# File: pixparse-main/src/pixparse/app/eval.py import logging import os import json from dataclasses import dataclass, replace, field from typing import List import simple_parsing from simple_parsing import ArgumentParser import torch from pixparse.data import DataCfg, create_loader from pixparse.framework import TaskEval, TaskEvalCfg, DeviceEnv, Monitor, evaluate, setup_logging, random_seed from pixparse.utils.s3_utils import load_checkpoint_from_s3 from pixparse.task.task_factory import TaskFactory from chug.webdataset import create_doc_anno_pipe, create_image_text_pipe from collections import OrderedDict _logger = logging.getLogger('eval') @dataclass class EvalCfg: experiment: str = '' output_dir: str = './output' log_filename: str = 'out.log' dataset_name: str = '' s3_bucket: str = '' checkpoint_path: str = '' metrics_file_path: str = '' task_name: str = '' datasets: List[str] = field(default_factory=lambda : ['eval']) seed: int = 42 def eval(cfg: EvalCfg, task: TaskEval, eval_loaders: dict): device_env = task.device_env metrics = evaluate(task, eval_loaders) with open(cfg.metrics_file_path, 'w') as f: json.dump(metrics, f) parser = ArgumentParser(add_option_string_dash_variants=simple_parsing.DashVariant.DASH, argument_generation_mode=simple_parsing.ArgumentGenerationMode.BOTH, add_config_path_arg=True) parser.add_arguments(EvalCfg, dest='eval') parser.add_arguments(TaskEvalCfg, dest='task') parser.add_arguments(DataCfg, dest='data') def main(): args = parser.parse_args() eval_cfg: EvalCfg = args.eval data_cfg: DataCfg = args.data device_env = DeviceEnv() (task, task_cfg) = TaskFactory.create_task(task_name=eval_cfg.task_name, task_args=args.task, device_env=device_env, monitor=None) random_seed(eval_cfg.seed, rank=device_env.global_rank) _logger.info(f'Device env is {device_env}') assert eval_cfg.output_dir is not None, f'output_dir is not provided. Stopping eval run.' if device_env.is_primary(): log_path = os.path.join(eval_cfg.output_dir, eval_cfg.log_filename) setup_logging(log_path) monitor = Monitor(eval_cfg.experiment, output_dir=eval_cfg.output_dir, output_enabled=device_env.is_primary()) if eval_cfg.task_name not in ['donut_eval_ocr']: checkpoint_path = eval_cfg.checkpoint_path eval_cfg = replace(eval_cfg, checkpoint_path=checkpoint_path) if eval_cfg.s3_bucket != '': _logger.info('s3 bucket specified. Loading checkpoint from s3.') checkpoint = load_checkpoint_from_s3(eval_cfg.s3_bucket, eval_cfg.checkpoint_path) else: assert os.path.isfile(checkpoint_path), f'Cannot find checkpoint {checkpoint_path}: File not found' checkpoint = torch.load(eval_cfg.checkpoint_path) if isinstance(checkpoint, OrderedDict): state_dict = checkpoint else: state_dict = checkpoint['model'] checkpoint_name = eval_cfg.checkpoint_path.replace('/', '_').replace('.pt', '') metrics_file_name = f'{checkpoint_name}-{eval_cfg.dataset_name}-metrics.json' eval_state_dict = {k.replace('module.', ''): v for (k, v) in state_dict.items()} task.resume_state_dict = eval_state_dict else: metrics_file_name = f'{eval_cfg.task_name}-{eval_cfg.dataset_name}-metrics.json' eval_cfg.metrics_file_path = os.path.join(eval_cfg.output_dir, metrics_file_name) if device_env.is_primary(): _logger.info(task_cfg) _logger.info(eval_cfg) loaders = {} assert data_cfg.eval is not None, f'data_cfg.eval is not set.' loaders['eval'] = create_loader(data_cfg.eval, is_train=False, collate_fn=task.collate_fn, image_preprocess=task.image_preprocess_eval, anno_preprocess=task.anno_preprocess_eval, image_fmt=task_cfg.model.image_encoder.image_fmt, world_size=device_env.world_size, local_rank=device_env.local_rank, create_decoder_pipe=create_image_text_pipe) task.setup() if device_env.is_primary(): _logger.info(task) eval(eval_cfg, task, loaders) task.end() if __name__ == '__main__': main() # File: pixparse-main/src/pixparse/app/train.py import logging import os from dataclasses import dataclass, replace from datetime import datetime from typing import Dict, Optional import simple_parsing from simple_parsing import ArgumentParser import torch from pixparse.data import DataCfg, create_loader from pixparse.framework import DeviceEnv, Monitor, train_one_interval, evaluate, setup_logging, random_seed, TaskTrain, TaskTrainCfg from pixparse.utils.name_utils import clean_name from pixparse.utils.s3_utils import load_checkpoint_from_s3 from pixparse.task import TaskFactory from chug.common import LoaderBundle from chug.webdataset import create_doc_anno_pipe from collections import OrderedDict _logger = logging.getLogger('train') @dataclass class TrainCfg: experiment: Optional[str] = None output_dir: str = './output' log_filename: str = 'out.log' s3_bucket: str = '' resume: bool = False checkpoint_path: str = '' output_checkpoint_dir: Optional[str] = None seed: int = 42 task_name: str = 'cruller_pretrain' wandb: bool = False wandb_project: str = 'unknown' tensorboard: bool = False log_eval_data: bool = False def train(cfg: TrainCfg, task: TaskTrain, loaders: Dict[str, LoaderBundle]): device_env = task.device_env train_loader = loaders['train'] for i in range(task.start_interval, task.num_intervals): train_loader.set_interval(i) train_one_interval(task, train_loader) if device_env.is_primary(): checkpoint_dir = os.path.join(cfg.output_checkpoint_dir, cfg.experiment) os.makedirs(checkpoint_dir, exist_ok=True) torch.save(task.model.state_dict(), os.path.join(checkpoint_dir, f'checkpoint-{i}.pt')) parser = ArgumentParser(add_option_string_dash_variants=simple_parsing.DashVariant.DASH, argument_generation_mode=simple_parsing.ArgumentGenerationMode.BOTH, add_config_path_arg=True) parser.add_arguments(TrainCfg, dest='train') parser.add_arguments(TaskTrainCfg, dest='task') parser.add_arguments(DataCfg, dest='data') def main(): args = parser.parse_args() train_cfg: TrainCfg = args.train data_cfg: DataCfg = args.data device_env = DeviceEnv() (task, task_cfg) = TaskFactory.create_task(task_name=train_cfg.task_name, task_args=args.task, device_env=device_env, monitor=None) random_seed(train_cfg.seed, rank=device_env.global_rank) _logger.info(f'Device env is {device_env}') if train_cfg.experiment is None: model_name_safe = clean_name(task_cfg.model_name) date_str = datetime.now().strftime('%Y%m%d-%H%M%S') if device_env.world_size > 1: date_str = device_env.broadcast_object(date_str) experiment = '-'.join([date_str, f'task_{train_cfg.task_name}', f'model_{model_name_safe}', f"lr_{'{:.1e}'.format(task_cfg.opt.learning_rate)}", f'b_{data_cfg.train.batch_size}']) train_cfg = replace(train_cfg, experiment=experiment) resume_latest = False experiment_path = os.path.join(train_cfg.output_dir, train_cfg.experiment) log_path = None if device_env.is_primary(): os.makedirs(experiment_path, exist_ok=True) log_path = os.path.join(experiment_path, train_cfg.log_filename) if os.path.exists(log_path) and (not resume_latest): _logger.error('Error. Experiment already exists. Use --experiment {} to specify a new experiment.') return -1 setup_logging(log_path) task.monitor = Monitor(train_cfg.experiment, output_dir=experiment_path, wandb=train_cfg.wandb, wandb_project=train_cfg.wandb_project, tensorboard=train_cfg.tensorboard, output_enabled=device_env.is_primary()) if train_cfg.resume: checkpoint_path = train_cfg.checkpoint_path train_cfg = replace(train_cfg, checkpoint_path=checkpoint_path) if train_cfg.s3_bucket != '': _logger.info('s3 bucket specified. Loading checkpoint from s3.') checkpoint = load_checkpoint_from_s3(train_cfg.s3_bucket, train_cfg.checkpoint_path) else: assert os.path.isfile(checkpoint_path), f'Cannot find checkpoint {checkpoint_path}: File not found' checkpoint = torch.load(train_cfg.checkpoint_path) if isinstance(checkpoint, OrderedDict): state_dict = checkpoint else: state_dict = checkpoint['model'] task.state_dict = state_dict task.resume = True output_checkpoint_dir = train_cfg.output_checkpoint_dir or os.path.join(experiment_path, 'checkpoints') os.makedirs(output_checkpoint_dir, exist_ok=True) train_cfg = replace(train_cfg, output_checkpoint_dir=output_checkpoint_dir) if device_env.is_primary(): _logger.info(task_cfg) _logger.info(train_cfg) loaders = {} assert data_cfg.train is not None or data_cfg.eval is not None, f'Neither data_cfg.train nor data_cfg.eval are set.' if data_cfg.train is not None: loaders['train'] = create_loader(data_cfg.train, is_train=True, collate_fn=task.collate_fn, image_preprocess=task.image_preprocess_train, anno_preprocess=task.anno_preprocess_train, image_fmt=task_cfg.model.image_encoder.image_fmt, world_size=device_env.world_size, global_rank=device_env.global_rank, create_decoder_pipe=create_doc_anno_pipe) task.train_setup(num_batches_per_interval=loaders['train'].num_batches) if device_env.is_primary(): _logger.info(task) train(train_cfg, task, loaders) if __name__ == '__main__': main() # File: pixparse-main/src/pixparse/data/config.py from dataclasses import dataclass, field from typing import List, Optional @dataclass class PreprocessCfg: pass @dataclass class DatasetCfg: source: str num_samples: int batch_size: int split: str format: str = 'webdataset' num_workers: int = 4 @dataclass class DataCfg: train: Optional[DatasetCfg] = None eval: Optional[DatasetCfg] = None # File: pixparse-main/src/pixparse/data/datasets_utils.py import json import os from ast import literal_eval import torch from datasets import load_dataset from PIL import Image from torch.utils.data import DataLoader, Dataset from torchvision import transforms from pixparse.utils.json_utils import json2token '' class CustomVQADataset(Dataset): def __init__(self, root_dir, split, transform=None): self.extra_tokens = ['', '', '', ''] self.root_dir = root_dir self.split = split assert split in ['train', 'test', 'val'], 'split is not train, test or val.' if split == 'test' or split == 'val': json_path = os.path.join(root_dir, split, f'{split}_v1.0.json') else: json_path = os.path.join(root_dir, split, f'processed_{split}_v1.0.json') assert os.path.isdir(self.root_dir), f"Can't find {root_dir}. Make sure you have DocVQA files locally." assert os.path.isfile(json_path), f'{json_path} not found. Make sure you have the processed dataset.' self.img_dir = os.path.join(root_dir, split) with open(json_path, 'r') as f: self.data_dict = json.load(f) self.all_images = list(self.data_dict.keys()) self.transform = transform def __len__(self): if self.split == 'test' or self.split == 'val': return len(self.data_dict['data']) return len(self.all_images) def __getitem__(self, index): if self.split == 'test': entry = self.data_dict['data'][index] labels = '' + entry['question'] + '' img_path = os.path.join(self.img_dir, entry['image']) question_id = entry['questionId'] image_id = entry['image'] if self.split == 'val': entry = self.data_dict['data'][index] labels = {'question': entry['question'], 'answers': entry['answers']} img_path = os.path.join(self.img_dir, entry['image']) question_id = entry['questionId'] image_id = entry['image'] else: image_id = self.all_images[index] questions_and_answers = self.data_dict[image_id] labels = questions_and_answers img_path = os.path.join(self.img_dir, image_id) question_id = -1 image = Image.open(img_path).convert('L') if self.transform: image = self.transform(image) return {'image': image, 'labels': labels, 'image_id': image_id, 'question_id': question_id} class SafeDataset: def __init__(self, original_dataset): self.original_dataset = original_dataset def __len__(self): return len(self.original_dataset) def __getitem__(self, idx): try: item = self.original_dataset[idx] return item except Exception as e: return None def get_additional_tokens_from_dataset(all_special_tokens: list, dataset=None, dataset_id: str='naver-clova-ix/cord-v2') -> list: if dataset_id == 'naver-clova-ix/cord-v2': def collate_fn(batch): text_inputs = [literal_eval(item['ground_truth'])['gt_parse'] for item in batch] return {'label': text_inputs} cord = load_dataset(dataset_id) loader = DataLoader(cord['train'], batch_size=32, collate_fn=collate_fn) new_special_tokens = [] for (i, batch) in enumerate(loader): for text in batch['label']: (_, batch_special_tokens) = json2token(text, all_special_tokens) new_special_tokens += batch_special_tokens new_special_tokens = list(set(new_special_tokens)) return new_special_tokens # File: pixparse-main/src/pixparse/data/loader.py from typing import Callable from chug import create_wds_loader, create_doc_anno_pipe from chug.common import LoaderBundle from datasets import VerificationMode from datasets import load_dataset from torch.utils.data import DataLoader, DistributedSampler from pixparse.data.datasets_utils import SafeDataset, CustomVQADataset from .config import DatasetCfg class GenericLoader(DataLoader): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.num_batches = len(self.dataset) // self.batch_size if len(self.dataset) % self.batch_size != 0: self.num_batches += 1 def create_loader(cfg: DatasetCfg, is_train: bool, image_preprocess, anno_preprocess, collate_fn: Callable=None, image_key='pdf;tif;tiff;png;jpg;jpeg', image_fmt='L', start_interval: int=0, seed: int=0, world_size: int=1, global_rank: int=0, create_decoder_pipe: Callable=create_doc_anno_pipe): decoder = create_decoder_pipe(image_preprocess=image_preprocess, anno_preprocess=anno_preprocess, image_key=image_key, image_fmt=image_fmt) if cfg.format == 'webdataset': loader = create_wds_loader(cfg.source, decoder, is_train=is_train, num_samples=cfg.num_samples, workers=cfg.num_workers, batch_size=cfg.batch_size, seed=seed, world_size=world_size) elif cfg.format == 'hf_dataset': if cfg.source == 'SinglePageDocVQA': dataset = CustomVQADataset(root_dir=f'/fsx/pablo/.cache/{cfg.source}', split=cfg.split) else: dataset = load_dataset(cfg.source, verification_mode=VerificationMode.ALL_CHECKS)[cfg.split] dataset = SafeDataset(dataset) sampler = None if world_size > 1: sampler = DistributedSampler(dataset, rank=global_rank, shuffle=True, seed=seed, num_replicas=world_size, drop_last=True) base_loader = DataLoader(dataset=dataset, collate_fn=collate_fn, sampler=sampler, batch_size=cfg.batch_size, num_workers=cfg.num_workers) loader = LoaderBundle(loader=base_loader, num_batches=len(base_loader), num_samples=len(dataset), sampler=sampler) return loader # File: pixparse-main/src/pixparse/data/preprocess.py import logging from typing import Callable import torch _logger = logging.getLogger(__name__) def preprocess_text_anno(anno, tokenizer: Callable, max_position_embeddings: int, task_start_token: str, prompt_end_token: str, ignore_id: int=-100, generator=None): text = task_start_token + anno + tokenizer.eos_token tokenizer_fn = lambda x: tokenizer(x, add_special_tokens=False, return_tensors='pt', max_length=max_position_embeddings, padding='max_length', truncation=True).input_ids[0] text = tokenizer_fn(text) target = text.clone() target[target == tokenizer.pad_token_id] = ignore_id prompt_end_token_id = tokenizer.convert_tokens_to_ids(prompt_end_token) target[:torch.nonzero(target == prompt_end_token_id).sum() + 1] = ignore_id return dict(text=[text], target=[target]) def preprocess_ocr_anno(anno, tokenizer: Callable, max_position_embeddings: int, task_start_token: str, prompt_end_token: str, ignore_id: int=-100, generator=None): if isinstance(anno, list): _logger.warning('Old [id, {}] annotation form found, correcting...') anno = anno[1] num_pages = len(anno['pages']) if not num_pages: raise RuntimeError('Empty annotation. Skipping...') tokenizer_fn = lambda x: tokenizer(x, add_special_tokens=False, return_tensors='pt', max_length=max_position_embeddings, padding='max_length', truncation=True).input_ids[0] pad_token_id = tokenizer.pad_token_id prompt_end_token_id = tokenizer.convert_tokens_to_ids(prompt_end_token) current_index = generator.randint(0, num_pages - 1) if not anno['pages'][current_index]['text']: current_index = get_next_valid_page_index(current_index, num_pages, anno) page_indices = [] text_pages = [] target_pages = [] n_wanted_pages = min(1, num_pages) while len(text_pages) < n_wanted_pages: anno_page = anno['pages'][current_index] if not anno_page['text']: raise RuntimeError('No text on page, skipping...') text = '\n'.join(anno_page['text']) orig_text = text text = task_start_token + text + tokenizer.eos_token text = tokenizer_fn(text) target = text.clone() target[target == pad_token_id] = ignore_id target[:torch.nonzero(target == prompt_end_token_id).sum() + 1] = ignore_id text_pages.append(text) target_pages.append(target) page_indices.append(current_index) current_index = get_next_valid_page_index(current_index, num_pages, anno) return (dict(text=text_pages, target=target_pages), dict(page_indices=page_indices, num_pages=num_pages, orig_text=orig_text)) def get_next_valid_page_index(current_index: int, num_pages: int, anno: dict, retries: int=10): for _ in range(retries): current_index = (current_index + 1) % num_pages anno_page = anno['pages'][current_index] if anno_page['text']: return current_index raise RuntimeError(f'No non-empty page found after {retries} attempts') # File: pixparse-main/src/pixparse/data/transforms.py import random from typing import Tuple, Union import timm.data.transforms import torch import torchvision.transforms.functional as F from torchvision import transforms from PIL import Image, ImageOps, ImageFilter from timm.data.transforms import CenterCropOrPad from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD import numpy as np try: import albumentations as alb from albumentations.pytorch import ToTensorV2 has_albumentations = True except ImportError: has_albumentations = False try: import cv2 has_cv2 = True except ImportError: has_cv2 = False def create_transforms(name, image_size, training=True, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD, interpolation: str='bicubic', crop_margin: bool=False, align_long_axis: bool=False, fill=255): basic_args = dict(training=training, image_mean=image_mean, image_std=image_std) adv_args = dict(interpolation=interpolation, crop_margin=crop_margin, align_long_axis=align_long_axis, fill=fill) if name == 'better': return better_transforms(image_size, **basic_args, **adv_args) elif name == 'nougat': return nougat_transforms(image_size, **basic_args, **adv_args) else: return legacy_transforms(image_size, **basic_args) def legacy_transforms(image_size, image_mean, image_std, training=False): pp = transforms.Compose([transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.ToTensor(), transforms.Normalize(mean=image_mean, std=image_std)]) return pp def better_transforms(image_size, training=True, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD, interpolation='bicubic', crop_margin=False, align_long_axis=False, fill=255): interpolation_mode = timm.data.transforms.str_to_interp_mode(interpolation) pp = [] if crop_margin: assert has_cv2, 'CV2 needed to use crop margin.' pp += [CropMargin()] if align_long_axis: pp += [AlignLongAxis(image_size, interpolation=interpolation_mode)] if training: pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation, random_scale_prob=0.05, random_scale_range=(0.85, 1.04), random_aspect_prob=0.05, random_aspect_range=(0.9, 1.11)), transforms.RandomApply([Bitmap()], p=0.05), transforms.RandomApply([transforms.RandomChoice([Erosion(3), Dilation(3)])], p=0.02), transforms.RandomApply([transforms.RandomAffine(degrees=0, shear=(0, 3.0, -3, 0), interpolation=interpolation_mode, fill=fill)], p=0.05), transforms.RandomApply([transforms.RandomAffine(degrees=3, translate=(0, 0.04), interpolation=interpolation_mode, fill=fill)], p=0.05), transforms.RandomApply([transforms.ElasticTransform(alpha=50.0, sigma=120 * 0.1, interpolation=interpolation_mode, fill=fill)], p=0.05), transforms.RandomApply([transforms.ColorJitter(0.1, 0.1)], p=0.05), transforms.RandomApply([transforms.GaussianBlur(3, sigma=(0.1, 0.5))], p=0.05), RandomPad(image_size, fill=fill), transforms.CenterCrop(image_size)] else: pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation), CenterCropOrPad(image_size, fill=fill)] pp += [transforms.ToTensor(), transforms.Normalize(image_mean, image_std)] return transforms.Compose(pp) def nougat_transforms(image_size, training=True, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD, align_long_axis=False, interpolation='bicubic', fill=255, crop_margin=False): assert has_albumentations, 'Albumentations and CV2 needed to use nougat transforms.' if interpolation == 'bilinear': interpolation_mode = 1 else: interpolation_mode = 2 tv_pp = [] alb_pp = [] if crop_margin: tv_pp += [CropMargin()] if align_long_axis: tv_pp += [AlignLongAxis(image_size)] if training: tv_pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation), RandomPad(image_size, fill=fill)] alb_pp += [BitmapAlb(p=0.05), alb.OneOf([ErosionAlb((2, 3)), DilationAlb((2, 3))], p=0.02), alb.Affine(shear={'x': (0, 3), 'y': (-3, 0)}, cval=(255, 255, 255), p=0.03), alb.ShiftScaleRotate(shift_limit_x=(0, 0.04), shift_limit_y=(0, 0.03), scale_limit=(-0.15, 0.03), rotate_limit=2, border_mode=0, interpolation=interpolation_mode, value=fill, p=0.03), alb.GridDistortion(distort_limit=0.05, border_mode=0, interpolation=interpolation_mode, value=fill, p=0.04), alb.Compose([alb.Affine(translate_px=(0, 