|
|
def __init__(self, replace_char: str=''): |
|
super().__init__() |
|
self.replace_char = replace_char |
|
|
|
def format(self, text: str) -> str: |
|
formatted = [] |
|
in_removed_span = False |
|
for line in text.splitlines(): |
|
chars_line = line.strip() != '' and all((c in PUNCTUATION_SET or c == ' ' for c in line)) |
|
if chars_line and (not in_removed_span): |
|
if self.replace_char: |
|
formatted.append(self.replace_char) |
|
in_removed_span = True |
|
elif not chars_line: |
|
formatted.append(line) |
|
in_removed_span = False |
|
return '\n'.join(formatted) |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/readers/base.py |
|
import random |
|
from abc import abstractmethod |
|
from types import MethodType |
|
from typing import Callable |
|
from tqdm import tqdm |
|
from datatrove.data import Document, DocumentsPipeline |
|
from datatrove.io import DataFileLike, DataFolderLike, get_datafolder, get_shard_from_paths_file |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.utils.logging import logger |
|
|
|
class BaseReader(PipelineStep): |
|
type = '📖 - READER' |
|
|
|
def __init__(self, limit: int=-1, skip: int=0, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None): |
|
super().__init__() |
|
self.limit = limit |
|
self.skip = skip |
|
self.text_key = text_key |
|
self.id_key = id_key |
|
self.adapter = MethodType(adapter, self) if adapter else self._default_adapter |
|
self._empty_warning = False |
|
self.default_metadata = default_metadata |
|
|
|
def _default_adapter(self, data: dict, path: str, id_in_file: int | str): |
|
return {'text': data.pop(self.text_key, ''), 'id': data.pop(self.id_key, f'{path}/{id_in_file}'), 'media': data.pop('media', []), 'metadata': data.pop('metadata', {}) | data} |
|
|
|
def get_document_from_dict(self, data: dict, source_file: str, id_in_file: int | str): |
|
parsed_data = self.adapter(data, source_file, id_in_file) |
|
if not parsed_data.get('text', None): |
|
if not self._empty_warning: |
|
self._empty_warning = True |
|
logger.warning(f'Found document without text, skipping. Is your `text_key` ("{self.text_key}") correct? Available keys: {list(data.keys())}') |
|
return None |
|
document = Document(**parsed_data) |
|
if self.default_metadata: |
|
document.metadata = self.default_metadata | document.metadata |
|
return document |
|
|
|
@abstractmethod |
|
def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
raise NotImplementedError |
|
|
|
class BaseDiskReader(BaseReader): |
|
type = '📖 - READER' |
|
|
|
def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, limit: int=-1, skip: int=0, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False): |
|
super().__init__(limit, skip, adapter, text_key, id_key, default_metadata) |
|
self.data_folder = get_datafolder(data_folder) |
|
self.paths_file = paths_file |
|
self.recursive = recursive |
|
self.glob_pattern = glob_pattern |
|
self.shuffle_files = shuffle_files |
|
self.file_progress = file_progress |
|
self.doc_progress = doc_progress |
|
|
|
def get_document_from_dict(self, data: dict, source_file: str, id_in_file: int): |
|
document = super().get_document_from_dict(data, source_file, id_in_file) |
|
if document: |
|
document.metadata.setdefault('file_path', self.data_folder.resolve_paths(source_file)) |
|
return document |
|
|
|
@abstractmethod |
|
def read_file(self, filepath: str) -> DocumentsPipeline: |
|
raise NotImplementedError |
|
|
|
def read_files_shard(self, shard: list[str]) -> DocumentsPipeline: |
|
li = 0 |
|
skipped = 0 |
|
with tqdm(total=self.limit if self.limit != -1 else None, desc='Document progress', unit='doc', disable=not self.doc_progress) as doc_pbar, tqdm(total=len(shard), desc='File progress', unit='file', disable=not self.file_progress) as file_pbar: |
|
for (i, filepath) in enumerate(shard): |
|
self.stat_update('input_files') |
|
logger.info(f'Reading input file {filepath}, {i + 1}/{len(shard)}') |
|
di = 0 |
|
ndocs = 0 |
|
for (di, document) in enumerate(self.read_file(filepath)): |
|
if skipped < self.skip: |
|
skipped += 1 |
|
continue |
|
if self.limit != -1 and li >= self.limit: |
|
break |
|
yield document |
|
doc_pbar.update() |
|
li += 1 |
|
ndocs += 1 |
|
file_pbar.update() |
|
self.stat_update('documents', value=ndocs, unit='input_file') |
|
if self.limit != -1 and li >= self.limit: |
|
break |
|
|
|
def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
if data: |
|
yield from data |
|
files_shard = self.data_folder.get_shard(rank, world_size, recursive=self.recursive, glob_pattern=self.glob_pattern) if not self.paths_file else list(get_shard_from_paths_file(self.paths_file, rank, world_size)) |
|
if len(files_shard) == 0: |
|
if rank == 0: |
|
raise RuntimeError(f'No files found on {self.data_folder.path}!') |
|
logger.warning(f'No files found on {self.data_folder.path} for rank={rank!r}') |
|
if self.shuffle_files: |
|
random.shuffle(files_shard) |
|
for doc in self.read_files_shard(files_shard): |
|
self.update_doc_stats(doc) |
|
yield doc |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/readers/csv.py |
|
import csv |
|
from typing import Callable, Literal |
|
from datatrove.io import DataFileLike, DataFolderLike |
|
from datatrove.pipeline.readers.base import BaseDiskReader |
|
|
|
class CsvReader(BaseDiskReader): |
|
name = '🔢 Csv' |
|
|
|
def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, compression: Literal['infer', 'gzip', 'zstd'] | None='infer', limit: int=-1, skip: int=0, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False): |
|
super().__init__(data_folder, paths_file, limit, skip, file_progress, doc_progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, shuffle_files) |
|
self.compression = compression |
|
self.empty_warning = False |
|
|
|
def read_file(self, filepath: str): |
|
with self.data_folder.open(filepath, 'r', compression=self.compression) as f: |
|
csv_reader = csv.DictReader(f) |
|
for (di, d) in enumerate(csv_reader): |
|
with self.track_time(): |
|
document = self.get_document_from_dict(d, filepath, di) |
|
if not document: |
|
continue |
|
yield document |
|
CSVReader = CsvReader |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/readers/huggingface.py |
|
import copy |
|
from typing import Callable |
|
from loguru import logger |
|
from tqdm import tqdm |
|
from datatrove.data import DocumentsPipeline |
|
from datatrove.pipeline.readers.base import BaseReader |
|
|
|
class HuggingFaceDatasetReader(BaseReader): |
|
name = '🤗 HuggingFace' |
|
_requires_dependencies = ['datasets'] |
|
|
|
def __init__(self, dataset: str, dataset_options: dict | None=None, streaming: bool=False, limit: int=-1, skip: int=0, batch_size: int=1000, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, shuffle_files: bool=False): |
|
super().__init__(limit, skip, adapter, text_key, id_key, default_metadata) |
|
self.dataset = dataset |
|
self.dataset_options = dataset_options or {} |
|
self.batch_size = batch_size |
|
self.doc_progress = doc_progress |
|
self.streaming = streaming |
|
self.shuffle_files = shuffle_files |
|
|
|
def get_document_from_dict(self, data: dict, source: str, id_in_file: int | str): |
|
document = super().get_document_from_dict(data, source, id_in_file) |
|
if document: |
|
document.metadata.setdefault('dataset', source) |
|
return document |
|
|
|
def _get_dataset_shard(self, dst, rank: int, world_size: int): |
|
from datasets import Dataset, IterableDataset |
|
from datasets.distributed import split_dataset_by_node |
|
if isinstance(dst, Dataset): |
|
return dst.shard(world_size, rank, contiguous=True) |
|
elif isinstance(dst, IterableDataset) and dst.n_shards > 1: |
|
if rank >= dst.n_shards: |
|
logger.warning(f'Requested shard {rank} of a streaming dataset, but it only has {dst.n_shards} shards.') |
|
return None |
|
ex_iterable = dst._ex_iterable.shard_data_sources(rank, world_size) |
|
return IterableDataset(ex_iterable=ex_iterable, info=dst._info.copy(), split=dst._split, formatting=dst._formatting, shuffling=copy.deepcopy(dst._shuffling), distributed=copy.deepcopy(dst._distributed), token_per_repo_id=dst._token_per_repo_id) |
|
else: |
|
return split_dataset_by_node(dst, rank, world_size) |
|
|
|
def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
from datasets import load_dataset |
|
if data: |
|
yield from data |
|
ds = load_dataset(self.dataset, **self.dataset_options, streaming=self.streaming) |
|
if self.shuffle_files: |
|
if not self.streaming: |
|
ds = ds.shuffle(seed=42) |
|
else: |
|
ds = ds.shuffle(seed=42, buffer_size=1000) |
|
if isinstance(ds, dict): |
|
raise ValueError(f"You forgot to specify the split of the dataset. Update your dataset_options to include 'split'. Available splits: {list(ds.keys())}") |
|
shard = self._get_dataset_shard(ds, rank, world_size) |
|
if not shard: |
|
return |
|
with tqdm(total=self.limit if self.limit != -1 else None, disable=not self.doc_progress) as pbar: |
|
li = 0 |
|
for batch in shard.iter(self.batch_size): |
|
if self.limit != -1 and li >= self.limit: |
|
break |
|
documents = [] |
|
with self.track_time('batch'): |
|
for line in (dict(zip(batch, t)) for t in zip(*batch.values())): |
|
if self.limit != -1 and li >= self.limit: |
|
break |
|
document = self.get_document_from_dict(line, self.dataset, f'{rank:05d}/{li}') |
|
if not document: |
|
continue |
|
documents.append(document) |
|
self.update_doc_stats(document) |
|
self.stat_update('documents') |
|
li += 1 |
|
pbar.update() |
|
yield from documents |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/readers/ipc.py |
|
from typing import Callable |
|
from datatrove.io import DataFileLike, DataFolderLike |
|
from datatrove.pipeline.readers.base import BaseDiskReader |
|
|
|
class IpcReader(BaseDiskReader): |
|
name = '🪶 Ipc' |
|
_requires_dependencies = ['pyarrow'] |
|
|
|
def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, limit: int=-1, skip: int=0, stream: bool=False, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False): |
|
super().__init__(data_folder, paths_file, limit, skip, file_progress, doc_progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, shuffle_files) |
|
self.stream = stream |
|
|
|
def _iter_file_batches(self, filepath: str): |
|
import pyarrow as pa |
|
with self.data_folder.open(filepath, 'rb') as f: |
|
with pa.ipc.open_file(f) as ipc_reader: |
|
for i in range(ipc_reader.num_record_batches): |
