|
# File: notebooks-main/longform-qa/lfqa_utils.py |
|
import functools |
|
import math |
|
import os |
|
from random import choice, randint |
|
from time import time |
|
import numpy as np |
|
import torch |
|
import torch.utils.checkpoint as checkpoint |
|
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler |
|
from tqdm import tqdm |
|
import faiss |
|
import nlp |
|
import pandas as pd |
|
from elasticsearch import Elasticsearch |
|
from elasticsearch.helpers import bulk, streaming_bulk |
|
from transformers import AdamW, AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer, get_linear_schedule_with_warmup |
|
pd.set_option('display.max_colwidth', None) |
|
|
|
def make_es_index_snippets(es_client, passages_dset, index_name='english_wiki_kilt_snippets_100w'): |
|
index_config = {'settings': {'number_of_shards': 1, 'analysis': {'analyzer': {'stop_standard': {'type': 'standard', ' stopwords': '_english_'}}}}, 'mappings': {'properties': {'article_title': {'type': 'text', 'analyzer': 'standard', 'similarity': 'BM25'}, 'section_title': {'type': 'text', 'analyzer': 'standard', 'similarity': 'BM25'}, 'passage_text': {'type': 'text', 'analyzer': 'standard', 'similarity': 'BM25'}}}} |
|
es_client.indices.create(index=index_name, body=index_config) |
|
number_of_docs = passages_dset.num_rows |
|
progress = tqdm(unit='docs', total=number_of_docs) |
|
successes = 0 |
|
|
|
def passage_generator(): |
|
for passage in passages_dset: |
|
yield passage |
|
for (ok, action) in streaming_bulk(client=es_client, index=index_name, actions=passage_generator()): |
|
progress.update(1) |
|
successes += ok |
|
print('Indexed %d documents' % (successes,)) |
|
|
|
def query_es_index(question, es_client, index_name='english_wiki_kilt_snippets_100w', n_results=10, min_length=20): |
|
q = question.lower() |
|
banned = ['how', 'why', 'what', 'where', 'which', 'do', 'does', 'is', '?', 'eli5', 'eli5:'] |
|
q = ' '.join([w for w in q.split() if w not in banned]) |
|
response = es_client.search(index=index_name, body={'query': {'multi_match': {'query': q, 'fields': ['article_title', 'section_title', 'passage_text^2'], 'type': 'cross_fields'}}, 'size': 2 * n_results}) |
|
hits = response['hits']['hits'] |
|
support_doc = '<P> ' + ' <P> '.join([hit['_source']['passage_text'] for hit in hits]) |
|
res_list = [dict([(k, hit['_source'][k]) for k in hit['_source'] if k != 'passage_text']) for hit in hits] |
|
for (r, hit) in zip(res_list, hits): |
|
r['passage_id'] = hit['_id'] |
|
r['score'] = hit['_score'] |
|
r['passage_text'] = hit['_source']['passage_text'] |
|
res_list = [res for res in res_list if len(res['passage_text'].split()) > min_length][:n_results] |
|
return (support_doc, res_list) |
|
|
|
class ELI5DatasetQARetriver(Dataset): |
|
|
|
def __init__(self, examples_array, extra_answer_threshold=3, min_answer_length=64, training=True, n_samples=None): |
|
self.data = examples_array |
|
self.answer_thres = extra_answer_threshold |
|
self.min_length = min_answer_length |
|
self.training = training |
|
self.n_samples = self.data.num_rows if n_samples is None else n_samples |
|
|
|
def __len__(self): |
|
return self.n_samples |
|
|
|
def make_example(self, idx): |
|
example = self.data[idx] |
|
question = example['title'] |
|
if self.training: |
|
answers = [a for (i, (a, sc)) in enumerate(zip(example['answers']['text'], example['answers']['score']))] |
|
answer_tab = choice(answers).split(' ') |
|
start_idx = randint(0, max(0, len(answer_tab) - self.min_length)) |
|
answer_span = ' '.join(answer_tab[start_idx:]) |
|
else: |
|
answer_span = example['answers']['text'][0] |
|
return (question, answer_span) |
|
|
|
def __getitem__(self, idx): |
|
return self.make_example(idx % self.data.num_rows) |
|
|
|
class RetrievalQAEmbedder(torch.nn.Module): |
|
|
|
def __init__(self, sent_encoder, dim): |
|
super(RetrievalQAEmbedder, self).__init__() |
|
self.sent_encoder = sent_encoder |
|
self.output_dim = 128 |
|
self.project_q = torch.nn.Linear(dim, self.output_dim, bias=False) |
|
self.project_a = torch.nn.Linear(dim, self.output_dim, bias=False) |
|
self.ce_loss = torch.nn.CrossEntropyLoss(reduction='mean') |
|
|
|
def embed_sentences_checkpointed(self, input_ids, attention_mask, checkpoint_batch_size=-1): |
|
if checkpoint_batch_size < 0 or input_ids.shape[0] < checkpoint_batch_size: |
|
return self.sent_encoder(input_ids, attention_mask=attention_mask)[1] |
|
else: |
|
device = input_ids.device |
|
input_shape = input_ids.size() |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
head_mask = [None] * self.sent_encoder.config.num_hidden_layers |
|
extended_attention_mask: torch.Tensor = self.sent_encoder.get_extended_attention_mask(attention_mask, input_shape, device) |
|
|
|
def partial_encode(*inputs): |
|
encoder_outputs = self.sent_encoder.encoder(inputs[0], attention_mask=inputs[1], head_mask=head_mask) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.sent_encoder.pooler(sequence_output) |
|
return pooled_output |
|
embedding_output = self.sent_encoder.embeddings(input_ids=input_ids, position_ids=None, token_type_ids=token_type_ids, inputs_embeds=None) |
|
pooled_output_list = [] |
|
for b in range(math.ceil(input_ids.shape[0] / checkpoint_batch_size)): |
|
b_embedding_output = embedding_output[b * checkpoint_batch_size:(b + 1) * checkpoint_batch_size] |
|
b_attention_mask = extended_attention_mask[b * checkpoint_batch_size:(b + 1) * checkpoint_batch_size] |
|
pooled_output = checkpoint.checkpoint(partial_encode, b_embedding_output, b_attention_mask) |
|
pooled_output_list.append(pooled_output) |
|
return torch.cat(pooled_output_list, dim=0) |
|
|
|
def embed_questions(self, q_ids, q_mask, checkpoint_batch_size=-1): |
|
q_reps = self.embed_sentences_checkpointed(q_ids, q_mask, checkpoint_batch_size) |
|
return self.project_q(q_reps) |
|
|
|
def embed_answers(self, a_ids, a_mask, checkpoint_batch_size=-1): |
|
a_reps = self.embed_sentences_checkpointed(a_ids, a_mask, checkpoint_batch_size) |
|
return self.project_a(a_reps) |
|
|
|
def forward(self, q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=-1): |
|
device = q_ids.device |
|
q_reps = self.embed_questions(q_ids, q_mask, checkpoint_batch_size) |
|
a_reps = self.embed_answers(a_ids, a_mask, checkpoint_batch_size) |
|
compare_scores = torch.mm(q_reps, a_reps.t()) |
|
loss_qa = self.ce_loss(compare_scores, torch.arange(compare_scores.shape[1]).to(device)) |
|
loss_aq = self.ce_loss(compare_scores.t(), torch.arange(compare_scores.shape[0]).to(device)) |
|
loss = (loss_qa + loss_aq) / 2 |
|
return loss |
|
|
|
def make_qa_retriever_model(model_name='google/bert_uncased_L-8_H-512_A-8', from_file=None, device='cuda:0'): |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
bert_model = AutoModel.from_pretrained(model_name).to(device) |
|
d_ids = torch.LongTensor([[bert_model.config.bos_token_id if bert_model.config.bos_token_id is not None else 1]]).to(device) |
|
d_mask = torch.LongTensor([[1]]).to(device) |
|
sent_dim = bert_model(d_ids, attention_mask=d_mask)[1].shape[-1] |
|
qa_embedder = RetrievalQAEmbedder(bert_model, sent_dim).to(device) |
|
if from_file is not None: |
|
param_dict = torch.load(from_file) |
|
qa_embedder.load_state_dict(param_dict['model']) |
|
return (tokenizer, qa_embedder) |
|
|
|
def make_qa_retriever_batch(qa_list, tokenizer, max_len=64, device='cuda:0'): |
|
q_ls = [q for (q, a) in qa_list] |
|
a_ls = [a for (q, a) in qa_list] |
|