5), always_apply=True, cval=(255, 255, 255)), alb.ElasticTransform(p=1, alpha=50, sigma=120 * 0.1, alpha_affine=120 * 0.01, border_mode=0, value=fill)], p=0.04), alb.RandomBrightnessContrast(0.1, 0.1, True, p=0.03), alb.ImageCompression(95, p=0.07), alb.GaussNoise(20, p=0.08), alb.GaussianBlur((3, 3), p=0.03)] else: tv_pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation), CenterCropOrPad(image_size, fill=fill)] alb_pp += [alb.Normalize(image_mean, image_std), alb.pytorch.ToTensorV2()] tv_pp += [alb_wrapper(alb.Compose(alb_pp))] return transforms.Compose(tv_pp) def alb_wrapper(transform): def f(im): return transform(image=np.asarray(im))['image'] return f class CropMargin: def __init__(self): pass def __call__(self, img): if isinstance(img, torch.Tensor): assert False else: data = np.array(img.convert('L')) data = data.astype(np.uint8) max_val = data.max() min_val = data.min() if max_val == min_val: return img data = (data - min_val) / (max_val - min_val) * 255 gray = 255 * (data < 200).astype(np.uint8) coords = cv2.findNonZero(gray) (a, b, w, h) = cv2.boundingRect(coords) return img.crop((a, b, w + a, h + b)) class AlignLongAxis: def __init__(self, input_size, interpolation=transforms.InterpolationMode.BICUBIC): self.input_size = input_size self.interpolation = interpolation def __call__(self, img): is_tensor = isinstance(img, torch.Tensor) (img_height, img_width) = img.shape[-2:] if is_tensor else (img.height, img.width) if self.input_size[0] > self.input_size[1] and img_width > img_height or (self.input_size[0] < self.input_size[1] and img_width < img_height): img = F.rotate(img, angle=-90, expand=True, interpolation=self.interpolation) return img class RandomPad: def __init__(self, input_size, fill=0): self.input_size = input_size self.fill = fill @staticmethod def get_params(img, input_size): (width, height) = F.get_image_size(img) delta_width = max(input_size[1] - width, 0) delta_height = max(input_size[0] - height, 0) pad_left = random.randint(0, delta_width) pad_top = random.randint(0, delta_height) pad_right = delta_width - pad_left pad_bottom = delta_height - pad_top return (pad_left, pad_top, pad_right, pad_bottom) def __call__(self, img): padding = self.get_params(img, self.input_size) img = F.pad(img, padding, self.fill) return img class ResizeKeepRatio: def __init__(self, size, longest=0.0, interpolation='bilinear', random_scale_prob=0.0, random_scale_range=(0.85, 1.05), random_aspect_prob=0.0, random_aspect_range=(0.9, 1.11)): if isinstance(size, (list, tuple)): self.size = tuple(size) else: self.size = (size, size) self.interpolation = timm.data.transforms.str_to_interp_mode(interpolation) self.longest = float(longest) self.random_scale_prob = random_scale_prob self.random_scale_range = random_scale_range self.random_aspect_prob = random_aspect_prob self.random_aspect_range = random_aspect_range @staticmethod def get_params(img, target_size, longest, random_scale_prob=0.0, random_scale_range=(0.85, 1.05), random_aspect_prob=0.0, random_aspect_range=(0.9, 1.11)): source_size = img.size[::-1] (h, w) = source_size (target_h, target_w) = target_size ratio_h = h / target_h ratio_w = w / target_w ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1.0 - longest) if random_scale_prob > 0 and random.random() < random_scale_prob: ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1]) ratio_factor = (ratio_factor, ratio_factor) else: ratio_factor = (1.0, 1.0) if random_aspect_prob > 0 and random.random() < random_aspect_prob: aspect_factor = random.uniform(random_aspect_range[0], random_aspect_range[1]) ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor) size = [round(x * f / ratio) for (x, f) in zip(source_size, ratio_factor)] return size def __call__(self, img): size = self.get_params(img, self.size, self.longest, self.random_scale_prob, self.random_scale_range, self.random_aspect_prob, self.random_aspect_range) img = F.resize(img, size, self.interpolation) return img def __repr__(self): interpolate_str = timm.data.transforms.interp_mode_to_str(self.interpolation) format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += f', interpolation={interpolate_str})' format_string += f', longest={self.longest:.3f})' return format_string class Bitmap: def __init__(self, threshold=200): self.lut = [0 if i < threshold else i for i in range(256)] def __call__(self, img): if img.mode == 'RGB' and len(self.lut) == 256: lut = self.lut + self.lut + self.lut else: lut = self.lut return img.point(lut) class Erosion: def __init__(self, scale=3): super().__init__() if type(scale) is tuple or type(scale) is list: assert len(scale) == 2 self.scale = scale else: self.scale = (scale, scale) @staticmethod def get_params(scale): if type(scale) is tuple or type(scale) is list: assert len(scale) == 2 scale = random.choice(scale) return scale def __call__(self, img): kernel_size = self.get_params(self.scale) if isinstance(img, torch.Tensor): padding = kernel_size // 2 img = -torch.nn.functional.max_pool2d(-img, kernel_size=kernel_size, padding=padding) elif isinstance(img, Image.Image): img = img.filter(ImageFilter.MinFilter(kernel_size)) return img class Dilation: def __init__(self, scale=3): super().__init__() self.scale = scale @staticmethod def get_params(scale): if type(scale) is tuple or type(scale) is list: assert len(scale) == 2 scale = random.choice(scale) return scale def __call__(self, img): kernel_size = self.get_params(self.scale) if isinstance(img, torch.Tensor): padding = kernel_size // 2 img = torch.nn.functional.max_pool2d(img, kernel_size=kernel_size, padding=padding) elif isinstance(img, Image.Image): img = img.filter(ImageFilter.MaxFilter(kernel_size)) return img if has_albumentations: class ErosionAlb(alb.ImageOnlyTransform): def __init__(self, scale, always_apply=False, p=0.5): super().__init__(always_apply=always_apply, p=p) if type(scale) is tuple or type(scale) is list: assert len(scale) == 2 self.scale = scale else: self.scale = (scale, scale) def apply(self, img, **params): kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, tuple(np.random.randint(self.scale[0], self.scale[1], 2))) img = cv2.erode(img, kernel, iterations=1) return img class DilationAlb(alb.ImageOnlyTransform): def __init__(self, scale, always_apply=False, p=0.5): super().__init__(always_apply=always_apply, p=p) if type(scale) is tuple or type(scale) is list: assert len(scale) == 2 self.scale = scale else: self.scale = (scale, scale) def apply(self, img, **params): kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, tuple(np.random.randint(self.scale[0], self.scale[1], 2))) img = cv2.dilate(img, kernel, iterations=1) return img class BitmapAlb(alb.ImageOnlyTransform): def __init__(self, value=0, lower=200, always_apply=False, p=0.5): super().