|
yield ipc_reader.get_batch(i) |
|
|
|
def _iter_stream_batches(self, filepath: str): |
|
import pyarrow as pa |
|
with self.data_folder.open(filepath, 'rb') as f: |
|
with pa.ipc.open_stream(f) as ipc_stream_reader: |
|
for batch in ipc_stream_reader: |
|
yield batch |
|
|
|
def read_file(self, filepath: str): |
|
batch_iter = self._iter_file_batches(filepath) if not self.stream else self._iter_stream_batches(filepath) |
|
li = 0 |
|
for batch in batch_iter: |
|
documents = [] |
|
with self.track_time('batch'): |
|
for line in batch.to_pylist(): |
|
document = self.get_document_from_dict(line, filepath, li) |
|
if not document: |
|
continue |
|
documents.append(document) |
|
li += 1 |
|
yield from documents |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/readers/jsonl.py |
|
from typing import Callable, Literal |
|
from datatrove.io import DataFileLike, DataFolderLike |
|
from datatrove.pipeline.readers.base import BaseDiskReader |
|
from datatrove.utils.logging import logger |
|
|
|
class JsonlReader(BaseDiskReader): |
|
name = '🐿 Jsonl' |
|
_requires_dependencies = ['orjson'] |
|
|
|
def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, compression: Literal['infer', 'gzip', 'zstd'] | None='infer', limit: int=-1, skip: int=0, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False): |
|
super().__init__(data_folder, paths_file, limit, skip, file_progress, doc_progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, shuffle_files) |
|
self.compression = compression |
|
|
|
def read_file(self, filepath: str): |
|
import orjson |
|
from orjson import JSONDecodeError |
|
with self.data_folder.open(filepath, 'r', compression=self.compression) as f: |
|
try: |
|
for (li, line) in enumerate(f): |
|
with self.track_time(): |
|
try: |
|
document = self.get_document_from_dict(orjson.loads(line), filepath, li) |
|
if not document: |
|
continue |
|
except (EOFError, JSONDecodeError) as e: |
|
logger.warning(f'Error when reading `{filepath}`: {e}') |
|
continue |
|
yield document |
|
except UnicodeDecodeError as e: |
|
logger.warning(f'File `{filepath}` may be corrupted: raised UnicodeDecodeError ({e})') |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/readers/parquet.py |
|
from typing import Callable |
|
from datatrove.io import DataFileLike, DataFolderLike |
|
from datatrove.pipeline.readers.base import BaseDiskReader |
|
|
|
class ParquetReader(BaseDiskReader): |
|
name = '📒 Parquet' |
|
_requires_dependencies = ['pyarrow'] |
|
|
|
def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, limit: int=-1, skip: int=0, batch_size: int=1000, read_metadata: bool=True, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False): |
|
super().__init__(data_folder, paths_file, limit, skip, file_progress, doc_progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, shuffle_files) |
|
self.batch_size = batch_size |
|
self.read_metadata = read_metadata |
|
|
|
def read_file(self, filepath: str): |
|
import pyarrow.parquet as pq |
|
with self.data_folder.open(filepath, 'rb') as f: |
|
with pq.ParquetFile(f) as pqf: |
|
li = 0 |
|
columns = [self.text_key, self.id_key] if not self.read_metadata else None |
|
for batch in pqf.iter_batches(batch_size=self.batch_size, columns=columns): |
|
documents = [] |
|
with self.track_time('batch'): |
|
for line in batch.to_pylist(): |
|
document = self.get_document_from_dict(line, filepath, li) |
|
if not document: |
|
continue |
|
documents.append(document) |
|
li += 1 |
|
yield from documents |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/readers/warc.py |
|
from typing import TYPE_CHECKING, Callable, Literal |
|
from datatrove.io import DataFileLike, DataFolderLike |
|
from datatrove.pipeline.readers.base import BaseDiskReader |
|
if TYPE_CHECKING: |
|
from warcio.recordloader import ArcWarcRecord |
|
|
|
class WarcReader(BaseDiskReader): |
|
name = '🕷 Warc' |
|
_requires_dependencies = ['warcio', ('cchardet', 'faust-cchardet'), ('magic', 'python-magic')] |
|
|
|
def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, compression: Literal['infer', 'gzip', 'zstd'] | None='infer', limit: int=-1, skip: int=0, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False): |
|
self.compression = compression |
|
super().__init__(data_folder, paths_file, limit, skip, file_progress, doc_progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, shuffle_files) |
|
|
|
def read_file(self, filepath: str): |
|
from warcio.archiveiterator import ArchiveIterator |
|
with self.data_folder.open(filepath, 'rb', compression=self.compression) as f: |
|
for (ri, record) in enumerate(ArchiveIterator(f)): |
|
with self.track_time(): |
|
extracted_data = process_record(record) |
|
if not extracted_data: |
|
continue |
|
document = self.get_document_from_dict(extracted_data, filepath, ri) |
|
if not document: |
|
continue |
|
yield document |
|
|
|
def process_record(record: 'ArcWarcRecord') -> dict | None: |
|
import cchardet |
|
import magic |
|
if record.rec_type != 'response' and record.rec_type != 'conversion': |
|
return |
|
mime_type = record.rec_headers.get('WARC-Identified-Payload-Type', None) |
|
if mime_type is not None and (mime_type != 'text/html' and (record.rec_type != 'conversion' or mime_type != 'text/plain')): |
|
return |
|
content_bytes = record.content_stream().read() |
|
if mime_type is None: |
|
mime_type = magic.from_buffer(content_bytes, mime=True) |
|
if mime_type != 'text/html' and (record.rec_type != 'conversion' or mime_type != 'text/plain'): |
|
return |
|
charset = 'UTF-8' |
|
try: |
|
html = content_bytes.decode(charset) |
|
except UnicodeDecodeError: |
|
encoding_det = cchardet.detect(content_bytes)['encoding'] |
|
if not encoding_det or encoding_det == charset: |
|
return |
|
charset = encoding_det |
|
try: |
|
html = content_bytes.decode(charset) |
|
except (UnicodeDecodeError, LookupError): |
|
return |
|
id_ = record.rec_headers['WARC-Record-ID'] |
|
url = record.rec_headers.get('WARC-Target-URI', None) |
|
date = record.rec_headers.get('WARC-Date', None) |
|
if not url: |
|
url = dict(record.rec_headers.headers)['uri'] |
|
if not date: |
|
date = dict(record.rec_headers.headers)['archive-date'] |
|
return {'text': html, 'id': id_, 'url': url, 'date': date} |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/stats/__init__.py |
|
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, STAT_TYPE, TopKConfig |
|
from datatrove.pipeline.stats.contamination_stats import WordsContaminationStats |
|
from datatrove.pipeline.stats.doc_stats import DocStats |
|
from datatrove.pipeline.stats.lang_stats import LangStats |
|
from datatrove.pipeline.stats.line_stats import LineStats |
|
from datatrove.pipeline.stats.merger import STATS_MERGED_NAME, StatsMerger |
|
from datatrove.pipeline.stats.paragraph_stats import ParagraphStats |
|
from datatrove.pipeline.stats.perplexity_stats import CCNetPerplexityStats |
|
from datatrove.pipeline.stats.sentence_stats import SentenceStats |
|
from datatrove.pipeline.stats.token_stats import TokenStats |
|
from datatrove.pipeline.stats.word_stats import WordStats |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/stats/base.py |
|
import heapq |
|
import json |
|
from abc import abstractmethod |
|
from collections import defaultdict |
|
from typing import get_args |
|
from loguru import logger |
|
from datatrove.data import Document, DocumentsPipeline |
|
from datatrove.io import DataFolderLike, get_datafolder |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, STAT_TYPE, TopKConfig |
|
from datatrove.utils.stats import MetricStatsDict |
|
|
|
class BaseStats(PipelineStep): |
|
type = '📊 - STATS' |
|
name = '👑 Summary stats' |
|
_requires_dependencies = ['tldextract'] |
|
|
|
def __init__(self, output_folder: DataFolderLike, groups_to_compute: list[GROUP] | None=None, histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: |
|
from tldextract import TLDExtract |
|
super().__init__() |
|
self.output_folder = get_datafolder(output_folder) |
|
self.groups = groups_to_compute or list(get_args(GROUP)) |
|
self.histogram_round_digits = histogram_round_digits |
|
self.top_k_cfg = top_k_config |
|
self.tld_extractor = TLDExtract() |
|
|
|
@abstractmethod |
|
def extract_stats(self, doc: Document) -> dict[str, int | float]: |
|
raise NotImplementedError() |
|
|
|
def get_kv(self, doc: Document, value: STAT_TYPE, group_name: GROUP) -> tuple[str, STAT_TYPE | dict[str, STAT_TYPE]]: |
|
if group_name == 'histogram': |
|
return (str(round(value, self.histogram_round_digits)), {'': 1, 'chars': len(doc.text), **({'tokens': doc.metadata['token_count']} if 'token_count' in doc.metadata else {})}) |
|
elif group_name == 'summary': |
|
return ('summary', value) |
|
elif group_name == 'fqdn': |
|
fqdn = doc.metadata.get('fqdn') |
|
if fqdn is None: |
|
fqdn = self.tld_extractor.extract_str(doc.metadata['url']).fqdn |
|
doc.metadata['fqdn'] = fqdn |
|
return (fqdn, value) |
|
elif group_name == 'suffix': |
|
suffix = doc.metadata.get('suffix') |
|
if suffix is None: |
|
suffix = self.tld_extractor.extract_str(doc.metadata['url']).suffix |
|
doc.metadata['suffix'] = suffix |
|
return (suffix, value) |
|
else: |
|
raise ValueError(f'Unknown group name: {group_name}') |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
groups_dicts: dict[GROUP, dict[str, MetricStatsDict]] = {group: defaultdict(MetricStatsDict) for group in self.groups} |
|
for doc in data: |
|
with self.track_time(): |
|
try: |
|
doc_stats = self.extract_stats(doc) |
|
except Exception as e: |
|
logger.error(f'Error while extracting stats from document {doc.id}', exc_info=e) |
|
raise e |
|
for (group, counters) in groups_dicts.items(): |
|
for (stat, value) in doc_stats.items(): |
|
(key, value) = self.get_kv(doc, value, group) |
|
if not isinstance(value, dict): |
|
counters[stat][key] += value |
|
else: |
|
for (suffix, val) in value.items(): |
|
stat_name = stat if not suffix else f'{stat}__{suffix}' |
|
counters[stat_name][key] += val |
|
doc.metadata.update(doc_stats) |
|
yield doc |
|
for (group, stats_dict) in groups_dicts.items(): |
|
group_top_k_keys = None |
|
for (stat_name, stat_values) in stats_dict.items(): |
|
if group in self.top_k_cfg.top_k_groups: |
|
if group_top_k_keys is None: |
|
group_top_k_keys = heapq.nlargest(self.top_k_cfg.top_k, stat_values, key=lambda x: stat_values[x].n) |