q_toks = tokenizer.batch_encode_plus(q_ls, max_length=max_len, pad_to_max_length=True) |
|
(q_ids, q_mask) = (torch.LongTensor(q_toks['input_ids']).to(device), torch.LongTensor(q_toks['attention_mask']).to(device)) |
|
a_toks = tokenizer.batch_encode_plus(a_ls, max_length=max_len, pad_to_max_length=True) |
|
(a_ids, a_mask) = (torch.LongTensor(a_toks['input_ids']).to(device), torch.LongTensor(a_toks['attention_mask']).to(device)) |
|
return (q_ids, q_mask, a_ids, a_mask) |
|
|
|
def train_qa_retriever_epoch(model, dataset, tokenizer, optimizer, scheduler, args, e=0): |
|
model.train() |
|
train_sampler = RandomSampler(dataset) |
|
model_collate_fn = functools.partial(make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device='cuda:0') |
|
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn) |
|
epoch_iterator = tqdm(data_loader, desc='Iteration', disable=True) |
|
loc_steps = 0 |
|
loc_loss = 0.0 |
|
st_time = time() |
|
for (step, batch) in enumerate(epoch_iterator): |
|
(q_ids, q_mask, a_ids, a_mask) = batch |
|
pre_loss = model(q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=args.checkpoint_batch_size) |
|
loss = pre_loss.sum() |
|
loss.backward() |
|
optimizer.step() |
|
scheduler.step() |
|
model.zero_grad() |
|
loc_loss += loss.item() |
|
loc_steps += 1 |
|
if step % args.print_freq == 0 or step == 1: |
|
print('{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}'.format(e, step, len(dataset) // args.batch_size, loc_loss / loc_steps, time() - st_time)) |
|
loc_loss = 0 |
|
loc_steps = 0 |
|
|
|
def train_qa_retriever_joint_epoch(model, dataset_list, tokenizer, optimizer, scheduler, args, e=0): |
|
model.train() |
|
model_collate_fn = functools.partial(make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device='cuda:0') |
|
train_samplers = [RandomSampler(dataset) for dataset in dataset_list] |
|
data_loaders = [DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn) for (dataset, train_sampler) in zip(dataset_list, train_samplers)] |
|
iterators = [iter(dloader) for dloader in data_loaders] |
|
joint_iter = zip(*iterators) |
|
loc_steps = 0 |
|
loc_loss = 0.0 |
|
st_time = time() |
|
for (step, (batches,)) in enumerate(zip(joint_iter)): |
|
for batch in batches: |
|
(q_ids, q_mask, a_ids, a_mask) = batch |
|
loss = model(q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=args.checkpoint_batch_size) |
|
loss.backward() |
|
optimizer.step() |
|
scheduler.step() |
|
model.zero_grad() |
|
loc_loss += loss.item() |
|
loc_steps += 1 |
|
if step % args.print_freq == 0: |
|
print('{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}'.format(e, step, len(dataset_list[0]) // args.batch_size, loc_loss / loc_steps, time() - st_time)) |
|
loc_loss = 0 |
|
loc_steps = 0 |
|
|
|
def evaluate_qa_retriever(model, dataset, tokenizer, args): |
|
model.eval() |
|
eval_sampler = SequentialSampler(dataset) |
|
model_collate_fn = functools.partial(make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device='cuda:0') |
|
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=eval_sampler, collate_fn=model_collate_fn) |
|
epoch_iterator = tqdm(data_loader, desc='Iteration', disable=True) |
|
tot_loss = 0.0 |
|
with torch.no_grad(): |
|
for (step, batch) in enumerate(epoch_iterator): |
|
(q_ids, q_mask, a_ids, a_mask) = batch |
|
loss = model(q_ids, q_mask, a_ids, a_mask) |
|
tot_loss += loss.item() |
|
return tot_loss / (step + 1) |
|
|
|
def train_qa_retriever(qar_model, qar_tokenizer, qar_train_dset, qar_valid_dset, qar_args): |
|
qar_optimizer = AdamW(qar_model.parameters(), lr=qar_args.learning_rate, eps=1e-08) |
|
qar_scheduler = get_linear_schedule_with_warmup(qar_optimizer, num_warmup_steps=100, num_training_steps=(qar_args.num_epochs + 1) * math.ceil(len(qar_train_dset) / qar_args.batch_size)) |
|
for e in range(qar_args.num_epochs): |
|
train_qa_retriever_epoch(qar_model, qar_train_dset, qar_tokenizer, qar_optimizer, qar_scheduler, qar_args, e) |
|
m_save_dict = {'model': qar_model.state_dict(), 'optimizer': qar_optimizer.state_dict(), 'scheduler': qar_scheduler.state_dict()} |
|
print('Saving model {}'.format(qar_args.model_save_name)) |
|
torch.save(m_save_dict, '{}_{}.pth'.format(qar_args.model_save_name, e)) |
|
eval_loss = evaluate_qa_retriever(qar_model, qar_valid_dset, qar_tokenizer, qar_args) |
|
print('Evaluation loss epoch {:4d}: {:.3f}'.format(e, eval_loss)) |
|
|
|
class ELI5DatasetS2S(Dataset): |
|
|
|
def __init__(self, examples_array, make_doc_fun=None, extra_answer_threshold=3, document_cache=None, training=True): |
|
self.training = training |
|
self.data = examples_array |
|
self.make_doc_function = make_doc_fun |
|
self.document_cache = {} if document_cache is None else document_cache |
|
assert not (make_doc_fun is None and document_cache is None) |
|
if self.training: |
|
self.qa_id_list = [(i, j) for (i, qa) in enumerate(self.data) for (j, (a, sc)) in enumerate(zip(qa['answers']['text'], qa['answers']['score'])) if j == 0 or sc >= extra_answer_threshold] |
|
else: |
|
self.qa_id_list = [(i, 0) for i in range(self.data.num_rows)] |
|
|
|
def __len__(self): |
|
return len(self.qa_id_list) |
|
|
|
def make_example(self, idx): |
|
(i, j) = self.qa_id_list[idx] |
|
example = self.data[i] |
|
question = example['title'] + ' ' + example['selftext'] |
|
answer = example['answers']['text'][j] |
|
q_id = example['q_id'] |
|
if self.make_doc_function is not None: |
|
self.document_cache[q_id] = self.document_cache.get(q_id, self.make_doc_function(example['title'])) |
|
document = self.document_cache[q_id] |
|
in_st = 'question: {} context: {}'.format(question.lower().replace(' --t--', '').strip(), document.lower().strip()) |
|
out_st = answer |
|
return (in_st, out_st) |
|
|
|
def __getitem__(self, idx): |
|
return self.make_example(idx) |
|
|
|
def make_qa_s2s_model(model_name='facebook/bart-large', from_file=None, device='cuda:0'): |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) |
|
if from_file is not None: |
|
param_dict = torch.load(from_file) |
|
model.load_state_dict(param_dict['model']) |
|
return (tokenizer, model) |
|
|
|
def make_qa_s2s_batch(qa_list, tokenizer, max_len=64, max_a_len=360, device='cuda:0'): |
|
q_ls = [q for (q, a) in qa_list] |
|
a_ls = [a for (q, a) in qa_list] |
|
q_toks = tokenizer.batch_encode_plus(q_ls, max_length=max_len, pad_to_max_length=True) |
|
(q_ids, q_mask) = (torch.LongTensor(q_toks['input_ids']).to(device), torch.LongTensor(q_toks['attention_mask']).to(device)) |
|
a_toks = tokenizer.batch_encode_plus(a_ls, max_length=min(max_len, max_a_len), pad_to_max_length=True) |
|
(a_ids, a_mask) = (torch.LongTensor(a_toks['input_ids']).to(device), torch.LongTensor(a_toks['attention_mask']).to(device)) |
|
lm_labels = a_ids[:, 1:].contiguous().clone() |
|
lm_labels[a_mask[:, 1:].contiguous() == 0] = -100 |
|
model_inputs = {'input_ids': q_ids, 'attention_mask': q_mask, 'decoder_input_ids': a_ids[:, :-1].contiguous(), 'lm_labels': lm_labels} |
|
return model_inputs |
|
|
|
def train_qa_s2s_epoch(model, dataset, tokenizer, optimizer, scheduler, args, e=0, curriculum=False): |
|
model.train() |
|
if curriculum: |
|
train_sampler = SequentialSampler(dataset) |
|
else: |
|
train_sampler = RandomSampler(dataset) |
|
model_collate_fn = functools.partial(make_qa_s2s_batch, tokenizer=tokenizer, max_len=args.max_length, device='cuda:0') |
|
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn) |
|
