# File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/cli.py import sys import typer from pathlib import Path from loguru import logger from typing import Optional from enum import Enum app = typer.Typer() class Dtype(str, Enum): float32 = 'float32' float16 = 'float16' bloat16 = 'bfloat16' @app.command() def serve(model_path: Path, dtype: Dtype='float32', uds_path: Path='/tmp/text-embeddings-server', logger_level: str='INFO', json_output: bool=False, otlp_endpoint: Optional[str]=None, otlp_service_name: str='text-embeddings-inference.server'): logger.remove() logger.add(sys.stdout, format='{message}', filter='text_embeddings_server', level=logger_level, serialize=json_output, backtrace=True, diagnose=False) from text_embeddings_server import server from text_embeddings_server.utils.tracing import setup_tracing if otlp_endpoint is not None: setup_tracing(otlp_endpoint=otlp_endpoint, otlp_service_name=otlp_service_name) dtype = None if dtype is None else dtype.value server.serve(model_path, dtype, uds_path) if __name__ == '__main__': app() # File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/models/__init__.py import torch from loguru import logger from pathlib import Path from typing import Optional from transformers import AutoConfig from transformers.models.bert import BertConfig from text_embeddings_server.models.model import Model from text_embeddings_server.models.default_model import DefaultModel __all__ = ['Model'] torch.set_grad_enabled(False) FLASH_ATTENTION = True try: from text_embeddings_server.models.flash_bert import FlashBert except ImportError as e: logger.warning(f'Could not import Flash Attention enabled models: {e}') FLASH_ATTENTION = False if FLASH_ATTENTION: __all__.append(FlashBert) def get_model(model_path: Path, dtype: Optional[str]): if dtype == 'float32': dtype = torch.float32 elif dtype == 'float16': dtype = torch.float16 elif dtype == 'bfloat16': dtype = torch.bfloat16 else: raise RuntimeError(f'Unknown dtype {dtype}') if torch.cuda.is_available(): device = torch.device('cuda') else: if dtype != torch.float32: raise ValueError('CPU device only supports float32 dtype') device = torch.device('cpu') config = AutoConfig.from_pretrained(model_path) if config.model_type == 'bert': config: BertConfig if device.type == 'cuda' and config.position_embedding_type == 'absolute' and (dtype in [torch.float16, torch.bfloat16]) and FLASH_ATTENTION: return FlashBert(model_path, device, dtype) else: return DefaultModel(model_path, device, dtype) raise NotImplementedError # File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/models/default_model.py import inspect import torch from pathlib import Path from typing import Type, List from transformers import AutoModel from opentelemetry import trace from text_embeddings_server.models import Model from text_embeddings_server.models.types import PaddedBatch, Embedding tracer = trace.get_tracer(__name__) class DefaultModel(Model): def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype): model = AutoModel.from_pretrained(model_path).to(dtype).to(device) self.hidden_size = model.config.hidden_size self.has_position_ids = inspect.signature(model.forward).parameters.get('position_ids', None) is not None self.has_token_type_ids = inspect.signature(model.forward).parameters.get('token_type_ids', None) is not None super(DefaultModel, self).__init__(model=model, dtype=dtype, device=device) @property def batch_type(self) -> Type[PaddedBatch]: return PaddedBatch @tracer.start_as_current_span('embed') def embed(self, batch: PaddedBatch) -> List[Embedding]: kwargs = {'input_ids': batch.input_ids, 'attention_mask': batch.attention_mask} if self.has_token_type_ids: kwargs['token_type_ids'] = batch.token_type_ids if self.has_position_ids: kwargs['position_ids'] = batch.position_ids output = self.model(**kwargs) embedding = output[0][:, 0] cpu_results = embedding.view(-1).tolist() return [Embedding(values=cpu_results[i * self.hidden_size:(i + 1) * self.hidden_size]) for i in