|
stat_values = MetricStatsDict(init={s: stat_values[s] for s in group_top_k_keys}) |
|
with self.output_folder.open(f'{group}/{stat_name}/{rank:05d}.json', 'wt') as f: |
|
json.dump(stat_values.to_dict(), f) |
|
del groups_dicts |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/stats/config.py |
|
from dataclasses import dataclass |
|
from typing import Literal |
|
GROUP = Literal['summary', 'histogram', 'fqdn', 'suffix'] |
|
|
|
@dataclass(frozen=True) |
|
class TopKConfig: |
|
top_k_groups: list[Literal['fqdn', 'suffix']] |
|
top_k: int |
|
DEFAULT_TOP_K_CONFIG = TopKConfig(top_k_groups=['fqdn', 'suffix'], top_k=100000) |
|
STAT_TYPE = int | float |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/stats/contamination_stats.py |
|
from typing import get_args |
|
from datatrove.data import Document |
|
from datatrove.io import DataFolderLike |
|
from datatrove.pipeline.stats.base import BaseStats |
|
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig |
|
from datatrove.utils.text import TextNormConfig, simplify_text |
|
from datatrove.utils.typeshelper import Languages |
|
from datatrove.utils.word_tokenizers import load_word_tokenizer |
|
|
|
class WordsContaminationStats(BaseStats): |
|
name = '😷 Words contamination' |
|
|
|
def __init__(self, output_folder: DataFolderLike, words: list[str], norm_config: TextNormConfig=TextNormConfig(), language: str=Languages.english, groups_to_compute: list[GROUP]=list(get_args(GROUP)), histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: |
|
super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config=top_k_config) |
|
if len(words) == 0: |
|
raise ValueError('At least one word must be provided') |
|
self.norm_config = norm_config |
|
self.language = language |
|
self.words = words |
|
|
|
def extract_stats(self, doc: Document) -> dict[str, int | float]: |
|
word_tokenizer = load_word_tokenizer(self.language) |
|
doc_words = word_tokenizer.word_tokenize(simplify_text(doc.text, self.norm_config)) |
|
return {f'words_contamination_{self.words[0]}': sum([1 for word in doc_words if word in self.words]) / len(doc_words)} |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/stats/doc_stats.py |
|
import re |
|
from typing import get_args |
|
from datatrove.data import Document |
|
from datatrove.io import DataFolderLike |
|
from datatrove.pipeline.stats.base import BaseStats |
|
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig |
|
from datatrove.utils.text import PUNCTUATION |
|
ELIPSIS = ['...', '…'] |
|
|
|
class DocStats(BaseStats): |
|
name = '📜 Doc stats' |
|
|
|
def __init__(self, output_folder: DataFolderLike, groups_to_compute: list[GROUP]=list(get_args(GROUP)), histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: |
|
super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config) |
|
self.elipsis_regex = re.compile('|'.join([f'(?:{re.escape(elipsis)})' for elipsis in ELIPSIS])) |
|
self.punc_regex = re.compile('|'.join([f'(?:{re.escape(punc)})' for punc in PUNCTUATION])) |
|
|
|
def extract_stats(self, doc: Document) -> dict[str, int | float]: |
|
return {'length': len(doc.text), 'white_space_ratio': sum([1 for c in doc.text if c.isspace()]) / len(doc.text), 'non_alpha_digit_ratio': sum([1 for c in doc.text if not c.isalpha() and (not c.isdigit())]) / len(doc.text), 'digit_ratio': sum([1 for c in doc.text if c.isdigit()]) / len(doc.text), 'uppercase_ratio': sum([1 for c in doc.text if c.isupper()]) / len(doc.text), 'elipsis_ratio': sum((len(elipsis) for elipsis in self.elipsis_regex.findall(doc.text))) / len(doc.text), 'punctuation_ratio': sum((len(punc) for punc in self.punc_regex.findall(doc.text))) / len(doc.text)} |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/stats/lang_stats.py |
|
from typing import get_args |
|
from datatrove.data import Document |
|
from datatrove.io import DataFolderLike |
|
from datatrove.pipeline.stats.base import BaseStats |
|
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig |
|
from datatrove.utils.lid import FT176LID |
|
|
|
class LangStats(BaseStats): |
|
name = '🎤 Language stats' |
|
|
|
def __init__(self, output_folder: DataFolderLike, language: str, groups_to_compute: list[GROUP]=list(get_args(GROUP)), histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: |
|
super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config) |
|
self.fasttext = FT176LID([language]) |
|
self.language = language |
|
|
|
def extract_stats(self, doc: Document) -> dict[str, int | float]: |
|
language_score = 0 |
|
if doc.metadata.get('language') == self.language and 'language_score' in doc.metadata: |
|
language_score = doc.metadata['language_score'] |
|
else: |
|
language_score = self.fasttext.predict(doc)[1][self.language] |
|
return {f'fasttext_{self.language}': language_score} |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/stats/line_stats.py |
|
from typing import get_args |
|
from datatrove.data import Document |
|
from datatrove.io import DataFolderLike |
|
from datatrove.pipeline.filters.c4_filters import END_PUNCTUATION |
|
from datatrove.pipeline.filters.gopher_repetition_filter import find_duplicates |
|
from datatrove.pipeline.stats.base import BaseStats |
|
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig |
|
|
|
def get_max_chars_per_line_ratio(lines, chars: int) -> float: |
|
return sum([1 for line in lines if len(line) <= chars]) / len(lines) |
|
|
|
def get_min_chars_per_line_ratio(lines, chars: int) -> float: |
|
return sum([1 for line in lines if len(line) >= chars]) / len(lines) |
|
|
|
def is_bullet_line(line: str): |
|
if len(line.strip()) == 0: |
|
return False |
|
return line.strip()[0] in '-*•' |
|
|
|
class LineStats(BaseStats): |
|
name = '🎼 Line stats' |
|
|
|
def __init__(self, output_folder: DataFolderLike, max_k_chars_per_line_tresholds: list[int] | None=None, min_k_chars_per_line_thresholds: list[int] | None=None, groups_to_compute: list[GROUP]=list(get_args(GROUP)), ignore_empty_lines: bool=False, histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: |
|
super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config) |
|
self.short_max_chars = max_k_chars_per_line_tresholds if max_k_chars_per_line_tresholds is not None else [10, 30] |
|
self.long_max_chars = min_k_chars_per_line_thresholds if min_k_chars_per_line_thresholds is not None else [2000, 10000] |
|
self.ignore_empty_lines = ignore_empty_lines |
|
|
|
def extract_stats(self, doc: Document): |
|
lines: list[str] = doc.metadata.get('lines') or doc.text.split('\n') |
|
n_lines = len(lines) |
|
lines = [line for line in lines if len(line.strip()) > 0] if self.ignore_empty_lines else lines |
|
(line_dups, char_dups) = find_duplicates(lines) |
|
return {'n_lines': n_lines, 'avg_line_length': sum([len(line) for line in lines]) / len(lines), **{f'short_line_ratio_chars_{chars}': get_max_chars_per_line_ratio(lines, chars) for chars in self.short_max_chars}, **{f'long_line_ratio_chars_{chars}': get_min_chars_per_line_ratio(lines, chars) for chars in self.long_max_chars}, 'lines_ending_with_terminal_mark_ratio': sum((1 for line in lines if line.endswith(END_PUNCTUATION))) / len(lines), 'bullet_point_lines_ratio': sum((1 for line in lines if is_bullet_line(line))) / len(lines), 'line_duplicates': line_dups / len(lines), 'line_char_duplicates': char_dups / sum((len(line) for line in lines))} |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/stats/merger.py |
|
import heapq |
|
import json |
|
from pathlib import Path |
|
from loguru import logger |
|
from tqdm import tqdm |
|
from datatrove.data import DocumentsPipeline |
|
from datatrove.io import DataFolderLike, get_datafolder |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, TopKConfig |
|
from datatrove.utils.stats import MetricStats, MetricStatsDict |
|
STATS_MERGED_NAME = 'metric.json' |
|
|
|
class StatsMerger(PipelineStep): |
|
type = '📊 - STATS' |
|
name = '🔗 Merging stats' |
|
|
|
def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, remove_input: bool=False, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: |
|
super().__init__() |
|
self.input_folder = get_datafolder(input_folder) |
|
self.output_folder = get_datafolder(output_folder) |
|
self.remove_input = remove_input |
|
self.top_k_config = top_k_config |
|
|
|
def get_leaf_non_empty_folders(self): |
|
return sorted([path for (path, folders, files) in self.input_folder.walk('') if not folders and files]) |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
folders_shard = self.get_leaf_non_empty_folders()[rank::world_size] |
|
logger.info(f'Merging {len(folders_shard)} stat folders') |
|
with self.track_time(): |
|
for folder in tqdm(folders_shard): |
|
input_files = self.input_folder.glob(f'{folder}/[0-9][0-9][0-9][0-9][0-9].json') |
|
logger.info(f'Processing folder {folder} with {len(input_files)} files') |
|
stat = MetricStatsDict() |
|
for file in tqdm(input_files): |
|
with self.input_folder.open(file, 'rt') as f: |
|
for (key, item) in json.load(f).items(): |
|
stat[key] += MetricStats.from_dict(item) |
|
with self.output_folder.open(f'{folder}/{STATS_MERGED_NAME}', 'wt') as f: |
|
group_name = Path(folder).parent.name |
|
if group_name in self.top_k_config.top_k_groups: |
|
top_k_keys = heapq.nlargest(self.top_k_config.top_k, stat, key=lambda x: stat.get(x).n) |
|
stat = MetricStatsDict(init={s: stat.get(s) for s in top_k_keys}) |
|
json.dump(stat.to_dict(), f) |
|
if self.remove_input: |
|
for file in input_files: |
|
self.input_folder.rm(file) |
|
if data: |
|
yield from data |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/stats/paragraph_stats.py |
|
from typing import get_args |
|
from datatrove.data import Document |
|
from datatrove.io import DataFolderLike |
|
from datatrove.pipeline.filters.gopher_repetition_filter import find_duplicates |
|
from datatrove.pipeline.stats.base import BaseStats |
|
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig |
|
|
|
def get_short_paragraph_ratio(paragraphs: list[str], threshold: int) -> float: |
|
return sum([1 for paragraph in paragraphs if len(paragraph) <= threshold]) / len(paragraphs) |
|
|
|
def get_long_paragraph_ratio(paragraphs: list[str], threshold: int) -> float: |
|
return sum([1 for paragraph in paragraphs if len(paragraph) >= threshold]) / len(paragraphs) |
|
|
|
class ParagraphStats(BaseStats): |
|