epoch_iterator = tqdm(data_loader, desc='Iteration', disable=True) |
|
loc_steps = 0 |
|
loc_loss = 0.0 |
|
st_time = time() |
|
for (step, batch_inputs) in enumerate(epoch_iterator): |
|
pre_loss = model(**batch_inputs)[0] |
|
loss = pre_loss.sum() / pre_loss.shape[0] |
|
loss.backward() |
|
if step % args.backward_freq == 0: |
|
optimizer.step() |
|
scheduler.step() |
|
model.zero_grad() |
|
loc_loss += loss.item() |
|
loc_steps += 1 |
|
if step % args.print_freq == 0 or step == 1: |
|
print('{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}'.format(e, step, len(dataset) // args.batch_size, loc_loss / loc_steps, time() - st_time)) |
|
loc_loss = 0 |
|
loc_steps = 0 |
|
|
|
def eval_qa_s2s_epoch(model, dataset, tokenizer, args): |
|
model.eval() |
|
train_sampler = SequentialSampler(dataset) |
|
model_collate_fn = functools.partial(make_qa_s2s_batch, tokenizer=tokenizer, max_len=args.max_length, device='cuda:0') |
|
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn) |
|
epoch_iterator = tqdm(data_loader, desc='Iteration', disable=True) |
|
loc_steps = 0 |
|
loc_loss = 0.0 |
|
st_time = time() |
|
with torch.no_grad(): |
|
for (step, batch_inputs) in enumerate(epoch_iterator): |
|
pre_loss = model(**batch_inputs)[0] |
|
loss = pre_loss.sum() / pre_loss.shape[0] |
|
loc_loss += loss.item() |
|
loc_steps += 1 |
|
if step % args.print_freq == 0: |
|
print('{:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}'.format(step, len(dataset) // args.batch_size, loc_loss / loc_steps, time() - st_time)) |
|
print('Total \t L: {:.3f} \t -- {:.3f}'.format(loc_loss / loc_steps, time() - st_time)) |
|
|
|
def train_qa_s2s(qa_s2s_model, qa_s2s_tokenizer, s2s_train_dset, s2s_valid_dset, s2s_args): |
|
s2s_optimizer = AdamW(qa_s2s_model.parameters(), lr=s2s_args.learning_rate, eps=1e-08) |
|
s2s_scheduler = get_linear_schedule_with_warmup(s2s_optimizer, num_warmup_steps=400, num_training_steps=(s2s_args.num_epochs + 1) * math.ceil(len(s2s_train_dset) / s2s_args.batch_size)) |
|
for e in range(s2s_args.num_epochs): |
|
train_qa_s2s_epoch(qa_s2s_model, s2s_train_dset, qa_s2s_tokenizer, s2s_optimizer, s2s_scheduler, s2s_args, e, curriculum=e == 0) |
|
m_save_dict = {'model': qa_s2s_model.state_dict(), 'optimizer': s2s_optimizer.state_dict(), 'scheduler': s2s_scheduler.state_dict()} |
|
print('Saving model {}'.format(s2s_args.model_save_name)) |
|
eval_qa_s2s_epoch(qa_s2s_model, s2s_valid_dset, qa_s2s_tokenizer, s2s_args) |
|
torch.save(m_save_dict, '{}_{}.pth'.format(s2s_args.model_save_name, e)) |
|
|
|
def qa_s2s_generate(question_doc, qa_s2s_model, qa_s2s_tokenizer, num_answers=1, num_beams=None, min_len=64, max_len=256, do_sample=False, temp=1.0, top_p=None, top_k=None, max_input_length=512, device='cuda:0'): |
|
model_inputs = make_qa_s2s_batch([(question_doc, 'A')], qa_s2s_tokenizer, max_input_length, device=device) |
|
n_beams = num_answers if num_beams is None else max(num_beams, num_answers) |
|
generated_ids = qa_s2s_model.generate(input_ids=model_inputs['input_ids'], attention_mask=model_inputs['attention_mask'], min_length=min_len, max_length=max_len, do_sample=do_sample, early_stopping=True, num_beams=1 if do_sample else n_beams, temperature=temp, top_k=top_k, top_p=top_p, eos_token_id=qa_s2s_tokenizer.eos_token_id, no_repeat_ngram_size=3, num_return_sequences=num_answers, decoder_start_token_id=qa_s2s_tokenizer.bos_token_id) |
|
return [qa_s2s_tokenizer.decode(ans_ids, skip_special_tokens=True).strip() for ans_ids in generated_ids] |
|
|
|
def embed_passages_for_retrieval(passages, tokenizer, qa_embedder, max_length=128, device='cuda:0'): |
|
a_toks = tokenizer.batch_encode_plus(passages, max_length=max_length, pad_to_max_length=True) |
|
(a_ids, a_mask) = (torch.LongTensor(a_toks['input_ids']).to(device), torch.LongTensor(a_toks['attention_mask']).to(device)) |
|
with torch.no_grad(): |
|
a_reps = qa_embedder.embed_answers(a_ids, a_mask).cpu().type(torch.float) |
|
return a_reps.numpy() |
|
|
|
def embed_questions_for_retrieval(q_ls, tokenizer, qa_embedder, device='cuda:0'): |
|
q_toks = tokenizer.batch_encode_plus(q_ls, max_length=128, pad_to_max_length=True) |
|
(q_ids, q_mask) = (torch.LongTensor(q_toks['input_ids']).to(device), torch.LongTensor(q_toks['attention_mask']).to(device)) |
|
with torch.no_grad(): |
|
q_reps = qa_embedder.embed_questions(q_ids, q_mask).cpu().type(torch.float) |
|
return q_reps.numpy() |
|
|
|
def make_qa_dense_index(qa_embedder, tokenizer, passages_dset, batch_size=512, max_length=128, index_name='kilt_passages_reps.dat', dtype='float32', device='cuda:0'): |
|
st_time = time() |
|
fp = np.memmap(index_name, dtype=dtype, mode='w+', shape=(passages_dset.num_rows, 128)) |
|
n_batches = math.ceil(passages_dset.num_rows / batch_size) |
|
for i in range(n_batches): |
|
passages = [p for p in passages_dset[i * batch_size:(i + 1) * batch_size]['passage_text']] |
|
reps = embed_passages_for_retrieval(passages, tokenizer, qa_embedder, max_length, device) |
|
fp[i * batch_size:(i + 1) * batch_size] = reps |
|
if i % 50 == 0: |
|
print(i, time() - st_time) |
|
|
|
def evaluate_retriever(qa_list, retriever_func, scoring_func, n_ret=10, verbose=False): |
|
total_retriever_time = 0.0 |
|
total_retriever_score = 0.0 |
|
st_time = time() |
|
for (i, (question, answer)) in enumerate(qa_list): |
|
r_time = time() |
|
retrieved_passages = retriever_func(question, n_ret) |
|
total_retriever_time += time() - r_time |
|
total_retriever_score += scoring_func(retrieved_passages, answer) |
|
if verbose and ((i + 1) % 500 == 0 or i <= 1): |
|
print('{:03d}: S-{:.4f} T-{:.4f} | {:.2f}'.format(i + 1, total_retriever_score / (i + 1), total_retriever_time / (i + 1), time() - st_time)) |
|
return {'idf_recall': total_retriever_score / (i + 1), 'retrieval_time': total_retriever_time / (i + 1)} |
|
|
|
def query_qa_dense_index(question, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10, min_length=20, device='cuda:0'): |
|
q_rep = embed_questions_for_retrieval([question], tokenizer, qa_embedder, device=device) |
|
(D, I) = wiki_index.search(q_rep, 2 * n_results) |
|
res_passages = [wiki_passages[int(i)] for i in I[0]] |
|
support_doc = '<P> ' + ' <P> '.join([p['passage_text'] for p in res_passages]) |
|
res_list = [dict([(k, p[k]) for k in wiki_passages.column_names]) for p in res_passages] |
|
res_list = [res for res in res_list if len(res['passage_text'].split()) > min_length][:n_results] |
|
for (r, sc) in zip(res_list, D[0]): |
|
r['score'] = float(sc) |
|
return (support_doc, res_list) |
|
|
|
def batch_query_qa_dense_index(questions, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10): |
|
q_rep = embed_questions_for_retrieval(questions, tokenizer, qa_embedder) |
|
(D, I) = wiki_index.search(q_rep, n_results) |
|
res_passages_lst = [[wiki_passages[int(i)] for i in i_lst] for i_lst in I] |
|
support_doc_lst = ['<P> ' + ' <P> '.join([p['passage_text'] for p in res_passages]) for res_passages in res_passages_lst] |
|
all_res_lists = [] |
|
for (res_passages, dl) in zip(res_passages_lst, D): |
|
res_list = [dict([(k, p[k]) for k in wiki_passages.column_names]) for p in res_passages] |
|
for (r, sc) in zip(res_list, dl): |
|
r['score'] = float(sc) |
|
all_res_lists += [res_list[:]] |
|
return (support_doc_lst, all_res_lists) |
|
|
|
def query_qa_dense_index_nn(passage, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10, min_length=20): |
|
a_rep = embed_passages_for_retrieval([passage], tokenizer, qa_embedder) |