range(len(batch))] # File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/models/flash_bert.py import torch from pathlib import Path from torch import nn from typing import Type, List from safetensors import safe_open from transformers.activations import ACT2FN from transformers.models.bert import BertConfig from opentelemetry import trace import dropout_layer_norm from text_embeddings_server.models import Model from text_embeddings_server.models.types import FlashBatch, Embedding from text_embeddings_server.utils.flash_attn import attention tracer = trace.get_tracer(__name__) class FastLayerNorm: def __init__(self, prefix, handle, device, dtype, config: BertConfig): self.weight = handle.get_tensor(f'{prefix}.weight').to(dtype).to(device) self.bias = handle.get_tensor(f'{prefix}.bias').to(dtype).to(device) self.variance_epsilon = config.layer_norm_eps def forward(self, hidden_states, residual=None): (normed_hidden_states, res, *rest) = dropout_layer_norm.dropout_add_ln_fwd(hidden_states, residual, self.weight, self.bias, None, None, None, None, 0.0, self.variance_epsilon, 1.0, 0, None, False, False) if res is None: res = hidden_states return (normed_hidden_states, res) class BertEmbeddings: def __init__(self, prefix, handle, device, dtype, config: BertConfig): self.word_embeddings_weight = handle.get_tensor(f'{prefix}.word_embeddings.weight').to(dtype).to(device) self.token_type_embeddings_weight = handle.get_tensor(f'{prefix}.token_type_embeddings.weight').to(dtype).to(device) if config.position_embedding_type == 'absolute': self.position_embeddings_weight = handle.get_tensor(f'{prefix}.position_embeddings.weight').to(dtype).to(device) else: raise NotImplementedError('FlashBert only supports absolute position embeddings') self.layer_norm = FastLayerNorm(f'{prefix}.LayerNorm', handle, device, dtype, config) def forward(self, input_ids, token_type_ids, position_ids): inputs_embeds = nn.functional.embedding(input_ids, self.word_embeddings_weight) token_type_embeds = nn.functional.embedding(token_type_ids, self.token_type_embeddings_weight) position_embeds = nn.functional.embedding(position_ids, self.position_embeddings_weight) inputs_embeds += position_embeds (embeddings, _) = self.layer_norm.forward(inputs_embeds, token_type_embeds) return embeddings class BertAttention: def __init__(self, prefix, handle, device, dtype, config: BertConfig): query_weight = handle.get_tensor(f'{prefix}.self.query.weight') query_bias = handle.get_tensor(f'{prefix}.self.query.bias') key_weight = handle.get_tensor(f'{prefix}.self.key.weight') key_bias = handle.get_tensor(f'{prefix}.self.key.bias') value_weight = handle.get_tensor(f'{prefix}.self.value.weight') value_bias = handle.get_tensor(f'{prefix}.self.value.bias') self.qkv_weight = torch.cat([query_weight, key_weight, value_weight]).T.to(dtype).to(device) self.qkv_bias = torch.cat([query_bias, key_bias, value_bias]).to(dtype).to(device) self.dense_weight = handle.get_tensor(f'{prefix}.output.dense.weight').T.to(dtype).to(device) self.dense_bias = handle.get_tensor(f'{prefix}.output.dense.bias').to(dtype).to(device) self.layer_norm = FastLayerNorm(f'{prefix}.output.LayerNorm', handle, device, dtype, config) self.head_size = config.hidden_size // config.num_attention_heads self.softmax_scale = self.head_size ** (-0.5) self.num_heads = config.num_attention_heads def forward(self, hidden_states, cu_seqlens, max_s): residual = hidden_states qkv = torch.addmm(self.qkv_bias, hidden_states, self.qkv_weight) (q, k, v) = qkv.view(-1, self.num_heads * 3, self.head_size).split(self.num_heads, dim=1) attn_output = torch.empty_like(q) attention(q, k, v, attn_output, cu_seqlens, max_s, self.softmax_scale) hidden_states = torch.addmm(self.dense_bias, attn_output.view(-1, self.num_heads * self.head_size), self.dense_weight) (hidden_states, _) = self.layer_norm.forward(hidden_states, residual) return hidden_states class BertLayer: def __init__(self, prefix, handle, device, dtype, config: BertConfig): self.attention = BertAttention(f'{prefix}.attention', handle, device, dtype, config) self.intermediate_weight = handle.get_tensor(f'{prefix}.intermediate.dense.weight').T.to(dtype).to(device) self.intermediate_bias = handle.get_tensor(f'{prefix}.intermediate.dense.bias').to(dtype).to(device) act = config.hidden_act self.intermediate_act_fn = ACT2FN[act] if 'gelu' not in act else lambda x: torch.nn.functional.gelu(x, approximate='tanh' if act in ['gelu_fast', 'gelu_pytorch_tanh'] else 'none') self.output_weight = handle.get_tensor(f'{prefix}.output.dense.weight').T.to(dtype).to(device) self.output_bias = handle.get_tensor(f'{prefix}.output.dense.bias').to(dtype).to(device) self.layer_norm = FastLayerNorm(f'{prefix}.output.LayerNorm', handle, device, dtype, config) def forward(self, hidden_states, cu_seqlens, max_s): hidden_states = self.attention.forward(hidden_states, cu_seqlens, max_s) residual = hidden_states hidden_states = torch.addmm(self.intermediate_bias, hidden_states, self.intermediate_weight) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = torch.addmm(self.output_bias, hidden_states, self.output_weight) (hidden_states, _) = self.layer_norm.forward(hidden_states, residual) return hidden_states class BertEncoder: def __init__(self, prefix, handle, device, dtype, config: BertConfig): self.layers = [BertLayer(f'{prefix}.layer.{i}', handle, device, dtype, config) for i in range(config.num_hidden_layers)] def forward(self, hidden_states, cu_seqlens, max_s): for layer in self.layers: hidden_states = layer.forward(hidden_states, cu_seqlens, max_s) return hidden_states class FlashBertModel: def __init__(self, handle, device, dtype, config: BertConfig): self.embeddings = BertEmbeddings('embeddings', handle, device, dtype, config) self.encoder = BertEncoder('encoder', handle, device, dtype, config) def forward(self, input_ids, token_type_ids, position_ids, cu_seqlens, max_s): embeddings = self.embeddings.forward(input_ids, token_type_ids, position_ids) encoder_outputs = self.encoder.forward(embeddings, cu_seqlens, max_s) return encoder_outputs[cu_seqlens[:-1]] class FlashBert(Model): def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype): config = BertConfig.from_pretrained(model_path) with safe_open(model_path / 'model.safetensors', framework='pt') as f: model = FlashBertModel(f, device, dtype, config) self.hidden_size = config.hidden_size super(FlashBert, self).__init__(model=model, dtype=dtype, device=device) @property def batch_type(self) -> Type[FlashBatch]: return FlashBatch @tracer.start_as_current_span('embed') def embed(self, batch: FlashBatch) -> List[Embedding]: embedding = self.model.forward(input_ids=batch.input_ids, token_type_ids=batch.token_type_ids, position_ids=batch.position_ids, cu_seqlens=batch.cu_seqlens, max_s=batch.max_s) cpu_results = embedding.view(-1).tolist() return [Embedding(values=cpu_results[i * self.hidden_size:(i + 1) * self.hidden_size]) for i in range(len(batch))] # File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/models/model.py import torch from abc import ABC, abstractmethod from typing import List, TypeVar, Type from text_embeddings_server.models.types import Batch, Embedding B = TypeVar('B', bound=Batch) class Model(ABC): def __init__(self, model, dtype: torch.dtype, device: torch.device): self.model = model self.dtype = dtype self.device = device @property @abstractmethod def batch_type(self) -> Type[B]: raise NotImplementedError @abstractmethod def embed(self, batch: B) -> List[Embedding]: raise NotImplementedError # File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/models/types.py import torch from abc import ABC, abstractmethod from dataclasses import dataclass from opentelemetry import trace from text_embeddings_server.pb import embed_pb2 from text_embeddings_server.pb.embed_pb2 import Embedding tracer = trace.get_tracer(__name__) class Batch(ABC): @classmethod @abstractmethod def from_pb(cls, pb: embed_pb2.EmbedRequest, device: torch.device) -> 'Batch': raise NotImplementedError @abstractmethod def __len__(self): raise NotImplementedError @dataclass class PaddedBatch(Batch): input_ids: torch.Tensor token_type_ids: torch.Tensor position_ids: torch.Tensor attention_mask: torch.Tensor @classmethod @tracer.start_as_current_span('from_pb') def from_pb(cls, pb: embed_pb2.EmbedRequest, device: torch.device) -> 'PaddedBatch': all_tensors = torch.zeros([4, len(pb.cu_seq_lengths) - 1, pb.max_length], dtype=torch.int32) for (i, start_index) in enumerate(pb.cu_seq_lengths[:-1]): end_index = pb.cu_seq_lengths[i + 1] input_length = end_index - start_index all_tensors[0, i, :input_length] = torch.tensor(pb.input_ids[start_index:end_index], dtype=torch.int32) all_tensors[1, i, :input_length] = torch.tensor(pb.token_type_ids[start_index:end_index], dtype=torch.int32) all_tensors[2, i, :input_length] = torch.tensor(pb.position_ids[start_index:end_index], dtype=torch.int32) all_tensors[3, i, :input_length] = 1 all_tensors = all_tensors.to(device) return PaddedBatch(input_ids=all_tensors[0], token_type_ids=all_tensors[1], position_ids=all_tensors[2], attention_mask=all_tensors[3]) def __len__(self): return len(self.input_ids) @dataclass class FlashBatch(Batch): input_ids: torch.Tensor token_type_ids: torch.Tensor position_ids: torch.Tensor cu_seqlens: torch.Tensor max_s: int size: int @classmethod @tracer.start_as_current_span('from_pb') def from_pb(cls, pb: embed_pb2.EmbedRequest, device: torch.device) -> 'FlashBatch': if device.type != 'cuda': raise RuntimeError(f'FlashBatch does not support device {device}') batch_input_ids = torch.tensor(pb.input_ids, dtype=torch.int32, device=device) batch_token_type_ids = torch.tensor(pb.token_type_ids, dtype=torch.int32, device=device) batch_position_ids = torch.tensor(pb.position_ids, dtype=torch.int32, device=device) cu_seqlens = torch.tensor(pb.cu_seq_lengths, dtype=torch.int32, device=device) return FlashBatch(input_ids=batch_input_ids, token_type_ids=batch_token_type_ids, position_ids=batch_position_ids, cu_seqlens=cu_seqlens, max_s=pb.max_length, size=len(cu_seqlens) - 1) def __len__(self): return self.size # File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/server.py import asyncio import torch from grpc import aio from loguru import logger from grpc_reflection.v1alpha import reflection from pathlib import Path from typing import Optional from text_embeddings_server.models import Model, get_model from text_embeddings_server.pb import embed_pb2_grpc, embed_pb2 from text_embeddings_server.utils.tracing import UDSOpenTelemetryAioServerInterceptor from text_embeddings_server.utils.interceptor import ExceptionInterceptor class EmbeddingService(embed_pb2_grpc.EmbeddingServiceServicer): def __init__(self, model: Model): self.model = model self._inference_mode_raii_guard = torch._C._InferenceMode(True) async def Health(self, request, context): if self.model.device.type == 'cuda': torch.zeros((2, 2), device='cuda') return embed_pb2.HealthResponse() async def Embed(self, request, context): batch = self.model.batch_type.from_pb(request, self.model.device) embeddings = self.model.embed(batch) return embed_pb2.EmbedResponse(embeddings=embeddings) def serve(model_path: Path, dtype: Optional[str], uds_path: Path): async def serve_inner(model_path: Path, dtype: Optional[str]=None): unix_socket = f'unix://{uds_path}' try: model = get_model(model_path, dtype) except Exception: logger.exception('Error when initializing model') raise server = aio.server(interceptors=[ExceptionInterceptor(), UDSOpenTelemetryAioServerInterceptor()]) embed_pb2_grpc.add_EmbeddingServiceServicer_to_server(EmbeddingService(model), server) SERVICE_NAMES = (embed_pb2.DESCRIPTOR.services_by_name['EmbeddingService'].full_name, reflection.SERVICE_NAME) reflection.enable_server_reflection(SERVICE_NAMES, server) server.add_insecure_port(unix_socket) await server.start() logger.info(f'Server started at {unix_socket}') try: await server.wait_for_termination() except KeyboardInterrupt: logger.info('Signal received. Shutting down') await server.stop(0) asyncio.run(serve_inner(model_path, dtype))