# File: diffusion-models-class-main/unit2/finetune_model.py import wandb import numpy as np import torch, torchvision import torch.nn.functional as F from PIL import Image from tqdm.auto import tqdm from fastcore.script import call_parse from torchvision import transforms from diffusers import DDPMPipeline from diffusers import DDIMScheduler from datasets import load_dataset from matplotlib import pyplot as plt @call_parse def train(image_size=256, batch_size=16, grad_accumulation_steps=2, num_epochs=1, start_model='google/ddpm-bedroom-256', dataset_name='huggan/wikiart', device='cuda', model_save_name='wikiart_1e', wandb_project='dm_finetune', log_samples_every=250, save_model_every=2500): wandb.init(project=wandb_project, config=locals()) image_pipe = DDPMPipeline.from_pretrained(start_model) image_pipe.to(device) sampling_scheduler = DDIMScheduler.from_config(start_model) sampling_scheduler.set_timesteps(num_inference_steps=50) dataset = load_dataset(dataset_name, split='train') preprocess = transforms.Compose([transforms.Resize((image_size, image_size)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]) def transform(examples): images = [preprocess(image.convert('RGB')) for image in examples['image']] return {'images': images} dataset.set_transform(transform) train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True) optimizer = torch.optim.AdamW(image_pipe.unet.parameters(), lr=1e-05) scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9) for epoch in range(num_epochs): for (step, batch) in tqdm(enumerate(train_dataloader), total=len(train_dataloader)): clean_images = batch['images'].to(device) noise = torch.randn(clean_images.shape).to(clean_images.device) bs = clean_images.shape[0] timesteps = torch.randint(0, image_pipe.scheduler.num_train_timesteps, (bs,), device=clean_images.device).long() noisy_images = image_pipe.scheduler.add_noise(clean_images, noise, timesteps) noise_pred = image_pipe.unet(noisy_images, timesteps, return_dict=False)[0] loss = F.mse_loss(noise_pred, noise) wandb.log({'loss': loss.item()}) loss.backward() if (step + 1) % grad_accumulation_steps == 0: optimizer.step() optimizer.zero_grad() if (step + 1) % log_samples_every == 0: x = torch.randn(8, 3, 256, 256).to(device) for (i, t) in tqdm(enumerate(sampling_scheduler.timesteps)): model_input = sampling_scheduler.scale_model_input(x, t) with torch.no_grad(): noise_pred = image_pipe.unet(model_input, t)['sample'] x = sampling_scheduler.step(noise_pred, t, x).prev_sample grid = torchvision.utils.make_grid(x, nrow=4) im = grid.permute(1, 2, 0).cpu().clip(-1, 1) * 0.5 + 0.5 im = Image.fromarray(np.array(im * 255).astype(np.uint8)) wandb.log({'Sample generations': wandb.Image(im)}) if (step + 1) % save_model_every == 0: image_pipe.save_pretrained(model_save_name + f'step_{step + 1}') scheduler.step() image_pipe.save_pretrained(model_save_name) wandb.finish()