type = '📊 - STATS' |
|
name = '📄 Paragraph stats' |
|
|
|
def __init__(self, output_folder: DataFolderLike, short_paragraph_max_chars_threshold: list[int] | None=None, long_paragraph_max_chars_threshold: list[int] | None=None, ignore_empty_paragraphs: bool=False, histogram_round_digits: int=3, groups_to_compute: list[GROUP]=list(get_args(GROUP)), top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: |
|
super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config) |
|
self.ignore_empty_paragraphs = ignore_empty_paragraphs |
|
self.short_paragraph_max_chars_threshold = short_paragraph_max_chars_threshold or [100] |
|
self.long_paragraph_max_chars_threshold = long_paragraph_max_chars_threshold or [1000] |
|
|
|
def extract_stats(self, doc: Document) -> dict[str, int | float]: |
|
paragraphs = [p for p in doc.text.split('\n\n') if p.strip()] |
|
n_paragraphs = len(paragraphs) |
|
paragraphs = [p for p in paragraphs if p.strip()] if self.ignore_empty_paragraphs else paragraphs |
|
(paragraph_dups, paragraph_char_dups) = find_duplicates(paragraphs) |
|
return {'n_paragraphs': n_paragraphs, 'avg_paragraph_length': sum([len(p) for p in paragraphs]) / n_paragraphs, **{f'short_paragraph_ratio_{chars}': get_short_paragraph_ratio(paragraphs, chars) for chars in self.short_paragraph_max_chars_threshold}, **{f'long_paragraph_ratio_{chars}': get_long_paragraph_ratio(paragraphs, chars) for chars in self.long_paragraph_max_chars_threshold}, 'paragraph_duplicates': paragraph_dups / n_paragraphs, 'paragraph_char_duplicates': paragraph_char_dups / sum((len(p) for p in paragraphs))} |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/stats/perplexity_stats.py |
|
from typing import get_args |
|
from datatrove.data import Document |
|
from datatrove.io import DataFolderLike |
|
from datatrove.pipeline.stats.base import BaseStats |
|
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig |
|
from datatrove.utils.perplexity import KenlmModel |
|
from datatrove.utils.typeshelper import Languages |
|
|
|
class CCNetPerplexityStats(BaseStats): |
|
name = '🤯 CCNet perplexity stats' |
|
_requires_dependencies = BaseStats._requires_dependencies + ['kenlm'] |
|
|
|
def __init__(self, output_folder: DataFolderLike, model_dataset: str, language: str=Languages.english, histogram_round_digits: int=3, groups_to_compute: list[GROUP]=list(get_args(GROUP)), top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: |
|
super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config) |
|
self.model = KenlmModel(model_dataset=model_dataset, language=language) |
|
|
|
def extract_stats(self, doc: Document) -> dict[str, int | float]: |
|
return {f'ccnet_perplexity_{self.model.model_dataset}_{self.model.language}': self.model.get_perplexity(doc.text)} |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/stats/sentence_stats.py |
|
from typing import get_args |
|
from datatrove.data import Document |
|
from datatrove.io import DataFolderLike |
|
from datatrove.pipeline.stats.base import BaseStats |
|
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig |
|
from datatrove.utils.typeshelper import Languages |
|
from datatrove.utils.word_tokenizers import load_word_tokenizer |
|
|
|
def get_short_sentence_ratio(sentences: list[str], threshold: int) -> float: |
|
return sum([1 for sentence in sentences if len(sentence) <= threshold]) / len(sentences) |
|
|
|
def get_long_sentence_ratio(sentences: list[str], threshold: int) -> float: |
|
return sum([1 for sentence in sentences if len(sentence) >= threshold]) / len(sentences) |
|
|
|
class SentenceStats(BaseStats): |
|
name = '🈂️ Sentence stats' |
|
|
|
def __init__(self, output_folder: DataFolderLike, short_sentence_max_chars_threshold: list[int] | None=None, long_sentence_max_chars_threshold: list[int] | None=None, language: str=Languages.english, histogram_round_digits: int=3, groups_to_compute: list[GROUP]=list(get_args(GROUP)), top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: |
|
super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config) |
|
self.short_sentence_max_chars_threshold = short_sentence_max_chars_threshold or [20] |
|
self.long_sentence_max_chars_threshold = long_sentence_max_chars_threshold or [75] |
|
self.language = language |
|
|
|
def extract_stats(self, doc: Document) -> dict[str, int | float]: |
|
word_tokenizer = load_word_tokenizer(self.language) |
|
sentences = [s for s in word_tokenizer.sent_tokenize(doc.text) if s.strip()] |
|
return {'n_sentences': len(sentences), 'avg_sentence_length': sum([len(s) for s in sentences]) / len(sentences), **{f'short_sentence_ratio_{chars}': get_short_sentence_ratio(sentences, chars) for chars in self.short_sentence_max_chars_threshold}, **{f'long_sentence_ratio_{chars}': get_long_sentence_ratio(sentences, chars) for chars in self.long_sentence_max_chars_threshold}} |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/stats/token_stats.py |
|
from datatrove.data import Document |
|
from datatrove.io import DataFolderLike |
|
from datatrove.pipeline.stats.base import BaseStats |
|
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig |
|
from datatrove.utils.tokenization import PipelineStepWithTokenizer |
|
|
|
class TokenStats(BaseStats, PipelineStepWithTokenizer): |
|
name = '🔗 Token counter' |
|
_requires_dependencies = ['tokenizers'] + BaseStats._requires_dependencies |
|
|
|
def __init__(self, output_folder: DataFolderLike, tokenizer_name_or_path: str='gpt2', groups_to_compute: list[GROUP]=['fqdn', 'suffix', 'summary', 'histogram'], histogram_rounding: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: |
|
BaseStats.__init__(self, output_folder, groups_to_compute, histogram_rounding, top_k_config) |
|
PipelineStepWithTokenizer.__init__(self) |
|
self.tokenizer_name_or_path = tokenizer_name_or_path |
|
|
|
def extract_stats(self, doc: Document) -> dict[str, int | float]: |
|
tokens_count = doc.metadata.get('token_count', None) |
|
if tokens_count is None: |
|
tokens_count = len(self.tokenizer.encode(doc.text).tokens) |
|
return {'token_count': tokens_count} |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/stats/word_stats.py |
|
from typing import get_args |
|
from datatrove.data import Document |
|
from datatrove.io import DataFolderLike |
|
from datatrove.pipeline.filters.gopher_quality_filter import STOP_WORDS |
|
from datatrove.pipeline.stats.base import BaseStats |
|
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig |
|
from datatrove.utils.typeshelper import Languages |
|
from datatrove.utils.word_tokenizers import load_word_tokenizer |
|
|
|
def get_short_word_ratio(words: list[str], threshold: int) -> float: |
|
return sum([1 for word in words if len(word) <= threshold]) / len(words) |
|
|
|
def get_long_word_ratio(words: list[str], threshold: int) -> float: |
|
return sum([1 for word in words if len(word) >= threshold]) / len(words) |
|
|
|
class WordStats(BaseStats): |
|
name = '🈂️ Word stats' |
|
|
|
def __init__(self, output_folder: DataFolderLike, stop_words: list[str]=STOP_WORDS, short_word_max_chars_threshold: list[int] | None=None, long_word_max_chars_threshold: list[int] | None=None, language: str=Languages.english, groups_to_compute: list[GROUP]=list(get_args(GROUP)), histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: |
|
super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config) |
|
self.short_word_max_chars_threshold = short_word_max_chars_threshold or [3] |
|
self.long_word_max_chars_threshold = long_word_max_chars_threshold or [7] |
|
self.language = language |
|
self.stop_words = stop_words |
|
|
|
def extract_stats(self, doc: Document) -> dict[str, int | float]: |
|
word_tokenizer = load_word_tokenizer(self.language) |
|
words = word_tokenizer.word_tokenize(doc.text) |
|
lines = doc.text.splitlines() |
|
return {'n_words': len(words), 'avg_word_length': sum([len(word) for word in words]) / len(words), 'avg_words_per_line': len(words) / len(lines), **{f'short_word_ratio_{chars}': get_short_word_ratio(words, chars) for chars in self.short_word_max_chars_threshold}, **{f'long_word_ratio_{chars}': get_long_word_ratio(words, chars) for chars in self.long_word_max_chars_threshold}, 'type_token_ratio': len(set(words)) / len(words), 'uppercase_word_ratio': sum([1 for word in words if word.isupper()]) / len(words), 'capitalized_word_ratio': sum([1 for word in words if word.istitle()]) / len(words), 'stop_word_ratio': sum([1 for word in words if word in self.stop_words]) / len(words)} |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/tokens/context_shuffler.py |
|
import mmap |
|
import numpy as np |
|
from numpy.random import default_rng |
|
from datatrove.data import DocumentsPipeline |
|
from datatrove.io import DataFolderLike, get_datafolder |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.pipeline.tokens.merger import load_doc_ends |
|
from datatrove.utils.logging import logger |
|
|
|
class DocumentTokenizerContextShuffler(PipelineStep): |
|
name = '🗃 Context Shuffler' |
|
type = '🔢 - TOKENIZER' |
|
|
|
def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, window_size: int=2048 + 1, seed: int=None, token_size: int=2): |
|
super().__init__() |
|
self.input_folder = get_datafolder(input_folder) |
|
self.output_folder = get_datafolder(output_folder) |
|
self.window_size = window_size |
|
self.token_size = token_size |
|
self.rand = default_rng(seed) |
|
|
|
def get_ordering(self, all_doc_ends): |
|
doc_ids = np.concatenate([np.ones(len(doc_ends), dtype=int) * i for (i, doc_ends) in enumerate(all_doc_ends)]) |
|
return self.rand.permutation(doc_ids) |
|
|
|
def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
datafiles = self.input_folder.get_shard(rank, world_size, glob_pattern='*.ds') |
|
datafiles_index = self.input_folder.get_shard(rank, world_size, glob_pattern='*.ds.index') |
|
for (datafile, index) in zip(datafiles, datafiles_index): |
|
logger.info(f'Context shuffling {datafile} with a {self.window_size} token window') |
|
total_len = load_doc_ends(self.input_folder.open(index, 'rb'))[-1] |
|
nr_windows = total_len // self.window_size |
|
ordering = self.rand.permutation(np.arange(0, nr_windows, dtype=int)) |
|
with self.output_folder.open(datafile, 'wb') as fout: |
|
with self.input_folder.open(datafile, 'rb') as f: |
|
with mmap.mmap(f.fileno(), 0, prot=mmap.PROT_READ) as unshuf: |
|