__init__(always_apply=always_apply, p=p) self.lower = lower self.value = value def apply(self, img, **params): img = img.copy() img[img < self.lower] = self.value return img # File: pixparse-main/src/pixparse/framework/config.py from dataclasses import dataclass, field from typing import Optional, Tuple @dataclass class OptimizationCfg: optimizer: str = 'adamw' scheduler: str = 'cosine' learning_rate: float = 0.0005 warmup_learning_rate: float = 0.0 weight_decay: float = 0.02 eps: float = 1e-06 clip_grad_value: Optional[float] = None clip_grad_mode: Optional[str] = None grad_accum_steps: int = 1 momentum: Optional[float] = None betas: Optional[Tuple[float, float]] = None layer_decay: Optional[float] = None @dataclass class TaskTrainCfg: num_intervals: int = 100 num_warmup_intervals: int = 5 eval_frequency: int = 1000 opt: OptimizationCfg = field(default_factory=OptimizationCfg) dtype: Optional[str] = None amp: bool = True model_name: str = '' @dataclass class TaskEvalCfg: dtype: Optional[str] = None amp: bool = True model_name: str = '' model_state_dict: dict = field(default_factory=dict) # File: pixparse-main/src/pixparse/framework/device.py """""" import os from dataclasses import dataclass, field, InitVar from enum import Enum from typing import Union, Optional, List, Tuple import torch import torch.distributed as dist def is_distributed_env(): if 'WORLD_SIZE' in os.environ: return int(os.environ['WORLD_SIZE']) > 1 if 'SLURM_NTASKS' in os.environ: return int(os.environ['SLURM_NTASKS']) > 1 return False def world_info_from_env(): local_rank = 0 for v in ('LOCAL_RANK', 'MPI_LOCALRANKID', 'SLURM_LOCALID', 'OMPI_COMM_WORLD_LOCAL_RANK'): if v in os.environ: local_rank = int(os.environ[v]) break global_rank = 0 for v in ('RANK', 'PMI_RANK', 'SLURM_PROCID', 'OMPI_COMM_WORLD_RANK'): if v in os.environ: global_rank = int(os.environ[v]) break world_size = 1 for v in ('WORLD_SIZE', 'PMI_SIZE', 'SLURM_NTASKS', 'OMPI_COMM_WORLD_SIZE'): if v in os.environ: world_size = int(os.environ[v]) break return (local_rank, global_rank, world_size) class DeviceEnvType(Enum): CPU = 'cpu' CUDA = 'cuda' XLA = 'xla' @dataclass class DeviceEnv: init_device_type: InitVar[Optional[str]] = None init_device_index: InitVar[Optional[int]] = None init_dist_backend: InitVar[str] = 'nccl' init_dist_url: InitVar[str] = 'env://' device: torch.device = field(init=False) world_size: Optional[int] = None local_rank: Optional[int] = None global_rank: Optional[int] = None def is_global_primary(self): return self.global_rank == 0 def is_local_primary(self): return self.local_rank == 0 def is_primary(self, local=False): return self.is_local_primary() if local else self.is_global_primary() def __post_init__(self, init_device_type: Optional[str], init_device_index: Optional[int], init_dist_backend: str, init_dist_url: str): assert torch.cuda.device_count() torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True (init_local_rank, init_global_rank, init_world_size) = world_info_from_env() if init_world_size > 1: assert init_device_index is None self.local_rank = int(init_local_rank) is_slurm = 'SLURM_PROCID' in os.environ if 'SLURM_PROCID' in os.environ: torch.distributed.init_process_group(backend=init_dist_backend, init_method=init_dist_url, world_size=init_world_size, rank=init_global_rank) else: torch.distributed.init_process_group(backend=init_dist_backend, init_method=init_dist_url) self.world_size = torch.distributed.get_world_size() self.global_rank = torch.distributed.get_rank() if is_slurm: assert self.world_size == init_world_size assert self.global_rank == init_global_rank self.device = torch.device('cuda:%d' % self.local_rank) torch.cuda.set_device(self.local_rank) else: self.device = torch.device('cuda' if init_device_index is None else f'cuda:{init_device_index}') self.local_rank = 0 self.world_size = 1 self.global_rank = 0 def broadcast_object(self, obj, src=0): if self.global_rank == src: objects = [obj] else: objects = [None] dist.broadcast_object_list(objects, src=src) return objects[0] def all_gather_object(self, obj, dst=0): objects = [None for _ in range(self.world_size)] dist.all_gather_object(objects, obj) return objects # File: pixparse-main/src/pixparse/framework/eval.py from .task import TaskEval def evaluate(task: TaskEval, loaders): metrics = dict() authorized_loaders = task.prepare_for_evaluation(loaders) for (key, loader) in authorized_loaders.items(): metrics[key] = dict() for (index_batch, sample) in enumerate(loader.loader): metrics[key][index_batch] = task.step(sample) if hasattr(task, 'average_metrics'): averaged_metrics = task.average_metrics(metrics[key]) metrics[key] = {} metrics[key]['average'] = averaged_metrics return metrics # File: pixparse-main/src/pixparse/framework/logger.py import logging def setup_logging(log_file, debug=False, include_host=False, set_all_loggers=False): level = logging.DEBUG if debug else logging.INFO if include_host: import socket hostname = socket.gethostname() formatter = logging.Formatter(f'%(asctime)s | {hostname} | %(levelname)s | %(message)s', datefmt='%Y-%m-%d,%H:%M:%S') else: formatter = logging.Formatter('%(asctime)s | %(levelname)s | %(message)s', datefmt='%Y-%m-%d,%H:%M:%S') logging.root.setLevel(level) if set_all_loggers: loggers = [logging.getLogger(name) for name in logging.root.manager.loggerDict] for logger in loggers: logger.setLevel(level) stream_handler = logging.StreamHandler() stream_handler.setFormatter(formatter) logging.root.addHandler(stream_handler) if log_file: file_handler = logging.FileHandler(filename=log_file) file_handler.setFormatter(formatter) logging.root.addHandler(file_handler) # File: pixparse-main/src/pixparse/framework/monitor.py import csv import logging import os from collections import OrderedDict from typing import Optional, Tuple, Dict, Union import torch from torch.utils.tensorboard.summary import image _logger = logging.getLogger(__name__) try: from torch.utils.tensorboard import SummaryWriter HAS_TB = True except ImportError as e: HAS_TB = False try: import wandb HAS_WANDB = True except ImportError: HAS_WANDB = False def summary_row_dict(results, index=None, index_name='epoch'): assert isinstance(results, dict) row_dict = OrderedDict() if index is not None: row_dict[index_name] = index if not results: return row_dict if isinstance(next(iter(results.values())), dict): for (p, pr) in results.items(): assert isinstance(pr, dict) row_dict.update([('_'.join([p, k]), v) for (k, v) in pr.items()]) else: row_dict.update(results) return row_dict class SummaryCsv: def __init__(self, output_dir, filename='summary.csv'): self.output_dir = output_dir self.filename = os.path.join(output_dir, filename) self.needs_header = not os.path.exists(self.filename) def update(self, row_dict): with open(self.filename, mode='a') as cf: dw = csv.DictWriter(cf, fieldnames=row_dict.keys()) if self.needs_header: dw.writeheader() self.needs_header = False dw.writerow(row_dict) _sci_keys = {'lr'} def _add_kwargs(text_update, name_map=None, **kwargs): def _to_str(key, val): if isinstance(val, float): if key.lower() in _sci_keys: return f'{key}: {val:.3e} ' else: return f'{key}: {val:.4f}' else: return f'{key}: {val}' def _map_name(key, name_map, capitalize=False): if name_map is None: if capitalize: return key.capitalize() if not key.isupper() else key else: return key return name_map.get(key, None) for (k, v) in kwargs.items(): if isinstance(v, dict): for (kk, vv) in v.items(): name = _map_name(kk, name_map) if not name: continue text_update += [_to_str(kk, vv)] else: name = _map_name(k, name_map) if not name: continue text_update += [_to_str(name, v)] class Monitor: def __init__(self, experiment_name=None, output_dir=None, logger=None, hparams=None, wandb=False, wandb_project='unknown', wandb_dir='wandb', tensorboard=False, tensorboard_dir='tensorboard', output_enabled=True, log_eval_data=False): self.output_dir = output_dir self.logger = logger or logging.getLogger('log') hparams = hparams or {} if output_dir is not None: self.csv_writer = SummaryCsv(output_dir=output_dir) else: self.csv_writer = None self.tensorboard = None if tensorboard: assert HAS_TB self.tensorboard = SummaryWriter(log_dir=os.path.join(self.output_dir, tensorboard_dir)) self.wandb = None if wandb: if HAS_WANDB: dir_ = os.path.join(self.output_dir, wandb_dir) self.wandb = wandb.init(project=wandb_project, name=experiment_name, config=hparams, dir=dir_) _logger.info(f'Wandb found. Metrics are being logged to {dir_}') else: _logger.warning("You've requested to log metrics to wandb but package not found. Metrics not being logged to wandb, try `pip install wandb`") self.output_enabled = output_enabled self.log_eval_data = log_eval_data def log_step(self, phase: str, step_idx: int, step_end_idx: Optional[int]=None, interval: Optional[int]=None, loss: Optional[float]=None, rate: Optional[Union[float, Tuple[float, float]]]=None, learning_rate: Optional[float]=None, phase_suffix: str='', metrics: dict=None, eval_data: dict=None, **kwargs): if not self.output_enabled: return if 'num_steps' in kwargs: step_end_idx = max(0, kwargs.pop('num_steps') - 1) phase_title = f'{phase.capitalize()} ({phase_suffix})' if phase_suffix else f'{phase.capitalize()}:' progress = 100.0 * step_idx / step_end_idx if step_end_idx else 0.0 rate_str = '' if isinstance(rate, (tuple, list)): rate_str = f'Rate: {rate[0]:.2f}/s ({rate[1]:.2f}/s)' elif rate is not None: rate_str = f'Rate: {rate:.2f}/s' text_update = [phase_title, f'{interval}' if interval is not None else None, f'[{step_idx}]' if step_end_idx is None else None, f'[{step_idx}/{step_end_idx} ({progress:>3.0f}%)]' if step_end_idx is not None else None, rate_str, f'loss: {loss:.5f}' if loss is not None else None, f'lr: {learning_rate:.5f}' if learning_rate is not None else None] _add_kwargs(text_update, **kwargs) log_str = ' '.join((item for item in text_update if item)) self.logger.info(log_str) if self.tensorboard is not None: if metrics is not None: for (metric_category, metric_items) in metrics.items(): for (metric_name, metric_value) in metric_items.items(): self.tensorboard.add_scalar('/'.join([metric_category, metric_name, phase_title]), metric_value, step_idx) if eval_data is not None and self.log_eval_data: for (eval_data_category, eval_data_triplet) in eval_data.items(): if eval_data_category == 'ocr_reconstruction_data': image_tag = '/'.join([eval_data_category, 'image', phase_title]) self.tensorboard._get_file_writer().add_summary(image(image_tag, eval_data_triplet['image'], dataformats='CHW'), step_idx) self.tensorboard.add_text('/'.join([eval_data_category, 'original_text', phase_title]), eval_data_triplet['original_text'], step_idx) self.tensorboard.add_text('/'.join([eval_data_category, 'reconstructed_text', phase_title]), eval_data_triplet['reconstructed_text'], step_idx) if loss is not None: self.tensorboard.add_scalar('/'.join(['Loss', phase_title]), loss, step_idx) if learning_rate is not None: self.tensorboard.add_scalar('/'.join(['Learning Rate', phase_title]), loss, step_idx) for (k, v) in kwargs.items(): self.tensorboard.add_scalar('/'.join([k, phase_title]), v, step_idx) if self.wandb is not None: wandb_log = dict(**kwargs) if loss: wandb_log['loss'] = loss if learning_rate: wandb_log['learning_rate'] = learning_rate def log_phase(self, phase: str='eval', interval: Optional[int]=None, name_map: Optional[dict]=None, **kwargs): if not self.output_enabled: return title = [f'{phase.capitalize()}', f'interval {interval}' if interval is not None else None, 'completed. '] title_str = ' '.join((i for i in title if i)) results = [] _add_kwargs(results, name_map=name_map, **kwargs) log_str = title_str + ', '.join((item for item in results if item)) self.logger.info(log_str) def write_summary(self, results: Dict, index: Optional[Union[int, str]]=None, index_name: str='interval'): if not self.output_enabled: return row_dict = summary_row_dict(index=index, index_name=index_name, results=results) if self.csv_writer: self.csv_writer.update(row_dict) if self.wandb is not None: wandb.log(row_dict) if self.tensorboard: pass # File: pixparse-main/src/pixparse/framework/task.py from dataclasses import dataclass from typing import Any, Dict, Optional from .config import TaskTrainCfg, TaskEvalCfg from .device import DeviceEnv from .monitor import Monitor class Task: def __init__(self, device_env: DeviceEnv, monitor: Monitor=None): self.device_env = device_env self.monitor = monitor class TaskEval(Task): def __init__(self, cfg: TaskEvalCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(device_env=device_env, monitor=monitor) def collate_fn(self, batch): pass def setup(self, *args, **kwargs): pass def prepare_for_evaluation(self): pass def step(self, sample: Dict[str, Any]) -> Dict[str, Any]: pass def end(self): pass class TaskTrain(Task): def __init__(self, cfg: TaskTrainCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(device_env=device_env, monitor=monitor) self.num_intervals = cfg.num_intervals self.num_warmup_intervals = cfg.num_warmup_intervals self.eval_frequency = cfg.eval_frequency self.num_steps_per_interval = None self.start_interval = 0 self.step = 0 self.batch_idx = 0 self.interval_idx = 0 self.interval_batch_idx = 0 self.optimizer = None self.scheduler = None self.scaler = None self.autocast = None def collate_fn(self, batch): pass def train_setup(self, *args, **kwargs): pass def train_interval_start(self): pass def train_interval_end(self): pass def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: pass def eval_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: pass def get_current_lr(self): lrl = [param_group['lr'] for param_group in self.optimizer.param_groups] lr = sum(lrl) / len(lrl) return lr # File: pixparse-main/src/pixparse/framework/train.py from .task import TaskTrain import torch import os def train_one_interval(task: TaskTrain, loader): task.train_interval_start() for (i, sample) in enumerate(loader.loader): task.train_step(sample) task.train_interval_end() # File: pixparse-main/src/pixparse/models/config.py import copy import re from pathlib import Path from dataclasses import dataclass, field from typing import Optional, Tuple from