|
(D, I) = wiki_index.search(a_rep, 2 * n_results) |
|
res_passages = [wiki_passages[int(i)] for i in I[0]] |
|
support_doc = '<P> ' + ' <P> '.join([p['passage_text'] for p in res_passages]) |
|
res_list = [dict([(k, p[k]) for k in wiki_passages.column_names]) for p in res_passages] |
|
res_list = [res for res in res_list if len(res['passage_text'].split()) > min_length][:n_results] |
|
for (r, sc, i) in zip(res_list, D[0], I[0]): |
|
r['passage_id'] = int(i) |
|
r['score'] = float(sc) |
|
return (support_doc, res_list) |
|
|
|
def batch_query_qa_dense_index_nn(passages, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10): |
|
a_reps = embed_passages_for_retrieval(passages, tokenizer, qa_embedder) |
|
(D, I) = wiki_index.search(a_reps, n_results) |
|
res_passages_lst = [[wiki_passages[int(i)] for i in i_lst] for i_lst in I] |
|
support_doc_lst = ['<P> ' + ' <P> '.join([p['passage_text'] for p in res_passages]) for res_passages in res_passages_lst] |
|
all_res_lists = [] |
|
for (res_passages, dl, il) in zip(res_passages_lst, D, I): |
|
res_list = [dict([(k, p[k]) for k in wiki_passages.column_names]) for p in res_passages] |
|
for (r, sc, i) in zip(res_list, dl, il): |
|
r['passage_id'] = int(i) |
|
r['score'] = float(sc) |
|
all_res_lists += [res_list[:]] |
|
return (support_doc_lst, all_res_lists) |
|
|
|
# File: notebooks-main/sagemaker/17_custom_inference_script/code/inference.py |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-09) |
|
|
|
def model_fn(model_dir): |
|
tokenizer = AutoTokenizer.from_pretrained(model_dir) |
|
model = AutoModel.from_pretrained(model_dir) |
|
return (model, tokenizer) |
|
|
|
def predict_fn(data, model_and_tokenizer): |
|
(model, tokenizer) = model_and_tokenizer |
|
sentences = data.pop('inputs', data) |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) |
|
return {'vectors': sentence_embeddings} |
|
|
|
# File: notebooks-main/sagemaker/18_inferentia_inference/code/inference.py |
|
import os |
|
from transformers import AutoConfig, AutoTokenizer |
|
import torch |
|
import torch.neuron |
|
os.environ['NEURON_RT_NUM_CORES'] = '1' |
|
AWS_NEURON_TRACED_WEIGHTS_NAME = 'neuron_model.pt' |
|
|
|
def model_fn(model_dir): |
|
tokenizer = AutoTokenizer.from_pretrained(model_dir) |
|
model = torch.jit.load(os.path.join(model_dir, AWS_NEURON_TRACED_WEIGHTS_NAME)) |
|
model_config = AutoConfig.from_pretrained(model_dir) |
|
return (model, tokenizer, model_config) |
|
|
|
def predict_fn(data, model_tokenizer_model_config): |
|
(model, tokenizer, model_config) = model_tokenizer_model_config |
|
inputs = data.pop('inputs', data) |
|
embeddings = tokenizer(inputs, return_tensors='pt', max_length=model_config.traced_sequence_length, padding='max_length', truncation=True) |
|
neuron_inputs = tuple(embeddings.values()) |
|
with torch.no_grad(): |
|
predictions = model(*neuron_inputs)[0] |
|
scores = torch.nn.Softmax(dim=1)(predictions) |
|
return [{'label': model_config.id2label[item.argmax().item()], 'score': item.max().item()} for item in scores] |
|
|
|
# File: notebooks-main/sagemaker/22_accelerate_sagemaker_examples/src/seq2seq/run_seq2seq_no_trainer.py |
|
"""""" |
|
import argparse |
|
import json |
|
import logging |
|
import math |
|
import os |
|
import random |
|
from pathlib import Path |
|
from time import time |
|
import datasets |
|
import nltk |
|
import numpy as np |
|
import torch |
|
from datasets import load_dataset, load_metric |
|
from torch.utils.data import DataLoader |
|
from tqdm.auto import tqdm |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import DummyOptim, DummyScheduler, set_seed |
|
from filelock import FileLock |
|
from huggingface_hub import Repository |
|
from transformers import CONFIG_MAPPING, MODEL_MAPPING, AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, DataCollatorForSeq2Seq, SchedulerType, get_scheduler |
|
from transformers.utils import get_full_repo_name, is_offline_mode |
|
from transformers.utils.versions import require_version |
|
logger = get_logger(__name__) |
|
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/summarization/requirements.txt') |
|
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) |
|
MODEL_TYPES = tuple((conf.model_type for conf in MODEL_CONFIG_CLASSES)) |
|
try: |
|
nltk.data.find('tokenizers/punkt') |
|
except (LookupError, OSError): |
|
if is_offline_mode(): |
|
raise LookupError('Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files') |
|
with FileLock('.lock') as lock: |
|
nltk.download('punkt', quiet=True) |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Finetune a transformers model on a summarization task') |
|
parser.add_argument('--dataset_name', type=str, default=None, help='The name of the dataset to use (via the datasets library).') |
|
parser.add_argument('--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).') |
|
parser.add_argument('--train_file', type=str, default=None, help='A csv or a json file containing the training data.') |
|
parser.add_argument('--validation_file', type=str, default=None, help='A csv or a json file containing the validation data.') |
|
parser.add_argument('--ignore_pad_token_for_loss', type=bool, default=True, help='Whether to ignore the tokens corresponding to padded labels in the loss computation or not.') |
|
parser.add_argument('--max_source_length', type=int, default=1024, help='The maximum total input sequence length after tokenization.Sequences longer than this will be truncated, sequences shorter will be padded.') |
|
parser.add_argument('--source_prefix', type=str, default=None, help='A prefix to add before every source text (useful for T5 models).') |
|
parser.add_argument('--preprocessing_num_workers', type=int, default=None, help='The number of processes to use for the preprocessing.') |
|
parser.add_argument('--overwrite_cache', type=bool, default=None, help='Overwrite the cached training and evaluation sets') |
|
parser.add_argument('--max_target_length', type=int, default=128, help='The maximum total sequence length for target text after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.during ``evaluate`` and ``predict``.') |
|
parser.add_argument('--val_max_target_length', type=int, default=None, help='The maximum total sequence length for validation target text after tokenization.Sequences longer than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`.This argument is also used to override the ``max_length`` param of ``model.generate``, which is used during ``evaluate`` and ``predict``.') |
|
parser.add_argument('--val_min_target_length', type=int, default=10, help='The minimum total sequence length for validation target text after tokenization.Sequences longer than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`.This argument is also used to override the ``max_length`` param of ``model.generate``, which is used during ``evaluate`` and ``predict``.') |
|
parser.add_argument('--n_train', type=int, default=2000, help='Number of training examples to use. If None, all training examples will be used.') |
|
parser.add_argument('--n_val', type=int, default=500, help='Number of validation examples to use. If None, all validation examples will be used.') |
|
parser.add_argument('--n_val_batch_generations', type=int, default=5, help='Number of validation examples to use. If None, all validation examples will be used.') |
|
parser.add_argument('--max_length', type=int, default=128, help='The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded if `--pad_to_max_lengh` is passed.') |