with self.track_time(): |
|
for windowi in ordering: |
|
(start, end) = (windowi * self.window_size * self.token_size, (windowi + 1) * self.window_size * self.token_size) |
|
fout.write(unshuf[start:end]) |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/tokens/counter.py |
|
from datatrove.data import DocumentsPipeline |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.utils.batching import batched |
|
from datatrove.utils.tokenization import PipelineStepWithTokenizer |
|
|
|
class TokensCounter(PipelineStepWithTokenizer): |
|
name = '📊 Counter' |
|
type = '🔢 - TOKENIZER' |
|
|
|
def __init__(self, tokenizer_name_or_path: str='gpt2', count_eos_token: bool=False, batch_size: int=10000): |
|
super().__init__() |
|
self.tokenizer_name_or_path = tokenizer_name_or_path |
|
self.count_eos_token = count_eos_token |
|
self.batch_size = batch_size |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
from tokenizers import Encoding |
|
for batch in batched(data, self.batch_size): |
|
with self.track_time(unit='batch'): |
|
encoded_batch: list[Encoding] = self.tokenizer.encode_batch([document.text for document in batch]) |
|
for (document, encoded) in zip(batch, encoded_batch): |
|
count = len(encoded.ids) |
|
if self.count_eos_token: |
|
count += 1 |
|
document.metadata['token_count'] = count |
|
self.stat_update('tokens', value=count) |
|
yield document |
|
|
|
class LengthCounter(PipelineStep): |
|
name = '📊 Document length counter' |
|
type = '🔢 - TOKENIZER' |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
for document in data: |
|
count = document.metadata['token_count'] |
|
self.stats[count].update(1) |
|
yield document |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/tokens/merger.py |
|
from functools import partial |
|
from typing import BinaryIO, Generator |
|
import numpy as np |
|
from numpy.random import default_rng |
|
from tqdm import tqdm |
|
from datatrove.data import DocumentsPipeline |
|
from datatrove.io import DataFolderLike, get_datafolder |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.pipeline.tokens.tokenizer import TokenizedFile |
|
|
|
class DocumentTokenizerMerger(PipelineStep): |
|
name = '🗃 Document Merger' |
|
type = '🔢 - TOKENIZER' |
|
|
|
def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, save_filename: str, max_tokens_per_file: int=100000000000.0, max_tokens: int=-1, shuffle: bool=True, upload_block_size: int=20 * 2 ** 20, seed: int=None, save_loss_metadata: bool=False, save_final_metadata: bool=True, progress: bool=True): |
|
super().__init__() |
|
self.input_folder = get_datafolder(input_folder) |
|
self.output_folder = get_datafolder(output_folder) |
|
self.save_filename = save_filename |
|
self.max_tokens_per_file = max_tokens_per_file |
|
self.max_tokens = max_tokens |
|
self.shuffle = shuffle |
|
self.save_loss_metadata = save_loss_metadata |
|
self.rand = default_rng(seed) |
|
self.save_final_metadata = save_final_metadata |
|
self.upload_block_size = upload_block_size |
|
self.progress = progress |
|
|
|
def get_ordering(self, all_doc_ends): |
|
doc_ids = np.concatenate([np.ones(len(doc_ends), dtype=int) * i for (i, doc_ends) in enumerate(all_doc_ends)]) |
|
return doc_ids if not self.shuffle else self.rand.permutation(doc_ids) |
|
|
|
def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
assert world_size == 1, 'world_size must be 1 for DocumentTokenizerMerger' |
|
datafiles = self.input_folder.list_files(glob_pattern='*.ds') |
|
datafiles_index = self.input_folder.list_files(glob_pattern='*.ds.index') |
|
datafiles_loss = self.input_folder.list_files(glob_pattern='*.ds.loss') if self.save_loss_metadata else [None] * len(datafiles) |
|
assert len(datafiles) == len(datafiles_index) == len(datafiles_loss), f'Mismatch between number of .ds, .ds.index and/or .ds.loss files({len(datafiles)} vs {len(datafiles_index)} vs {len(datafiles_loss)})' |
|
(tokenizer_name_or_path, token_size) = (None, 2) |
|
if self.save_final_metadata: |
|
if self.input_folder.isfile(f'{datafiles[0]}.metadata'): |
|
with self.input_folder.open(f'{datafiles[0]}.metadata', 'rt') as f: |
|
tokenizer_name_or_path = f.read().splitlines()[0] |
|
if '|' in tokenizer_name_or_path: |
|
(tokenizer_name_or_path, token_size) = tokenizer_name_or_path.split('|') |
|
token_size = int(token_size) |
|
doc_ends = [load_doc_ends(self.input_folder.open(file, 'rb')) for file in datafiles_index] |
|
token_inputs = list(map(partial(get_data_reader, nb_bytes=token_size), self.input_folder.open_files(datafiles), doc_ends)) |
|
loss_inputs = list(map(partial(get_data_reader, nb_bytes=1), self.input_folder.open_files(datafiles_loss), doc_ends)) if self.save_loss_metadata else None |
|
ordering = self.get_ordering(doc_ends) |
|
file_ct = 0 |
|
output_file = TokenizedFile(output_folder=self.output_folder, filename=f'{file_ct:03d}_{self.save_filename}.ds', save_loss_metadata=self.save_loss_metadata, upload_block_size=self.upload_block_size, tokenizer_name_or_path=tokenizer_name_or_path, save_final_metadata=self.save_final_metadata, token_size=token_size) |
|
for input_file_id in tqdm(ordering, desc='Merging documents', unit='documents', total=len(ordering), disable=not self.progress): |
|
if 0 < self.max_tokens <= self.stats['tokens'].total: |
|
break |
|
if 0 < self.max_tokens_per_file <= len(output_file): |
|
output_file.close() |
|
file_ct += 1 |
|
output_file = TokenizedFile(output_folder=self.output_folder, filename=f'{file_ct:03d}_{self.save_filename}.ds', save_loss_metadata=self.save_loss_metadata, upload_block_size=self.upload_block_size, tokenizer_name_or_path=tokenizer_name_or_path, save_final_metadata=self.save_final_metadata, token_size=token_size) |
|
tokens = next(token_inputs[input_file_id]) |
|
output_file.write_bytes(tokens) |
|
if loss_inputs: |
|
output_file.write_loss_bytes(next(loss_inputs[input_file_id])) |
|
self.stat_update('tokens', value=len(tokens) // token_size) |
|
output_file.close() |
|
if self.save_final_metadata: |
|
output_file.write_final_metadata(self.stats['tokens'].total, filename=f'{self.save_filename}.ds') |
|
|
|
def load_doc_ends(file: BinaryIO) -> np.ndarray: |
|
with file as f: |
|
return np.frombuffer(f.read(), dtype=np.uint64).astype(int) |
|
|
|
def get_data_reader(file: BinaryIO, doc_ends: list, nb_bytes: int=1, start_e: int=0) -> Generator[bytes, None, None]: |
|
with file as f: |
|
if start_e != 0: |
|
f.seek(int(start_e) * nb_bytes) |
|
for r_e in doc_ends: |
|
yield f.read((r_e - start_e) * nb_bytes) |
|
start_e = r_e |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/tokens/tokenizer.py |
|
import struct |
|
from typing import TYPE_CHECKING |
|
import humanize |
|
import numpy as np |
|
from numpy.random import default_rng |
|
from datatrove.data import Document, DocumentsPipeline |
|
from datatrove.io import DataFolder, DataFolderLike, get_datafolder |
|
from datatrove.utils.batching import batched |
|
from datatrove.utils.logging import logger |
|
from datatrove.utils.tokenization import PipelineStepWithTokenizer |
|
SHUFFLING_READ_BLOCK_SIZE = 50000 |
|
SHUFFLING_CACHE_TYPE = 'none' |
|
if TYPE_CHECKING: |
|
from tokenizers import Encoding |
|
|
|
class TokenizedFile: |
|
|
|
def __init__(self, output_folder: DataFolderLike, filename: str, save_index: bool=True, save_loss_metadata: bool=False, upload_block_size: int | None=None, tokenizer_name_or_path: str | None=None, save_final_metadata: bool=False, token_size: int=2): |
|
self.output_folder = get_datafolder(output_folder) |
|
self.filename = filename |
|
self.save_index = save_index |
|
self.save_loss_metadata = save_loss_metadata |
|
self.upload_block_size = upload_block_size |
|
self.write_idx = 0 |
|
self.token_size = token_size |
|
self.token_format = 'I' if self.token_size == 4 else 'H' |
|
self.doc_ends = [] |
|
self.tokenizer_name_or_path = tokenizer_name_or_path |
|
self.save_final_metadata = save_final_metadata |
|
self.tokens_file = self.output_folder.open(self.filename, mode='wb', block_size=upload_block_size) |
|
self.loss_file: DataFolderLike | None = None |
|
if self.save_loss_metadata: |
|
self.loss_file = self.output_folder.open(f'{self.filename}.loss', mode='wb', block_size=upload_block_size) |
|
|
|
def __len__(self): |
|
return self.doc_ends[-1] if self.doc_ends else 0 |
|
|
|
def close(self): |
|
if self.tokens_file: |
|
self.tokens_file.close() |
|
if self.loss_file: |
|
self.loss_file.close() |
|
if self.save_index: |
|
index_file = self.output_folder.open(f'{self.filename}.index', mode='wb') |
|
index_file.write(struct.pack('<%sQ' % len(self.doc_ends), *self.doc_ends)) |
|
index_file.close() |
|
if self.save_final_metadata: |
|
self.write_final_metadata() |
|
|
|
def cleanup(self): |
|
self.doc_ends = [] |
|
self.output_folder.rm_file(self.filename) |
|
if self.loss_file: |
|
self.output_folder.rm_file(f'{self.filename}.loss') |
|
if self.save_final_metadata and self.output_folder.exists(f'{self.filename}.metadata'): |
|
self.output_folder.rm_file(f'{self.filename}.metadata') |
|
|
|
def write_bytes(self, tk_bytes: bytes, doc_ends: list[int]=None): |
|
self.tokens_file.write(tk_bytes) |
|
if doc_ends is not None: |
|
self.doc_ends.extend([d + self.write_idx for d in doc_ends]) |
|
self.write_idx += len(tk_bytes) // self.token_size |
|
else: |
|
self.write_idx += len(tk_bytes) // self.token_size |
|
self.doc_ends.append(self.write_idx) |
|
|
|
def write_loss_bytes(self, l_bytes: bytes): |
|
if self.save_loss_metadata: |
|
self.loss_file.write(l_bytes) |
|
|
|
def write(self, tokens: list[int], loss_values: np.ndarray | None): |
|
self.write_bytes(struct.pack(f'<%s{self.token_format}' % len(tokens), *tokens)) |
|
if loss_values is not None: |
|
self.write_loss_bytes(struct.pack('<%s?' % len(loss_values), *loss_values)) |
|
|
|
def copy(self, save_filename: str, ordering: np.ndarray, new_output_folder: DataFolder=None, rank: int=0, max_tokens_per_file: int=None) -> 'TokenizedFile': |
|
with self.output_folder.open(self.filename, mode='rb', cache_type=SHUFFLING_CACHE_TYPE, block_size=SHUFFLING_READ_BLOCK_SIZE) as tokens_file: |
|
loss_file = None if not self.loss_file else self.output_folder.open(f'{self.filename}.loss', mode='rb', cache_type=SHUFFLING_CACHE_TYPE, block_size=SHUFFLING_READ_BLOCK_SIZE // 2) |
|
sub_rank = 0 |
|
destination = get_output_filename(save_filename, rank, 'shuffled', sub_rank) |
|