simple_parsing.helpers import Serializable from pixparse.utils.name_utils import _natural_key, clean_name _MODEL_CONFIG_PATHS = [Path(__file__).parent / f'configs/'] _MODEL_CONFIGS = {} @dataclass class ImageEncoderCfg(Serializable): name: str = 'vit_base_patch16_224' image_fmt: str = 'L' image_size: Optional[Tuple[int, int]] = (576, 448) pretrained: bool = True @dataclass class TextDecoderCfg(Serializable): name: str = 'facebook/bart-base' pretrained: bool = True num_decoder_layers: Optional[int] = 4 max_length: Optional[int] = 1024 pad_token_id: Optional[int] = None @dataclass class ModelCfg(Serializable): image_encoder: ImageEncoderCfg = field(default_factory=ImageEncoderCfg) text_decoder: TextDecoderCfg = field(default_factory=TextDecoderCfg) def _scan_model_configs(): global _MODEL_CONFIGS config_ext = ('.json',) config_files = [] for config_path in _MODEL_CONFIG_PATHS: if config_path.is_file() and config_path.suffix in config_ext: config_files.append(config_path) elif config_path.is_dir(): for ext in config_ext: config_files.extend(config_path.glob(f'*{ext}')) for cf in config_files: model_cfg = ModelCfg.load(cf) _MODEL_CONFIGS[cf.stem] = model_cfg _MODEL_CONFIGS = {k: v for (k, v) in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))} _scan_model_configs() def list_models(): return list(_MODEL_CONFIGS.keys()) def get_model_config(model_name): model_name = clean_name(model_name) cfg = _MODEL_CONFIGS.get(model_name, None) return copy.deepcopy(cfg) # File: pixparse-main/src/pixparse/models/cruller.py import torch.nn as nn from .config import ModelCfg from .image_encoder_timm import ImageEncoderTimm from .text_decoder_hf import TextDecoderHf class Cruller(nn.Module): def __init__(self, cfg: ModelCfg): super().__init__() self.image_encoder = ImageEncoderTimm(cfg.image_encoder) self.text_decoder = TextDecoderHf(cfg.text_decoder) def forward(self, image_input, text_input): encoder_output = self.image_encoder(image_input) decoder_output = self.text_decoder(text_input, encoder_hidden_states=encoder_output, return_dict=True) return decoder_output # File: pixparse-main/src/pixparse/models/image_encoder_timm.py import timm from torch import nn as nn from pixparse.models.config import ImageEncoderCfg def create_image_encoder(cfg: ImageEncoderCfg) -> nn.Module: assert cfg.name extra_kwargs = {} if cfg.image_size is not None: extra_kwargs['img_size'] = cfg.image_size assert cfg.image_fmt in ('L', 'RGB') model = timm.create_model(cfg.name, pretrained=cfg.pretrained, in_chans=1 if cfg.image_fmt == 'L' else 3, num_classes=0, global_pool='', **extra_kwargs) return model class ImageEncoderTimm(nn.Module): def __init__(self, cfg: ImageEncoderCfg): super().__init__() self.trunk = create_image_encoder(cfg) self.pool = None self.head = None def forward(self, x): x = self.trunk(x) if self.pool is not None: x = self.pool(x) if self.head is not None: x = self.head(x) return x # File: pixparse-main/src/pixparse/models/text_decoder_hf.py from typing import Optional import torch import transformers from torch import nn as nn from pixparse.models.config import TextDecoderCfg def create_text_decoder(cfg: TextDecoderCfg) -> transformers.BartForCausalLM: assert cfg.name config = transformers.AutoConfig.from_pretrained(cfg.name) config.add_cross_attention = True if False: config.is_encoder_decoder = False config.scale_embedding = True config.add_final_layer_norm = True if cfg.num_decoder_layers is not None: config.decoder_layers = cfg.num_decoder_layers if cfg.max_length is not None: config.max_position_embeddings = cfg.max_length if cfg.pretrained: model = transformers.AutoModelForCausalLM.from_pretrained(cfg.name, config=config) else: model = transformers.AutoModelForCausalLM.from_config(config) return model class TextDecoderHf(nn.Module): def __init__(self, cfg: TextDecoderCfg): super().__init__() self.trunk = create_text_decoder(cfg) self.prepare_inputs_for_generation = self.prepare_inputs_for_inference def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, pad_token_id: int, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): if past is not None: past_key_values = past attention_mask = input_ids.ne(pad_token_id).long() if past_key_values is not None: input_ids = input_ids[:, -1:] output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} return output def forward(self, input_ids, attention_mask: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, past_key_values: Optional[torch.Tensor]=None, use_cache: bool=None, output_attentions: Optional[torch.Tensor]=None, output_hidden_states: Optional[torch.Tensor]=None, return_dict: bool=None): output = self.trunk(input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) return output # File: pixparse-main/src/pixparse/task/__init__.py from .task_cruller_pretrain import TaskCrullerPretrain, TaskCrullerPretrainCfg from .task_cruller_finetune_RVLCDIP import TaskCrullerFinetuneRVLCDIP, TaskCrullerFinetuneRVLCDIPCfg from .task_cruller_finetune_CORD import TaskCrullerFinetuneCORD, TaskCrullerFinetuneCORDCfg from .task_cruller_finetune_xent import TaskCrullerFinetuneXent, TaskCrullerFinetuneXentCfg from .task_cruller_finetune_docvqa import TaskCrullerFinetuneDOCVQA, TaskCrullerFinetuneDOCVQACfg from .task_cruller_eval_ocr import TaskCrullerEvalOCR, TaskCrullerEvalOCRCfg from .task_donut_eval_ocr import TaskDonutEvalOCR, TaskDonutEvalOCRCfg from .task_cruller_eval_rvlcdip import TaskCrullerEvalRVLCDIP, TaskCrullerEvalRVLCDIPCfg from .task_cruller_eval_cord import TaskCrullerEvalCORD, TaskCrullerEvalCORDCfg from .task_cruller_eval_docvqa import TaskCrullerEvalDOCVQA, TaskCrullerEvalDOCVQACfg from .task_factory import TaskFactory # File: pixparse-main/src/pixparse/task/task_cruller_eval_cord.py import logging from collections import OrderedDict from dataclasses import dataclass, field from functools import partial from typing import Optional import PIL import torch from torch import nn import torch.nn.functional as F from torchvision import transforms from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from pixparse.framework import DeviceEnv, Monitor, TaskEval, TaskEvalCfg from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerCfg, TokenizerHF from pixparse.utils.json_utils import json2token, token2json from pixparse.utils.json_utils import JSONParseEvaluator import numpy as np from ast import literal_eval _logger = logging.getLogger(__name__) @dataclass class TaskCrullerEvalCORDCfg(TaskEvalCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerEvalCORD(TaskEval): def __init__(self, cfg: TaskCrullerEvalCORDCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '' self.prompt_end_token = self.task_start_token self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = True self.tokenizer = TokenizerHF(cfg.tokenizer) self.state_dict = OrderedDict() self.resume = False cord_finetune_tokens = ['', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', ''] special_tokens_from_pretrain = ['', ''] preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) newly_added_num_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) if