|
parser.add_argument('--num_beams', type=int, default=None, help='Number of beams to use for evaluation. This argument will be passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.') |
|
parser.add_argument('--pad_to_max_length', type=bool, default=False, help='If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.') |
|
parser.add_argument('--model_name_or_path', type=str, help='Path to pretrained model or model identifier from huggingface.co/models.', required=False) |
|
parser.add_argument('--config_name', type=str, default=None, help='Pretrained config name or path if not the same as model_name') |
|
parser.add_argument('--tokenizer_name', type=str, default=None, help='Pretrained tokenizer name or path if not the same as model_name') |
|
parser.add_argument('--text_column', type=str, default=None, help='The name of the column in the datasets containing the full texts (for summarization).') |
|
parser.add_argument('--summary_column', type=str, default=None, help='The name of the column in the datasets containing the summaries (for summarization).') |
|
parser.add_argument('--use_slow_tokenizer', type=bool, default=False, help='If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).') |
|
parser.add_argument('--per_device_train_batch_size', type=int, default=8, help='Batch size (per device) for the training dataloader.') |
|
parser.add_argument('--per_device_eval_batch_size', type=int, default=8, help='Batch size (per device) for the evaluation dataloader.') |
|
parser.add_argument('--learning_rate', type=float, default=5e-05, help='Initial learning rate (after the potential warmup period) to use.') |
|
parser.add_argument('--weight_decay', type=float, default=0.0, help='Weight decay to use.') |
|
parser.add_argument('--num_train_epochs', type=int, default=3, help='Total number of training epochs to perform.') |
|
parser.add_argument('--max_train_steps', type=int, default=None, help='Total number of training steps to perform. If provided, overrides num_train_epochs.') |
|
parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help='Number of updates steps to accumulate before performing a backward/update pass.') |
|
parser.add_argument('--lr_scheduler_type', type=SchedulerType, default='linear', help='The scheduler type to use.', choices=['linear', 'cosine', 'cosine_with_restarts', 'polynomial', 'constant', 'constant_with_warmup']) |
|
parser.add_argument('--num_warmup_steps', type=int, default=0, help='Number of steps for the warmup in the lr scheduler.') |
|
parser.add_argument('--output_dir', type=str, default=None, help='Where to store the final model.') |
|
parser.add_argument('--seed', type=int, default=None, help='A seed for reproducible training.') |
|
parser.add_argument('--model_type', type=str, default=None, help='Model type to use if training from scratch.', choices=MODEL_TYPES) |
|
parser.add_argument('--push_to_hub', type=bool, default=False, help='Whether or not to push the model to the Hub.') |
|
parser.add_argument('--hub_model_id', type=str, help='The name of the repository to keep in sync with the local `output_dir`.') |
|
parser.add_argument('--hub_token', type=str, help='The token to use to push to the Model Hub.') |
|
parser.add_argument('--checkpointing_steps', type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.") |
|
parser.add_argument('--resume_from_checkpoint', type=str, default=None, help='If the training should continue from a checkpoint folder.') |
|
parser.add_argument('--load_best_model', type=bool, default=False, help='Whether to load the best model at the end of training') |
|
parser.add_argument('--logging_steps', type=int, default=None, help='log every n steps') |
|
parser.add_argument('--with_tracking', type=bool, default=False, help='Whether to enable experiment trackers for logging.') |
|
parser.add_argument('--report_to', type=str, default='all', help='The integration to report the results and logs to. Supported platforms are `"tensorboard"`, `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.Only applicable when `--with_tracking` is passed.') |
|
parser.add_argument('--report_name', type=str, default='chatbot_no_trainer', help='The name of the experiment tracking folder. Only applicable when `--with_tracking` is passed.') |
|
args = parser.parse_args() |
|
if args.dataset_name is None and args.train_file is None and (args.validation_file is None): |
|
raise ValueError('Need either a dataset name or a training/validation file.') |
|
else: |
|
if args.train_file is not None: |
|
extension = args.train_file.split('.')[-1] |
|
assert extension in ['csv', 'json'], '`train_file` should be a csv or a json file.' |
|
if args.validation_file is not None: |
|
extension = args.validation_file.split('.')[-1] |
|
assert extension in ['csv', 'json'], '`validation_file` should be a csv or a json file.' |
|
if args.push_to_hub: |
|
assert args.output_dir is not None, 'Need an `output_dir` to create a repo when `--push_to_hub` is passed.' |
|
return args |
|
|
|
def checkpoint_model(checkpoint_folder, ckpt_id, model, epoch, last_global_step, **kwargs): |
|
checkpoint_state_dict = {'epoch': epoch, 'last_global_step': last_global_step} |
|
checkpoint_state_dict.update(kwargs) |
|
success = model.save_checkpoint(checkpoint_folder, ckpt_id, checkpoint_state_dict) |
|
status_msg = f'checkpointing: checkpoint_folder={checkpoint_folder}, ckpt_id={ckpt_id}' |
|
if success: |
|
logging.info(f'Success {status_msg}') |
|
else: |
|
logging.warning(f'Failure {status_msg}') |
|
return |
|
|
|
def evaluate(args, model, metric, tokenizer, eval_dataloader, accelerator, max_length): |
|
accelerator.print('starting evaluation') |
|
count_printed = 0 |
|
|
|
def postprocess_text(preds, labels): |
|
preds = [pred.strip() for pred in preds] |
|
labels = [[label.strip()] for label in labels] |
|
return (preds, labels) |
|
model.eval() |
|
if args.val_max_target_length is None: |
|
args.val_max_target_length = args.max_target_length |
|
gen_kwargs = {'max_length': args.val_max_target_length if args is not None else max_length, 'num_beams': args.num_beams, 'min_length': args.val_min_target_length, 'length_penalty': False, 'no_repeat_ngram_size': 3, 'encoder_no_repeat_ngram_size': 3, 'repetition_penalty': 1.2} |
|
samples_seen = 0 |
|
for (step, batch) in enumerate(eval_dataloader): |
|
with torch.no_grad(): |
|
generated_tokens = accelerator.unwrap_model(model).generate(batch['input_ids'], attention_mask=batch['attention_mask'], **gen_kwargs) |
|
generated_tokens = accelerator.pad_across_processes(generated_tokens, dim=1, pad_index=tokenizer.pad_token_id) |
|
labels = batch['labels'] |
|
if not args.pad_to_max_length: |
|
labels = accelerator.pad_across_processes(batch['labels'], dim=1, pad_index=tokenizer.pad_token_id) |
|
(generated_tokens, labels) = accelerator.gather((generated_tokens, labels)) |
|
generated_tokens = generated_tokens.cpu().numpy() |
|
labels = labels.cpu().numpy() |
|
if args.ignore_pad_token_for_loss: |
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id) |
|
decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) |
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
if count_printed < args.n_val_batch_generations: |
|
logger.info('printing few sample generations and corresponding labels from eval set') |
|
logger.info('prompt | generated | label') |
|