new_file = TokenizedFile(self.output_folder if not new_output_folder else new_output_folder, destination, save_loss_metadata=self.save_loss_metadata, upload_block_size=self.upload_block_size, tokenizer_name_or_path=self.tokenizer_name_or_path, save_final_metadata=self.save_final_metadata, token_size=self.token_size) |
|
logger.info(f'Shuffling in {destination}...') |
|
total_tokens_written = 0 |
|
for doc_id in ordering: |
|
(start, end) = (self.doc_ends[doc_id - 1] if doc_id > 0 else 0, self.doc_ends[doc_id]) |
|
tokens_file.seek(start * self.token_size) |
|
new_file.write_bytes(tokens_file.read((end - start) * self.token_size)) |
|
if loss_file: |
|
loss_file.seek(start) |
|
new_file.write_loss_bytes(loss_file.read(end - start)) |
|
total_tokens_written += end - start |
|
if max_tokens_per_file and total_tokens_written > max_tokens_per_file: |
|
new_file.close() |
|
sub_rank += 1 |
|
destination = get_output_filename(save_filename, rank, 'shuffled', sub_rank) |
|
new_file = TokenizedFile(self.output_folder if not new_output_folder else new_output_folder, destination, save_loss_metadata=self.save_loss_metadata, upload_block_size=self.upload_block_size, tokenizer_name_or_path=self.tokenizer_name_or_path, save_final_metadata=self.save_final_metadata, token_size=self.token_size) |
|
logger.info(f'Shuffling in {destination}...') |
|
total_tokens_written = 0 |
|
if loss_file: |
|
loss_file.close() |
|
new_file.close() |
|
return new_file |
|
|
|
def write_final_metadata(self, token_count: int=-1, filename: str=None): |
|
tokenizer_name = self.tokenizer_name_or_path |
|
if not tokenizer_name: |
|
tokenizer_name = 'Unknown Tokenizer' + '|' + str(self.token_size) |
|
if filename is None: |
|
filename = self.filename |
|
with self.output_folder.open(f'{filename}.metadata', 'wt') as f: |
|
if token_count == -1: |
|
token_count = self.write_idx |
|
f.write('\n'.join([tokenizer_name + '|' + str(self.token_size), str(token_count), humanize.metric(token_count, unit='T')])) |
|
|
|
def get_output_filename(save_filename, rank: int, name: str, sub_rank: int=None): |
|
if sub_rank is not None: |
|
return '_'.join([x for x in [save_filename, f'{rank:05d}', f'{sub_rank:05d}', f'{name}.ds'] if x]) |
|
return '_'.join([x for x in [save_filename, f'{rank:05d}', f'{name}.ds'] if x]) |
|
|
|
class DocumentTokenizer(PipelineStepWithTokenizer): |
|
name = '✍️ Writer' |
|
type = '🔢 - TOKENIZER' |
|
|
|
def __init__(self, output_folder: DataFolderLike, local_working_dir: DataFolderLike | None=None, save_filename: str=None, tokenizer_name_or_path: str='gpt2', eos_token: str='<|endoftext|>', save_loss_metadata: bool=False, shuffle: bool=True, batch_size: int=10000, max_tokens_per_file: int=None, seed: int=None, save_final_metadata: bool=True, upload_block_size: int | None=None): |
|
super().__init__() |
|
self.output_folder = get_datafolder(output_folder) |
|
self.local_working_dir = get_datafolder(local_working_dir) if local_working_dir else None |
|
if self.local_working_dir and (not self.local_working_dir.is_local()): |
|
raise ValueError('local_working_dir must be a local path') |
|
if self.local_working_dir is None and shuffle and (not self.output_folder.is_local()): |
|
logger.warning('local_working_dir is not set and output folder is not local. This may slow down the process.') |
|
self.save_filename = save_filename |
|
self.tokenizer_name_or_path = tokenizer_name_or_path |
|
self.eos_token = eos_token |
|
self.save_loss_metadata = save_loss_metadata |
|
self.shuffle = shuffle |
|
self.batch_size = batch_size |
|
self.rand = default_rng(seed) |
|
self.save_final_metadata = save_final_metadata |
|
self.upload_block_size = upload_block_size |
|
self.max_tokens_per_file = max_tokens_per_file |
|
|
|
def get_loss_values(self, document: Document, encoded: 'Encoding'): |
|
if self.save_loss_metadata: |
|
loss_values = np.ones(len(encoded.ids)) |
|
if (no_loss := document.metadata.get('no_loss_ranges', None)): |
|
for (start, end) in no_loss: |
|
(t_start, t_end) = (encoded.char_to_token(start), encoded.char_to_token(end)) |
|
loss_values[t_start:t_end] = 0 |
|
if t_end is None or t_end >= len(encoded.ids): |
|
loss_values = loss_values[:t_start] |
|
return loss_values |
|
|
|
def write_unshuffled(self, data: DocumentsPipeline, filename: str): |
|
from tokenizers import Encoding |
|
unshuff = TokenizedFile(self.output_folder if not self.shuffle or not self.local_working_dir else self.local_working_dir, filename, save_index=not self.shuffle, save_loss_metadata=self.save_loss_metadata, upload_block_size=self.upload_block_size, tokenizer_name_or_path=self.tokenizer_name_or_path, save_final_metadata=self.save_final_metadata, token_size=self.token_size) |
|
for batch in batched(data, self.batch_size): |
|
with self.track_time(unit='batch'): |
|
encoded_batch: list[Encoding] = self.tokenizer.encode_batch([document.text for document in batch]) |
|
for (document, encoded) in zip(batch, encoded_batch): |
|
tokens = encoded.ids |
|
loss_values = self.get_loss_values(document, encoded) |
|
if loss_values is not None and len(loss_values) < len(tokens): |
|
tokens = tokens[:len(loss_values)] |
|
unshuff.write(tokens, loss_values) |
|
self.stat_update('tokens', value=len(tokens)) |
|
unshuff.close() |
|
return unshuff |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
unshuf_filename = get_output_filename(self.save_filename, rank, 'unshuffled') |
|
logger.info(f'Tokenizing in "{unshuf_filename}"...') |
|
outputfile: TokenizedFile = self.write_unshuffled(data, unshuf_filename) |
|
if len(outputfile) == 0: |
|
logger.warning('No data saved.') |
|
return |
|
if self.shuffle: |
|
logger.info('Shuffling...') |
|
outputfile.copy(self.save_filename, self.rand.permutation(len(outputfile.doc_ends)), self.output_folder, max_tokens_per_file=self.max_tokens_per_file, rank=rank) |
|
outputfile.cleanup() |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/writers/disk_base.py |
|
import dataclasses |
|
import os.path |
|
from abc import ABC, abstractmethod |
|
from collections import Counter |
|
from string import Template |
|
from types import MethodType |
|
from typing import IO, Callable |
|
from datatrove.data import Document, DocumentsPipeline |
|
from datatrove.io import DataFolderLike, get_datafolder |
|
from datatrove.pipeline.base import PipelineStep |
|
from datatrove.utils.typeshelper import StatHints |
|
|
|
class DiskWriter(PipelineStep, ABC): |
|
default_output_filename: str = None |
|
type = '💽 - WRITER' |
|
|
|
def __init__(self, output_folder: DataFolderLike, output_filename: str=None, compression: str | None='infer', adapter: Callable=None, mode: str='wt', expand_metadata: bool=False, max_file_size: int=-1): |
|
super().__init__() |
|
self.compression = compression |
|
self.output_folder = get_datafolder(output_folder) |
|
output_filename = output_filename or self.default_output_filename |
|
if self.compression == 'gzip' and (not output_filename.endswith('.gz')): |
|
output_filename += '.gz' |
|
elif self.compression == 'zstd' and (not output_filename.endswith('.zst')): |
|
output_filename += '.zst' |
|
self.max_file_size = max_file_size |
|
self.file_id_counter = Counter() |
|
if self.max_file_size > 0 and mode != 'wb': |
|
raise ValueError('Can only specify `max_file_size` when writing in binary mode!') |
|
self.output_filename = Template(output_filename) |
|
self.output_mg = self.output_folder.get_output_file_manager(mode=mode, compression=compression) |
|
self.adapter = MethodType(adapter, self) if adapter else self._default_adapter |
|
self.expand_metadata = expand_metadata |
|
|
|
def _default_adapter(self, document: Document) -> dict: |
|
data = {key: val for (key, val) in dataclasses.asdict(document).items() if val} |
|
if self.expand_metadata and 'metadata' in data: |
|
data |= data.pop('metadata') |
|
return data |
|
|
|
def __enter__(self): |
|
return self |
|
|
|
def close(self): |
|
self.output_mg.close() |
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb): |
|
self.close() |
|
|
|
def _get_output_filename(self, document: Document, rank: int | str=0, **kwargs) -> str: |
|
return self.output_filename.substitute({'rank': str(rank).zfill(5), 'id': document.id, **document.metadata, **kwargs}) |
|
|
|
@abstractmethod |
|
def _write(self, document: dict, file_handler: IO, filename: str): |
|
raise NotImplementedError |
|
|
|
def _on_file_switch(self, _original_name, old_filename, _new_filename): |
|
self.output_mg.pop(old_filename).close() |
|
|
|
def _get_filename_with_file_id(self, filename): |
|
if os.path.dirname(filename): |
|
return f'{os.path.dirname(filename)}/{self.file_id_counter[filename]:03d}_{os.path.basename(filename)}' |
|
return f'{self.file_id_counter[filename]:03d}_{os.path.basename(filename)}' |
|
|
|
def write(self, document: Document, rank: int=0, **kwargs): |
|
original_name = output_filename = self._get_output_filename(document, rank, **kwargs) |
|
if self.max_file_size > 0: |
|
output_filename = self._get_filename_with_file_id(original_name) |
|
if self.output_mg.get_file(output_filename).tell() >= self.max_file_size: |
|
self.file_id_counter[original_name] += 1 |
|
new_output_filename = self._get_filename_with_file_id(original_name) |
|
self._on_file_switch(original_name, output_filename, new_output_filename) |
|
output_filename = new_output_filename |
|
self._write(self.adapter(document), self.output_mg.get_file(output_filename), original_name) |
|
self.stat_update(self._get_output_filename(document, 'XXXXX', **kwargs)) |
|
self.stat_update(StatHints.total) |
|
self.update_doc_stats(document) |
|
|
|
def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: |
|
with self: |
|
for document in data: |
|
with self.track_time(): |
|
self.write(document, rank) |
|
yield document |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/writers/huggingface.py |
|
import os |
|
import random |
|
import tempfile |
|
import time |
|
from typing import Callable |
|
from huggingface_hub import CommitOperationAdd, create_commit, create_repo, preupload_lfs_files |
|
from huggingface_hub.utils import HfHubHTTPError |
|
from datatrove.io import DataFolderLike, get_datafolder |
|
from datatrove.pipeline.writers import ParquetWriter |
|
from datatrove.utils.logging import logger |
|
MAX_RETRIES = 12 |
|
BASE_DELAY = 0.1 |
|
|
|
class HuggingFaceDatasetWriter(ParquetWriter): |
|
