# File: huggingface-llama-recipes-main/assisted_decoding.py from transformers import AutoModelForCausalLM, AutoTokenizer import time import torch WARMUP = 2 MAX_NEW_TOKENS = 10 DO_SAMPLE = True ATOL = 1e-06 TORCH_DTYPE = torch.float32 PROMPT = 'Alice and Bob ' CHECKPOINT = 'meta-llama/Meta-Llama-3-405B' ASSISTED_CHECKPOINT = 'meta-llama/Meta-Llama-3.1-8B' model = AutoModelForCausalLM.from_pretrained(CHECKPOINT, device_map='auto', torch_dtype=TORCH_DTYPE) assistant_model = AutoModelForCausalLM.from_pretrained(ASSISTED_CHECKPOINT, device_map='auto', torch_dtype=TORCH_DTYPE) tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT) inputs = tokenizer(PROMPT, return_tensors='pt').to(model.device) for _ in range(WARMUP): model.generate(**inputs, assistant_model=assistant_model) start = time.time() assisted_outputs = model.generate(**inputs, assistant_model=assistant_model) end = time.time() assisted_gen_text = tokenizer.batch_decode(assisted_outputs, skip_special_tokens=True) print(assisted_gen_text) print(f'\nAssisted time taken: {end - start:.2f}s') # File: huggingface-llama-recipes-main/awq_generation.py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AwqConfig model_id = 'hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4' quantization_config = AwqConfig(bits=4, fuse_max_seq_len=512, do_fuse=True) tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map='auto', quantization_config=quantization_config) messages = [{'role': 'system', 'content': 'You are a pirate'}, {'role': 'user', 'content': "What's Deep Leaning?"}] inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors='pt', return_dict=True).to('cuda') outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # File: huggingface-llama-recipes-main/gptq_generation.py import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = 'hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4' messages = [{'role': 'system', 'content': 'You are a pirate'}, {'role': 'user', 'content': "What's Deep Leaning?"}] tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map='auto') inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors='pt', return_dict=True).to('cuda') outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # File: huggingface-llama-recipes-main/peft_finetuning.py import torch from datasets import load_dataset from trl import SFTTrainer from peft import LoraConfig from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TrainingArguments model_id = 'meta-llama/Meta-Llama-3.1-8B' tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) dataset = load_dataset('imdb', split='train') training_args = TrainingArguments(output_dir='./results', num_train_epochs=3, per_device_train_batch_size=4, logging_dir='./logs', logging_steps=10) QLoRA = True if QLoRA: quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_quant_type='nf4') lora_config = LoraConfig(r=8, target_modules='all-linear', bias='none', task_type='CAUSAL_LM') else: lora_config = None trainer = SFTTrainer(model=model, tokenizer=tokenizer, args=training_args, peft_config=lora_config, train_dataset=dataset, dataset_text_field='text') trainer.train() # File: huggingface-llama-recipes-main/prompt_reuse.py import os, torch, copy from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache device = 'cuda' ckpt = 'meta-llama/Meta-Llama-3.1-8B-Instruct' INITIAL_PROMPT = 'From now on, you are going to answer all my questions with historical details. Make sure to always add a bit of french here and there, for style.' model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16) model.to(device) tokenizer = AutoTokenizer.from_pretrained(ckpt) prompt_cache = DynamicCache() inputs = tokenizer(INITIAL_PROMPT, return_tensors='pt').to('cuda') prompt_cache = model(**inputs, past_key_values=prompt_cache).past_key_values prompt = 'Why are french people obsessed with french?' new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors='pt').to('cuda') past_key_values = copy.deepcopy(prompt_cache) outputs = model.generate(**new_inputs, past_key_values=past_key_values, max_new_tokens=20) response = tokenizer.batch_decode(outputs)[0] print(response) '' prompt = 'What is the best city to swim in?' new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors='pt').to('cuda') outputs = model.generate(**new_inputs, past_key_values=copy.deepcopy(prompt_cache), max_new_tokens=20) response = tokenizer.batch_decode(outputs)[0] print(response) '' # File: huggingface-llama-recipes-main/quantized_cache.py import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = 'cuda' ckpt = 'meta-llama/Meta-Llama-3.1-8B-Instruct' model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16) model.to(device) tokenizer = AutoTokenizer.from_pretrained(ckpt) prompt = 'Explain the thre body problem' inputs = tokenizer(prompt, return_tensors='pt').to('cuda') outputs = model.generate(**inputs, cache_implementation='quantized', do_sample=True, max_new_tokens=256) response = tokenizer.batch_decode(outputs)[0] print(response) '' from transformers import QuantizedCacheConfig cache_config = QuantizedCacheConfig(backend='HQQ', nbits=4, axis_key=0, axis_value=1, compute_dtype=torch.float16, device=model.device) out = model.generate(**inputs, do_sample=False, max_new_tokens=30, cache_implementation='quantized', cache_config=cache_config) print(tokenizer.batch_decode(out, skip_special_tokens=True)) '' # File: huggingface-llama-recipes-main/torch_compile.py import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer os.environ['TOKENIZERS_PARALLELISM'] = 'false' device = 'cuda' ckpt = 'meta-llama/Meta-Llama-3.1-8B-Instruct' model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16) model.to(device) tokenizer = AutoTokenizer.from_pretrained(ckpt) prompt = 'Why dogs are so cute?' inputs = tokenizer(prompt, return_tensors='pt').to(device) model.generation_config.max_length = 128 outputs = model.generate(**inputs, do_sample=False) response = tokenizer.batch_decode(outputs)[0] print(response) model.forward = torch.compile(model.forward, mode='reduce-overhead', fullgraph=True) model.generation_config.cache_implementation = 'static' outputs = model.generate(**inputs, do_sample=False) response = tokenizer.batch_decode(outputs)[0] outputs = model.generate(**inputs, do_sample=False) response = tokenizer.batch_decode(outputs)[0] outputs = model.generate(**inputs, do_sample=False) response = tokenizer.batch_decode(outputs)[0] print(response)