decoded_prompts = tokenizer.batch_decode(batch['input_ids'], skip_special_tokens=False) |
|
for (prompt, generated_response, response) in zip(decoded_prompts, decoded_preds, decoded_labels): |
|
cleaned_prompt = prompt.replace('<pad>', '').strip() |
|
logger.info(f'{cleaned_prompt} | {generated_response} | {response}') |
|
count_printed += 1 |
|
(decoded_preds, decoded_labels) = postprocess_text(decoded_preds, decoded_labels) |
|
if accelerator.num_processes > 1: |
|
if step == len(eval_dataloader) - 1: |
|
decoded_preds = decoded_preds[:len(eval_dataloader.dataset) - samples_seen] |
|
decoded_labels = decoded_labels[:len(eval_dataloader.dataset) - samples_seen] |
|
else: |
|
samples_seen += len(decoded_labels) |
|
metric.add_batch(predictions=decoded_preds, references=decoded_labels) |
|
result = metric.compute() |
|
logger.info({'bleu': result['score']}) |
|
accelerator.print('evaluation completed') |
|
return result['score'] |
|
|
|
def load_training_checkpoint(model, load_dir, tag=None, **kwargs): |
|
(_, checkpoint_state_dict) = model.load_checkpoint(load_dir, tag=tag, **kwargs) |
|
epoch = checkpoint_state_dict['epoch'] |
|
last_global_step = checkpoint_state_dict['last_global_step'] |
|
del checkpoint_state_dict |
|
return (epoch, last_global_step) |
|
|
|
def main(): |
|
args = parse_args() |
|
accelerator = Accelerator(log_with=args.report_to, logging_dir=args.output_dir) if args.with_tracking else Accelerator() |
|
if args.source_prefix is None and args.model_name_or_path in ['t5-small', 't5-base', 't5-large', 't5-3b', 't5-11b']: |
|
logger.warning("You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with `--source_prefix 'summarize: ' `") |
|
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
if accelerator.is_main_process: |
|
if args.push_to_hub: |
|
if args.hub_model_id is None: |
|
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) |
|
else: |
|
repo_name = args.hub_model_id |
|
repo = Repository(args.output_dir, clone_from=repo_name) |
|
with open(os.path.join(args.output_dir, '.gitignore'), 'w+') as gitignore: |
|
if 'step_*' not in gitignore: |
|
gitignore.write('step_*\n') |
|
if 'epoch_*' not in gitignore: |
|
gitignore.write('epoch_*\n') |
|
elif args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
accelerator.wait_for_everyone() |
|
if args.dataset_name is not None: |
|
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) |
|
if args.n_train > 0: |
|
raw_datasets['train'] = datasets.Dataset.from_dict(raw_datasets['train'][:args.n_train]) |
|
if args.n_val > 0: |
|
raw_datasets['validation'] = datasets.Dataset.from_dict(raw_datasets['validation'][:args.n_val]) |
|
else: |
|
data_files = {} |
|
if args.train_file is not None: |
|
data_files['train'] = args.train_file |
|
if args.validation_file is not None: |
|
data_files['validation'] = args.validation_file |
|
extension = args.train_file.split('.')[-1] |
|
raw_datasets = load_dataset(extension, data_files=data_files) |
|
if args.config_name: |
|
config = AutoConfig.from_pretrained(args.config_name) |
|
elif args.model_name_or_path: |
|
config = AutoConfig.from_pretrained(args.model_name_or_path) |
|
else: |
|
config = CONFIG_MAPPING[args.model_type]() |
|
logger.warning('You are instantiating a new config instance from scratch.') |
|
if args.tokenizer_name: |
|
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer) |
|
elif args.model_name_or_path: |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer) |
|
else: |
|
raise ValueError('You are instantiating a new tokenizer from scratch. This is not supported by this script.You can do it from another script, save it, and load it from here, using --tokenizer_name.') |
|
if args.model_name_or_path: |
|
model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config) |
|
else: |
|
logger.info('Training new model from scratch') |
|
model = AutoModelForSeq2SeqLM.from_config(config) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
if model.config.decoder_start_token_id is None: |
|
raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined') |
|
prefix = args.source_prefix if args.source_prefix is not None else '' |
|
column_names = raw_datasets['train'].column_names |
|
dataset_columns = column_names |
|
if args.text_column is None: |
|
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0] |
|
else: |
|
text_column = args.text_column |
|
if text_column not in column_names: |
|
raise ValueError(f"--text_column' value '{args.text_column}' needs to be one of: {', '.join(column_names)}") |
|
if args.summary_column is None: |
|
summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1] |
|
else: |
|
summary_column = args.summary_column |
|
if summary_column not in column_names: |
|
raise ValueError(f"--summary_column' value '{args.summary_column}' needs to be one of: {', '.join(column_names)}") |
|
max_target_length = args.max_target_length |
|
padding = 'max_length' if args.pad_to_max_length else False |
|
|
|
def preprocess_function(examples): |
|
inputs = examples[text_column] |
|
targets = examples[summary_column] |
|
inputs = [prefix + inp for inp in inputs] |
|
model_inputs = tokenizer(inputs, max_length=args.max_source_length, padding=padding, truncation=True) |
|
if 't5' in args.model_name_or_path: |
|
with tokenizer.as_target_tokenizer(): |
|
labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True) |
|
else: |
|
labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True) |
|
if padding == 'max_length' and args.ignore_pad_token_for_loss: |
|
labels['input_ids'] = [[l if l != tokenizer.pad_token_id else -100 for l in label] for label in labels['input_ids']] |
|
model_inputs['labels'] = labels['input_ids'] |
|
return model_inputs |
|
with accelerator.main_process_first(): |
|
processed_datasets = raw_datasets.map(preprocess_function, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on dataset') |
|
train_dataset = processed_datasets['train'] |
|
eval_dataset = processed_datasets['validation'] |
|
for index in random.sample(range(len(train_dataset)), 1): |
|
logger.info(f'Sample {index} of the training set: {train_dataset[index]}.') |
|
label_pad_token_id = -100 if args.ignore_pad_token_for_loss else tokenizer.pad_token_id |
|
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model, label_pad_token_id=label_pad_token_id, pad_to_multiple_of=8 if accelerator.use_fp16 else None) |
|
train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size) |
|
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size) |
|
no_decay = ['bias', 'LayerNorm.weight'] |
|
optimizer_grouped_parameters = [{'params': [p for (n, p) in model.named_parameters() if not any((nd in n for nd in no_decay))], 'weight_decay': args.weight_decay}, {'params': [p for (n, p) in model.named_parameters() if any((nd in n for nd in no_decay))], 'weight_decay': 0.0}] |
|
optimizer_cls = torch.optim.Adam if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim |
|
optimizer = optimizer_cls(optimizer_grouped_parameters, lr=args.learning_rate) |
|
if accelerator.state.deepspeed_plugin is not None: |
|
args.gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config['gradient_accumulation_steps'] |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
else: |
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
if accelerator.state.deepspeed_plugin is None or 'scheduler' not in accelerator.state.deepspeed_plugin.deepspeed_config: |
|
lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps) |
|
else: |