default_output_filename: str = 'data/${rank}.parquet' |
|
name = '🤗 HuggingFace' |
|
|
|
def __init__(self, dataset: str, private: bool=True, local_working_dir: DataFolderLike | None=None, output_filename: str=None, compression: str | None=None, adapter: Callable=None, cleanup: bool=True, expand_metadata: bool=True, max_file_size: int=round(4.5 * 2 ** 30)): |
|
self.dataset = dataset |
|
self.private = private |
|
self.local_working_dir = get_datafolder(local_working_dir if local_working_dir else tempfile.TemporaryDirectory()) |
|
self.cleanup = cleanup |
|
if not self.local_working_dir.is_local(): |
|
raise ValueError('local_working_dir must be a local path') |
|
if os.environ.get('HF_HUB_ENABLE_HF_TRANSFER', '0') != '1': |
|
logger.warning('HF_HUB_ENABLE_HF_TRANSFER is not set to "1". Install hf_transfer and set the env variable for faster uploads:\npip install hf-transfer\nexport HF_HUB_ENABLE_HF_TRANSFER=1') |
|
super().__init__(output_folder=local_working_dir, output_filename=output_filename, compression=compression, adapter=adapter, expand_metadata=expand_metadata, max_file_size=max_file_size) |
|
self.operations = [] |
|
self._repo_init = False |
|
|
|
def upload_files(self, *filenames): |
|
if not self._repo_init: |
|
create_repo(self.dataset, private=self.private, repo_type='dataset', exist_ok=True) |
|
self._repo_init = True |
|
additions = [CommitOperationAdd(path_in_repo=filename, path_or_fileobj=self.local_working_dir.resolve_paths(filename)) for filename in filenames] |
|
logger.info(f"Uploading {','.join(filenames)} to the hub...") |
|
preupload_lfs_files(self.dataset, repo_type='dataset', additions=additions) |
|
logger.info(f"Upload of {','.join(filenames)} to the hub complete!") |
|
if self.cleanup: |
|
for filename in filenames: |
|
self.local_working_dir.rm(filename) |
|
self.operations.extend(additions) |
|
|
|
def close(self, rank: int=0): |
|
filelist = list(self.output_mg.get_open_files().keys()) |
|
super().close() |
|
if filelist: |
|
logger.info(f'Starting upload of {len(filelist)} files to {self.dataset}') |
|
self.upload_files(*filelist) |
|
retries = 0 |
|
while True: |
|
try: |
|
create_commit(self.dataset, repo_type='dataset', operations=self.operations, commit_message=f'DataTrove upload ({len(self.operations)} files)') |
|
break |
|
except HfHubHTTPError as e: |
|
if 'A commit has happened since' in e.server_message: |
|
if retries >= MAX_RETRIES: |
|
logger.error(f'Failed to create commit after MAX_RETRIES={MAX_RETRIES!r}. Giving up.') |
|
raise e |
|
logger.info('Commit creation race condition issue. Waiting...') |
|
time.sleep(BASE_DELAY * 2 ** retries + random.uniform(0, 2)) |
|
retries += 1 |
|
else: |
|
raise e |
|
|
|
def _on_file_switch(self, original_name, old_filename, new_filename): |
|
super()._on_file_switch(original_name, old_filename, new_filename) |
|
self.upload_files(old_filename) |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/writers/jsonl.py |
|
from typing import IO, Callable |
|
from datatrove.io import DataFolderLike |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
|
|
class JsonlWriter(DiskWriter): |
|
default_output_filename: str = '${rank}.jsonl' |
|
name = '🐿 Jsonl' |
|
_requires_dependencies = ['orjson'] |
|
|
|
def __init__(self, output_folder: DataFolderLike, output_filename: str=None, compression: str | None='gzip', adapter: Callable=None, expand_metadata: bool=False, max_file_size: int=-1): |
|
super().__init__(output_folder, output_filename=output_filename, compression=compression, adapter=adapter, expand_metadata=expand_metadata, mode='wb', max_file_size=max_file_size) |
|
|
|
def _write(self, document: dict, file_handler: IO, _filename: str): |
|
import orjson |
|
file_handler.write(orjson.dumps(document, option=orjson.OPT_APPEND_NEWLINE)) |
|
|
|
# File: datatrove-main/src/datatrove/pipeline/writers/parquet.py |
|
from collections import Counter, defaultdict |
|
from typing import IO, Callable, Literal |
|
from datatrove.io import DataFolderLike |
|
from datatrove.pipeline.writers.disk_base import DiskWriter |
|
|
|
class ParquetWriter(DiskWriter): |
|
default_output_filename: str = '${rank}.parquet' |
|
name = '📒 Parquet' |
|
_requires_dependencies = ['pyarrow'] |
|
|
|
def __init__(self, output_folder: DataFolderLike, output_filename: str=None, compression: Literal['snappy', 'gzip', 'brotli', 'lz4', 'zstd'] | None=None, adapter: Callable=None, batch_size: int=1000, expand_metadata: bool=False, max_file_size: int=5 * 2 ** 30): |
|
if compression not in {'snappy', 'gzip', 'brotli', 'lz4', 'zstd', None}: |
|
raise ValueError("Invalid compression type. Allowed types are 'snappy', 'gzip', 'brotli', 'lz4', 'zstd', or None.") |
|
super().__init__(output_folder, output_filename, compression=None, adapter=adapter, mode='wb', expand_metadata=expand_metadata, max_file_size=max_file_size) |
|
self._writers = {} |
|
self._batches = defaultdict(list) |
|
self._file_counter = Counter() |
|
self.compression = compression |
|
self.batch_size = batch_size |
|
|
|
def _on_file_switch(self, original_name, old_filename, new_filename): |
|
self._writers.pop(original_name).close() |
|
super()._on_file_switch(original_name, old_filename, new_filename) |
|
|
|
def _write_batch(self, filename): |
|
if not self._batches[filename]: |
|
return |
|
import pyarrow as pa |
|
batch = pa.RecordBatch.from_pylist(self._batches.pop(filename)) |
|
self._writers[filename].write_batch(batch) |
|
|
|
def _write(self, document: dict, file_handler: IO, filename: str): |
|
import pyarrow as pa |
|
import pyarrow.parquet as pq |
|
if filename not in self._writers: |
|
self._writers[filename] = pq.ParquetWriter(file_handler, schema=pa.RecordBatch.from_pylist([document]).schema, compression=self.compression) |
|
self._batches[filename].append(document) |
|
if len(self._batches[filename]) == self.batch_size: |
|
self._write_batch(filename) |
|
|
|
def close(self): |
|
for filename in list(self._batches.keys()): |
|
self._write_batch(filename) |
|
for writer in self._writers.values(): |
|
writer.close() |
|
self._batches.clear() |
|
self._writers.clear() |
|
super().close() |
|
|
|
# File: datatrove-main/src/datatrove/tools/check_dataset.py |
|
import argparse |
|
import os |
|
import struct |
|
from typing import IO |
|
import numpy as np |
|
from tqdm import tqdm |
|
from datatrove.io import DataFolder, get_datafolder |
|
from datatrove.utils.tokenization import load_tokenizer |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('data', type=str, help='path to folder with dataset to check', nargs='?', default=os.getcwd()) |
|
parser.add_argument('-t', '--tokenizer', type=str, help='tokenizer to use', default='gpt2') |
|
parser.add_argument('--eos', type=str, help='eos token', default='<|endoftext|>') |
|
'' |
|
|
|
def load_doc_ends(file: IO): |
|
with file as f: |
|
return np.frombuffer(f.read(), dtype=np.uint64).tolist() |
|
|
|
def load_dataset_bytes(file, doc_ends, bytes_per_value: int=2): |
|
with file as f: |
|
for (start, end) in zip([0] + doc_ends[:-1], doc_ends): |
|
data = f.read((end - start) * bytes_per_value) |
|
assert len(data) == (end - start) * bytes_per_value, 'Could not read correct number of bytes' |
|
yield data |
|
assert f.read(1) == b'', 'Dataset should be exhausted but there is more data to read' |
|
|
|
def check_dataset(input_folder: DataFolder, tokenizer: str='gpt2', eos_token: str='<|endoftext|>'): |
|
tokenizer = load_tokenizer(tokenizer) |
|
eos_token = tokenizer.token_to_id(eos_token) |
|
|
|
def open_file(path): |
|
return input_folder.open(path, 'rb') |
|
datafiles = input_folder.list_files(glob_pattern='*.ds') |
|
datafiles_index = input_folder.list_files(glob_pattern='*.ds.index') |
|
datafiles_loss = input_folder.list_files(glob_pattern='*.ds.loss') |
|
check_loss = bool(datafiles_loss) |
|
assert len(datafiles) == len(datafiles_index) and (not check_loss or len(datafiles) == len(datafiles_loss)), 'Mismatch between number of .ds, .ds.index and/or .ds.loss files' |
|
doc_ends = [load_doc_ends(open_file(file)) for file in datafiles_index] |
|
token_inputs = [load_dataset_bytes(open_file(path), ends) for (path, ends) in zip(datafiles, doc_ends)] |
|
loss_inputs = [load_dataset_bytes(open_file(path), ends, bytes_per_value=1) for (path, ends) in zip(datafiles_loss, doc_ends)] if check_loss else [None] * len(token_inputs) |
|
for (filei, (file_doc_ends, file_token_inputs, file_loss_inputs)) in enumerate(zip(doc_ends, token_inputs, loss_inputs)): |
|
for (doci, tokens) in tqdm(enumerate(file_token_inputs), total=len(file_doc_ends)): |
|
last_token = struct.unpack('<H', tokens[-2:])[0] |
|
assert last_token == eos_token, f'no EOS at doc end of doc {doci}' |
|
if __name__ == '__main__': |
|
args = parser.parse_args() |
|
input_folder: DataFolder = get_datafolder(args.data) |
|
check_dataset(input_folder, args.tokenizer, args.eos) |
|
print('All checks ok') |
|
|
|
# File: datatrove-main/src/datatrove/tools/failed_logs.py |
|
import argparse |
|
import json |
|
import os.path |
|
import re |
|
from rich.console import Console |
|
from rich.prompt import Confirm |
|
from datatrove.io import get_datafolder |
|
from datatrove.utils._import_utils import is_rich_available |
|
from datatrove.utils.logging import logger |
|
if not is_rich_available(): |
|
raise ImportError('Please install `rich` to run this command (`pip install rich`).') |
|
parser = argparse.ArgumentParser('Fetch the log files of failed tasks.') |
|
parser.add_argument('path', type=str, nargs='?', help='Path to the logging folder. Defaults to current directory.', default=os.getcwd()) |
|
RANK_FROM_LOG_FILENAME_REGEX = re.compile('logs/task_(\\d{5})\\.log') |
|
|
|
def main(): |
|
args = parser.parse_args() |
|
console = Console() |
|
logger.remove() |
|
logging_dir = get_datafolder(args.path) |
|
if not logging_dir.isfile('executor.json'): |
|
console.log('Could not find "executor.json" in the given directory. Are you sure it is a logging folder?', style='red') |
|
return |
|
with logging_dir.open('executor.json', 'rt') as f: |
|
world_size = json.load(f).get('world_size', None) |
|
if not world_size: |
|
console.log('Could not get the total number of tasks, please try relaunching the run.', style='red') |
|
return |
|
console.log(f'Found executor config: {world_size} tasks') |
|
with console.status('Fetching list of incomplete tasks'): |