|
lr_scheduler = DummyScheduler(optimizer, total_num_steps=args.max_train_steps, warmup_num_steps=args.num_warmup_steps) |
|
(model, optimizer, train_dataloader, eval_dataloader, lr_scheduler) = accelerator.prepare(model, optimizer, train_dataloader, eval_dataloader, lr_scheduler) |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
if hasattr(args.checkpointing_steps, 'isdigit'): |
|
checkpointing_steps = args.checkpointing_steps |
|
if args.checkpointing_steps.isdigit(): |
|
checkpointing_steps = int(args.checkpointing_steps) |
|
else: |
|
checkpointing_steps = None |
|
if args.with_tracking: |
|
if accelerator.is_main_process: |
|
experiment_config = vars(args) |
|
experiment_config['lr_scheduler_type'] = experiment_config['lr_scheduler_type'].value |
|
accelerator.init_trackers(args.report_name, experiment_config) |
|
metric = load_metric('sacrebleu') |
|
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
logger.info('***** Running training *****') |
|
logger.info(f' Num examples = {len(train_dataset)}') |
|
logger.info(f' Num Epochs = {args.num_train_epochs}') |
|
logger.info(f' Instantaneous batch size per device = {args.per_device_train_batch_size}') |
|
logger.info(f' Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}') |
|
logger.info(f' Gradient Accumulation steps = {args.gradient_accumulation_steps}') |
|
logger.info(f' Total optimization steps = {args.max_train_steps}') |
|
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) |
|
completed_steps = 0 |
|
starting_epoch = 0 |
|
best_metric = None |
|
best_metric_checkpoint = None |
|
if args.resume_from_checkpoint: |
|
(_, last_global_step) = load_training_checkpoint(model, args.resume_from_checkpoint, **{'load_optimizer_states': True, 'load_lr_scheduler_states': True}) |
|
accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}') |
|
resume_step = last_global_step |
|
starting_epoch = resume_step // len(train_dataloader) |
|
resume_step -= starting_epoch * len(train_dataloader) |
|
for epoch in range(starting_epoch, args.num_train_epochs): |
|
start_time = time() |
|
model.train() |
|
if args.with_tracking: |
|
total_loss = 0 |
|
for (step, batch) in enumerate(train_dataloader): |
|
if args.resume_from_checkpoint and epoch == starting_epoch: |
|
if resume_step is not None and step < resume_step: |
|
completed_steps += 1 |
|
continue |
|
decoder_input_ids = batch['labels'].new_zeros(batch['labels'].shape) |
|
decoder_input_ids[..., 1:] = batch['labels'][..., :-1].clone() |
|
decoder_input_ids[..., 0] = 0 |
|
decoder_input_ids.masked_fill_(decoder_input_ids == -100, 0) |
|
batch['decoder_input_ids'] = decoder_input_ids |
|
outputs = model(**batch) |
|
loss = outputs.loss |
|
if args.with_tracking: |
|
total_loss += loss.detach().float() |
|
loss = loss / args.gradient_accumulation_steps |
|
accelerator.backward(loss) |
|
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
progress_bar.update(1) |
|
completed_steps += 1 |
|
if isinstance(args.logging_steps, int): |
|
if completed_steps % args.logging_steps == 0: |
|
steps_this_epoch = completed_steps % len(train_dataloader) |
|
train_loss = total_loss.item() / steps_this_epoch |
|
train_perplexity = math.exp(train_loss) |
|
accelerator.log({'train_loss': train_loss, 'train_perplexity': train_perplexity, 'epoch': epoch, 'step': completed_steps, 'steps_this_epoch': steps_this_epoch}, step=completed_steps) |
|
logger.info(f'Epoch: {epoch}, Step: {completed_steps}, Loss: {train_loss}, Perplexity: {train_perplexity}') |
|
if isinstance(checkpointing_steps, int): |
|
if completed_steps % checkpointing_steps == 0: |
|
if accelerator.state.deepspeed_plugin is not None: |
|
checkpoint_model(args.output_dir, epoch, model, epoch, completed_steps) |
|
else: |
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
ckpt_path = os.path.join(args.output_dir, str(epoch)) |
|
os.makedirs(ckpt_path, exist_ok=True) |
|
accelerator.save(accelerator.get_state_dict(model), os.path.join(ckpt_path, 'model.pt')) |
|
if completed_steps >= args.max_train_steps: |
|
break |
|
end_time = time() |
|
logger.info(f'Epoch {epoch} training took {end_time - start_time} seconds') |
|
if accelerator.state.deepspeed_plugin is not None: |
|
checkpoint_model(args.output_dir, epoch, model, epoch, completed_steps) |
|
else: |
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
ckpt_path = os.path.join(args.output_dir, str(epoch)) |
|
os.makedirs(ckpt_path, exist_ok=True) |
|
accelerator.save(accelerator.get_state_dict(model), os.path.join(ckpt_path, 'model.pt')) |
|
start_time = time() |
|
bleu_score = evaluate(args, model, metric, tokenizer, eval_dataloader, accelerator, config.max_length) |
|
end_time = time() |
|
logger.info(f'Epoch {epoch} evaluation took {end_time - start_time} seconds') |
|
result = {} |
|
if args.with_tracking: |
|
result['bleu_score'] = bleu_score |
|
result['train_loss'] = total_loss.item() / len(train_dataloader) |
|
result['train_perplexity'] = math.exp(result['train_loss']) |
|
result['epoch'] = epoch |
|
result['step'] = completed_steps |
|
accelerator.log(result, step=completed_steps) |
|
if (best_metric is None or best_metric < bleu_score) and args.load_best_model: |
|
best_metric = bleu_score |
|
best_metric_checkpoint = os.path.join(args.output_dir, str(epoch)) |
|
accelerator.print(f'New best metric: {best_metric} at epoch {epoch}') |
|
accelerator.print(f'best_metric_checkpoint: {best_metric_checkpoint}') |
|
if args.load_best_model: |
|
if accelerator.state.deepspeed_plugin is not None: |
|
(_, last_global_step) = load_training_checkpoint(model, '/'.join(best_metric_checkpoint.split('/')[:-1]), tag=best_metric_checkpoint.split('/')[-1], **{'load_optimizer_states': True, 'load_lr_scheduler_states': True}) |
|
else: |
|
map_location = {'cuda:0': 'cuda:{}'.format(accelerator.local_process_index)} |
|
model.load_state_dict(torch.load(os.path.join(best_metric_checkpoint, 'model.pt'), map_location=map_location)) |
|
bleu_score = evaluate(args, model, metric, tokenizer, eval_dataloader, accelerator, config.max_length) |
|
logger.info(f'Best model metrics: bleu_score: {bleu_score}') |
|
if bleu_score != best_metric: |
|
raise AssertionError(f'Best metric {best_metric} does not match the metric {bleu_score} of the loaded best model.') |
|
if args.output_dir is not None: |
|
accelerator.wait_for_everyone() |
|
unwrapped_model = accelerator.unwrap_model(model) |
|
unwrapped_model.save_pretrained(args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save, state_dict=accelerator.get_state_dict(model)) |
|
if accelerator.is_main_process: |
|
tokenizer.save_pretrained(args.output_dir) |
|
if args.push_to_hub: |
|
repo.push_to_hub(commit_message='End of training', auto_lfs_prune=True) |
|
with open(os.path.join(args.output_dir, 'all_results.json'), 'w') as f: |
|
json.dump({'eval_bleu': bleu_score}, f) |
|
if __name__ == '__main__': |
|
main() |
|
|
|
# File: notebooks-main/sagemaker/22_accelerate_sagemaker_examples/src/text-classification/train_using_s3_data.py |
|
import argparse |
|
import os |
|
import torch |
|
from torch.optim import AdamW |
|
from torch.utils.data import DataLoader |
|
import evaluate |
|
from accelerate import Accelerator, DistributedType |
|
from datasets import load_from_disk |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed |
|
MAX_GPU_BATCH_SIZE = 16 |
|
EVAL_BATCH_SIZE = 32 |
|
|
|
def training_function(config, args): |
|
if args.with_tracking: |
|
accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision, log_with='all', logging_dir=args.logging_dir) |
|
else: |
|
accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) |
|
if hasattr(args.checkpointing_steps, 'isdigit'): |
|
if args.checkpointing_steps == 'epoch': |
|
checkpointing_steps = args.checkpointing_steps |
|
elif args.checkpointing_steps.isdigit(): |
|
checkpointing_steps = int(args.checkpointing_steps) |
|
else: |
|
raise ValueError(f'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.') |
|
else: |
|
checkpointing_steps = None |
|
lr = config['lr'] |
|
num_epochs = int(config['num_epochs']) |
|
seed = int(config['seed']) |
|
batch_size = int(config['batch_size']) |
|
if args.with_tracking: |
|
run = os.path.split(__file__)[-1].split('.')[0] |
|
accelerator.init_trackers(run, config) |
|
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased') |
|
metric = evaluate.load('glue', 'mrpc') |
|
gradient_accumulation_steps = 1 |
|
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: |
|
gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE |
|
batch_size = MAX_GPU_BATCH_SIZE |
|
|
|
def collate_fn(examples): |
|
if accelerator.distributed_type == DistributedType.TPU: |
|
return tokenizer.pad(examples, padding='max_length', max_length=128, return_tensors='pt') |
|
return tokenizer.pad(examples, padding='longest', return_tensors='pt') |
|
train_dataset = load_from_disk(args.training_dir) |
|
validation_dataset = load_from_disk(args.validation_dir) |
|
accelerator.print(f' loaded train_dataset length is: {len(train_dataset)}') |
|
accelerator.print(f' loaded test_dataset length is: {len(validation_dataset)}') |
|
train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=batch_size) |
|
eval_dataloader = DataLoader(validation_dataset, shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE) |
|
set_seed(seed) |
|
model = AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=True) |
|
model = model.to(accelerator.device) |
|
optimizer = AdamW(params=model.parameters(), lr=lr) |
|
lr_scheduler = get_linear_schedule_with_warmup(optimizer=optimizer, num_warmup_steps=100, num_training_steps=len(train_dataloader) * num_epochs // gradient_accumulation_steps) |
|
(model, optimizer, train_dataloader, eval_dataloader, lr_scheduler) = accelerator.prepare(model, optimizer, train_dataloader, eval_dataloader, lr_scheduler) |
|
overall_step = 0 |
|
starting_epoch = 0 |
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != '': |
|
accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}') |
|
accelerator.load_state(args.resume_from_checkpoint) |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] |
|
dirs.sort(key=os.path.getctime) |
|
path = dirs[-1] |
|
training_difference = os.path.splitext(path)[0] |
|
if 'epoch' in training_difference: |
|
starting_epoch = int(training_difference.replace('epoch_', '')) + 1 |
|
resume_step = None |
|
else: |
|
resume_step = int(training_difference.replace('step_', '')) |
|
starting_epoch = resume_step // len(train_dataloader) |
|
resume_step -= starting_epoch * len(train_dataloader) |
|
for epoch in range(starting_epoch, num_epochs): |
|
model.train() |
|
if args.with_tracking: |
|
total_loss = 0 |
|
for (step, batch) in enumerate(train_dataloader): |
|
if args.resume_from_checkpoint and epoch == starting_epoch: |
|
if resume_step is not None and step < resume_step: |
|
overall_step += 1 |
|
continue |
|
batch.to(accelerator.device) |
|
outputs = model(**batch) |
|
loss = outputs.loss |
|
loss = loss / gradient_accumulation_steps |
|
if args.with_tracking: |
|
total_loss += loss.detach().float() |
|
accelerator.backward(loss) |
|
if step % gradient_accumulation_steps == 0: |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
overall_step += 1 |
|
if isinstance(checkpointing_steps, int): |
|
output_dir = f'step_{overall_step}' |
|
if overall_step % checkpointing_steps == 0: |
|
if args.output_dir is not None: |
|
output_dir = os.path.join(args.output_dir, output_dir) |
|
accelerator.save_state(output_dir) |
|
model.eval() |
|
for (step, batch) in enumerate(eval_dataloader): |
|
batch.to(accelerator.device) |
|
with torch.no_grad(): |
|
outputs = model(**batch) |
|
predictions = outputs.logits.argmax(dim=-1) |
|
(predictions, references) = accelerator.gather_for_metrics((predictions, batch['labels'])) |
|
metric.add_batch(predictions=predictions, references=references) |
|
eval_metric = metric.compute() |
|
accelerator.print(f'epoch {epoch}:', eval_metric) |
|
if args.with_tracking: |
|
accelerator.log({'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(train_dataloader), 'epoch': epoch}, step=epoch) |
|
if checkpointing_steps == 'epoch': |
|
output_dir = f'epoch_{epoch}' |
|
if args.output_dir is not None: |
|
output_dir = os.path.join(args.output_dir, output_dir) |
|
accelerator.save_state(output_dir) |
|
accelerator.save(accelerator.get_state_dict(model), os.path.join(args.output_dir, 'model.pt')) |
|
if args.with_tracking: |
|
accelerator.end_training() |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Simple example of training script.') |
|
parser.add_argument('--mixed_precision', type=str, default='no', choices=['no', 'fp16', 'bf16'], help='Whether to use mixed precision. Choosebetween fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.and an Nvidia Ampere GPU.') |
|
parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.') |
|
parser.add_argument('--checkpointing_steps', type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.") |
|
parser.add_argument('--resume_from_checkpoint', type=str, default=None, help='If the training should continue from a checkpoint folder.') |
|
parser.add_argument('--with_tracking', action='store_true', help='Whether to load in all available experiment trackers from the environment and use them for logging.') |
|
parser.add_argument('--logging_dir', type=str, default=os.path.join(os.environ['SM_OUTPUT_DATA_DIR'], 'logs'), help='Location on where to store experiment tracking logs`') |
|
parser.add_argument('--output_dir', type=str, default=os.environ['SM_MODEL_DIR']) |
|
parser.add_argument('--training_dir', type=str, default=os.environ['SM_CHANNEL_TRAIN']) |
|
parser.add_argument('--validation_dir', type=str, default=os.environ['SM_CHANNEL_VALIDATION']) |
|
args = parser.parse_args() |
|
config = {'lr': 2e-05, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} |
|
training_function(config, args) |
|
if __name__ == '__main__': |
|
main() |
|
|
|
# File: notebooks-main/sagemaker/23_stable_diffusion_inference/code/inference.py |
|
import base64 |
|
import torch |
|
from io import BytesIO |
|
from diffusers import StableDiffusionPipeline |
|
|
|
def model_fn(model_dir): |
|
pipe = StableDiffusionPipeline.from_pretrained(model_dir, torch_dtype=torch.float16) |
|
pipe = pipe.to('cuda') |
|
return pipe |
|
|
|
def predict_fn(data, pipe): |
|
prompt = data.pop('inputs', data) |
|
num_inference_steps = data.pop('num_inference_steps', 50) |
|
guidance_scale = data.pop('guidance_scale', 7.5) |
|
num_images_per_prompt = data.pop('num_images_per_prompt', 4) |
|
generated_images = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=num_images_per_prompt)['images'] |
|
encoded_images = [] |
|
for image in generated_images: |
|
buffered = BytesIO() |
|
image.save(buffered, format='JPEG') |
|
encoded_images.append(base64.b64encode(buffered.getvalue()).decode()) |
|
return {'generated_images': encoded_images} |
|
|
|
|