|
completed = set(logging_dir.list_files('completions')) |
|
incomplete = set(filter(lambda rank: f'completions/{rank:05d}' not in completed, range(world_size))) |
|
console.log(f'Found {len(incomplete)}/{world_size} incomplete tasks.') |
|
with console.status('Looking for log files'): |
|
incomplete_logs = list(filter(lambda file: int(RANK_FROM_LOG_FILENAME_REGEX.search(file).group(1)) in incomplete, logging_dir.list_files('logs'))) |
|
console.log(f'Found {len(incomplete_logs)} log files for incomplete tasks.') |
|
first = True |
|
for incomplete_log in incomplete_logs: |
|
if not first and (not Confirm.ask(f'Show next log ([i]{incomplete_log}[/i])?', default=True)): |
|
break |
|
with console.pager(): |
|
with logging_dir.open(incomplete_log, 'rt') as f: |
|
console.print(f.read()) |
|
first = False |
|
if __name__ == '__main__': |
|
main() |
|
|
|
# File: datatrove-main/src/datatrove/tools/inspect_data.py |
|
import argparse |
|
import os.path |
|
import sys |
|
from rich.console import Console |
|
from rich.panel import Panel |
|
from rich.prompt import Confirm, Prompt |
|
from datatrove.io import DataFolder, get_datafolder |
|
from datatrove.pipeline.filters import SamplerFilter |
|
from datatrove.pipeline.readers import CSVReader, JsonlReader, ParquetReader, WarcReader |
|
from datatrove.pipeline.writers import JsonlWriter |
|
from datatrove.utils._import_utils import is_rich_available |
|
'' |
|
if not is_rich_available(): |
|
raise ImportError('Please install `rich` to run this command (`pip install rich`).') |
|
parser = argparse.ArgumentParser("Manually inspect some RefinedWeb samples. Any unknown parameters will be passed to the reader (example: 'text_key=text').") |
|
parser.add_argument('path', type=str, nargs='?', help='Path to the data folder. Defaults to current directory.', default=os.getcwd()) |
|
parser.add_argument('-r', '--reader', type=str, help="The type of Reader to use to read the data. By default it will be guessed from the file extension. Can be ('jsonl', 'parquet', 'csv' or 'warc')") |
|
parser.add_argument('-s', '--sample', type=float, help='Randomly sample a given % of samples. 1.0 to see all samples', default=1.0) |
|
parser.add_argument('-l', '--label', type=str, help='Label the examples as good/bad and store at this location', default='') |
|
console = Console() |
|
|
|
def reader_class_from_name(reader_type): |
|
match reader_type: |
|
case 'jsonl': |
|
return JsonlReader |
|
case 'csv': |
|
return CSVReader |
|
case 'parquet': |
|
return ParquetReader |
|
case 'warc': |
|
return WarcReader |
|
case other: |
|
console.log(f'[red]Unknwon reader type {other}') |
|
sys.exit(-1) |
|
|
|
def reader_factory(data_folder: DataFolder, reader_type: str=None, **kwargs): |
|
data_files = data_folder.list_files() |
|
if not data_files: |
|
console.log(f'[red]Could not find any files in "{data_folder.path}"') |
|
sys.exit(-1) |
|
if not reader_type: |
|
match data_files[0][data_files[0].index('.'):]: |
|
case '.jsonl.gz' | '.jsonl' | '.json': |
|
reader_type = 'jsonl' |
|
case '.csv': |
|
reader_type = 'csv' |
|
case '.parquet': |
|
reader_type = 'parquet' |
|
case '.warc.gz' | 'arc.gz' | '.warc': |
|
reader_type = 'warc' |
|
case other: |
|
console.log(f'[red]Could not find a matching reader for file extension "{other}"') |
|
sys.exit(-1) |
|
return reader_class_from_name(reader_type)(data_folder, **kwargs) |
|
|
|
def get_filter_expr(text=None): |
|
return (lambda x: eval(text)) if text else lambda x: True |
|
|
|
def main(): |
|
"""""" |
|
(args, extra_args) = parser.parse_known_args() |
|
kwargs = dict((extra_arg.split('=') for extra_arg in extra_args)) |
|
data_folder = get_datafolder(args.path) |
|
label_folder = get_datafolder(args.label) if args.label else None |
|
reader = reader_factory(data_folder, args.reader, **kwargs) |
|
sampler = SamplerFilter(args.sample) |
|
console.print(f'''Loading samples from "{data_folder.path}" with {reader} and sampling_rate={args.sample}.\nSamples are displayed full page one by one.\nIf you don't see any color you may run "export PAGER='less -r'".''') |
|
filter_expr_text = None |
|
if Confirm.ask("Would you like to add a filtering expression? (ex: x.metadata['token_count'] > 5000)", default=False): |
|
filter_expr_text = Confirm.get_input(console, 'Type your filtering expression: ', password=False) |
|
filter_expr = get_filter_expr(filter_expr_text) |
|
good_samples = [] |
|
bad_samples = [] |
|
iterator = sampler(reader()) |
|
try: |
|
for sample in iterator: |
|
if not filter_expr(sample): |
|
continue |
|
with console.pager(styles=True): |
|
console.print(Panel(f'[yellow]Data ID:[reset] {sample.id}\n[yellow]Metadata:[reset]\n' + '\n'.join((f'- [blue]{field}: [reset] {value}' for (field, value) in sample.metadata.items())))) |
|
console.print(sample.text) |
|
if label_folder: |
|
result = Prompt.ask("To label as good/bad example enter 'g'/'b'. Enter 'q' to skip labelling and move to the next sample. Enter 'e' (exit) to leave:", console=console, choices=['g', 'b', 'e', 'q']) |
|
if result == 'g': |
|
good_samples.append(sample) |
|
elif result == 'b': |
|
bad_samples.append(sample) |
|
elif result == 'e': |
|
break |
|
except Exception: |
|
console.print_exception() |
|
finally: |
|
if good_samples and label_folder: |
|
with JsonlWriter(label_folder, 'good_samples.jsonl', compression=None) as writer: |
|
for sample in good_samples: |
|
writer.write(sample) |
|
if bad_samples and label_folder: |
|
with JsonlWriter(label_folder, 'bad_samples.jsonl', compression=None) as writer: |
|
for sample in bad_samples: |
|
writer.write(sample) |
|
if __name__ == '__main__': |
|
main() |
|
|
|
# File: datatrove-main/src/datatrove/tools/jobs_status.py |
|
import argparse |
|
import json |
|
import os.path |
|
from rich.console import Console |
|
from datatrove.io import get_datafolder |
|
from datatrove.utils._import_utils import is_rich_available |
|
from datatrove.utils.logging import logger |
|
if not is_rich_available(): |
|
raise ImportError('Please install `rich` to run this command (`pip install rich`).') |
|
parser = argparse.ArgumentParser('Fetch all jobs that are running or complete.') |
|
parser.add_argument('path', type=str, nargs='?', help='Path to the logging folder. Defaults to current directory.', default=os.getcwd()) |
|
parser.add_argument('-p', '--log_prefix', type=str, nargs='?', help='Prefix of logging folders to be scanned.', default='') |
|
parser.add_argument('-hc', '--hide_complete', help='Hide all jobs that are already complete.', action='store_true') |
|
|
|
def main(): |
|
args = parser.parse_args() |
|
console = Console() |
|
main_folder = get_datafolder(args.path) |
|
logging_dirs = [f for (f, info) in main_folder.glob(f'{args.log_prefix}*', detail=True, maxdepth=1).items() if info['type'] == 'directory'] |
|
logger.remove() |
|
complete_jobs = 0 |
|
incomplete_jobs = 0 |
|
complete_tasks = 0 |
|
incomplete_tasks = 0 |
|
for path in logging_dirs: |
|
logging_dir = get_datafolder(main_folder.resolve_paths(path)) |
|
if not logging_dir.isfile('executor.json'): |
|
console.log(f'Could not find "executor.json" in the given directory ({path}). Are you sure it is a logging folder?', style='red') |
|
continue |
|
with logging_dir.open('executor.json', 'rt') as f: |
|
world_size = json.load(f).get('world_size', None) |
|
if not world_size: |
|
console.log(f'Could not get the total number of tasks in {path}, please try relaunching the run.', style='red') |
|
continue |
|
with console.status('Fetching list of incomplete tasks'): |
|
completed = set(logging_dir.list_files('completions')) |
|
incomplete = set(filter(lambda rank: f'completions/{rank:05d}' not in completed, range(world_size))) |
|
complete_tasks += len(completed) |
|
incomplete_tasks += len(incomplete) |
|
if len(incomplete) == 0: |
|
emoji = '✅' |
|
complete_jobs += 1 |
|
else: |
|
emoji = '❌' |
|
incomplete_jobs += 1 |
|
if len(incomplete) > 0 or not args.hide_complete: |
|
console.log(f"{emoji} {path + ':': <50}{len(completed)}/{world_size} ({len(completed) / world_size:.0%}) completed tasks.") |
|
if complete_jobs + incomplete_jobs > 0: |
|
console.log(f'Summary: {complete_jobs}/{complete_jobs + incomplete_jobs} ({complete_jobs / (complete_jobs + incomplete_jobs):.0%}) jobs completed, {complete_tasks}/{complete_tasks + incomplete_tasks} ({complete_tasks / (complete_tasks + incomplete_tasks):.0%}) tasks completed.') |
|
else: |
|
console.log('No jobs found.') |
|
if __name__ == '__main__': |
|
main() |
|
|
|
# File: datatrove-main/src/datatrove/tools/launch_pickled_pipeline.py |
|
import argparse |
|
import dill |
|
from datatrove.executor.base import PipelineExecutor |
|
from datatrove.io import open_file |
|
parser = argparse.ArgumentParser('Loads a pickled pipeline executor and launches it.') |
|
parser.add_argument('path', type=str, help='Path to the pickled file (usually a file called executor.pik)') |
|
|
|
def main(): |
|
args = parser.parse_args() |
|
with open_file(args.path, 'rb') as f: |
|
executor: PipelineExecutor = dill.load(f) |
|
executor.run() |
|
if __name__ == '__main__': |
|
main() |
|
|
|
# File: datatrove-main/src/datatrove/tools/merge_stats.py |
|
import argparse |
|
import json |
|
import os.path |
|
from tqdm import tqdm |
|
from datatrove.io import get_datafolder, open_file |
|
from datatrove.utils.logging import logger |
|
from datatrove.utils.stats import PipelineStats |
|
parser = argparse.ArgumentParser('Combine and average per task statistics into a single file.') |
|
parser.add_argument('path', type=str, nargs='?', help='Path to the stats folder. Defaults to current directory.', default=os.getcwd()) |
|
parser.add_argument('--output', '-o', type=str, help="Save file location. Defaults to 'merged_stats.json'.", default='merged_stats.json') |
|
|
|
def main(): |
|
args = parser.parse_args() |
|
stats_folder = get_datafolder(args.path) |
|
path = args.output |
|
stats = [] |
|
for file in tqdm(stats_folder.list_files()): |
|
with stats_folder.open(file, 'rt') as f: |
|
stats.append(PipelineStats.from_json(json.load(f))) |
|
merged = sum(tqdm(stats), start=PipelineStats()) |
|
with open_file(path, mode='wt') as f: |
|
merged.save_to_disk(f) |
|
logger.info(f'Processing complete. Results saved to {path}.') |
|
logger.info(merged) |
|
if __name__ == '__main__': |
|
main() |
|
|
|
|