newly_added_num_from_pretrain > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(cord_finetune_tokens))}) self.vocab_size = len(self.tokenizer.trunk) if newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.loss = nn.CrossEntropyLoss(ignore_index=-100) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Grayscale(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) def setup(self): device = self.device_env.device self.model.load_state_dict(self.resume_state_dict) self.model.eval() self.model.to(device) self.all_ground_truths = [] self.all_predictions = [] self.acc_list = [] self.evaluator = JSONParseEvaluator() def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): if past is not None: past_key_values = past attention_mask = input_ids.ne(self.tokenizer.trunk.pad_token_id).long() if past_key_values is not None: input_ids = input_ids[:, -1:] output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} return output def prepare_for_evaluation(self, loaders): loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} return loaders def safe_image_transform(self, img): try: transformed_img = self.image_preprocess_eval(img) except PIL.UnidentifiedImageError as e: print(f'Encountered PIL issue {e}. Filtering...') transformed_img = None return transformed_img def text_input_to_target(self, text_input, ignore_id=-100): target = text_input.clone() target[target == self.tokenizer.trunk.pad_token_id] = ignore_id prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 target[:slice_id] = ignore_id return target def collate_fn(self, batch): tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=512, padding='max_length', truncation=True).input_ids[0] images = [item['image'] for item in batch] raw_texts = [literal_eval(item['ground_truth'])['gt_parse'] for item in batch] inputs_to_stack = [] for text in raw_texts: (tokens_from_json, _) = json2token(text, self.tokenizer.trunk.all_special_tokens, sort_json_key=False) inputs_to_stack.append(tokenizer_fn(self.task_start_token + tokens_from_json + self.tokenizer.trunk.eos_token)) text_inputs = torch.stack(inputs_to_stack) targets = torch.stack([self.text_input_to_target(text) for text in text_inputs]) transform = self.image_preprocess_eval images = torch.stack([transform(img) for img in images]) text_inputs = text_inputs[:, :-1] targets = targets[:, 1:] return {'image': images, 'label': text_inputs, 'text_target': targets} def step(self, batch): metrics = {} for (image, label) in zip(batch['image'], batch['label']): decoded_gt = self.tokenizer.trunk.decode(label) ground_truth = token2json(decoded_gt) with torch.inference_mode(): tensor_image = image.unsqueeze(0).to(self.device_env.device) output = self.model.image_encoder(tensor_image) current_string = '' input_ids = torch.tensor(self.tokenizer.trunk.encode('', add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) max_steps = 512 for step in range(max_steps): inputs = self.prepare_inputs_for_inference(input_ids=input_ids, encoder_outputs=output) decoder_outputs = self.model.text_decoder(**inputs) probabilities = F.softmax(decoder_outputs['logits'], dim=-1) next_token_id = torch.argmax(probabilities[0, -1]).item() next_token = self.tokenizer.trunk.decode([next_token_id]) current_string += next_token if next_token == '': break input_ids = torch.tensor(self.tokenizer.trunk.encode(current_string, add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) predicted_json = token2json(current_string) self.all_predictions.append(predicted_json) self.all_ground_truths.append(ground_truth) acc = self.evaluator.cal_acc(predicted_json, ground_truth) self.acc_list.append(acc) metrics['batch_accuracy'] = acc return metrics def average_metrics(self, metrics: dict): avg_accuracy = np.mean(self.acc_list) f1 = self.evaluator.cal_f1(self.all_predictions, self.all_ground_truths) self.all_ground_truths = [] self.all_predictions = [] self.acc_list = [] return {'average_accuracy': avg_accuracy, 'f1_score': f1} def end(self): pass def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() return state_dicts # File: pixparse-main/src/pixparse/task/task_cruller_eval_docvqa.py import logging from collections import OrderedDict from dataclasses import dataclass, field from functools import partial from typing import Optional import PIL import torch from torch import nn import torch.nn.functional as F from torchvision import transforms from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from pixparse.framework import DeviceEnv, Monitor, TaskEval, TaskEvalCfg from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerCfg, TokenizerHF from pixparse.utils.json_utils import json2token, token2json from pixparse.utils.json_utils import JSONParseEvaluator from pixparse.utils.metrics import average_normalized_levenshtein_similarity import numpy as np from ast import literal_eval _logger = logging.getLogger(__name__) @dataclass class TaskCrullerEvalDOCVQACfg(TaskEvalCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerEvalDOCVQA(TaskEval): def __init__(self, cfg: TaskCrullerEvalDOCVQACfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '' self.prompt_end_token = '' self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = True self.tokenizer = TokenizerHF(cfg.tokenizer) self.state_dict = OrderedDict() self.resume = False docvqa_finetune_tokens = ['', self.task_start_token, self.prompt_end_token, '', '', ''] special_tokens_from_pretrain = ['', ''] preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) newly_added_num_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) if newly_added_num_from_pretrain > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(docvqa_finetune_tokens))}) self.vocab_size = len(self.tokenizer.trunk) if newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.loss = nn.CrossEntropyLoss(ignore_index=-100) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Grayscale(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) self.raw_predictions_test = dict() def setup(self): device = self.device_env.device self.model.load_state_dict(self.resume_state_dict) self.model.eval() self.model.to(device) self.all_ground_truths = [] self.all_predictions = [] self.acc_list = [] self.evaluator = JSONParseEvaluator() def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): if past is not None: past_key_values = past attention_mask = input_ids.ne(self.tokenizer.trunk.pad_token_id).long() if past_key_values is not None: input_ids = input_ids[:, -1:] output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} return output def prepare_for_evaluation(self, loaders): loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} return loaders def safe_image_transform(self, img): try: transformed_img = self.image_preprocess_eval(img) except PIL.UnidentifiedImageError as e: print(f'Encountered PIL issue {e}. Filtering...') transformed_img = None return transformed_img def text_input_to_target(self, text_input, ignore_id=-100): target = text_input.clone() target[target == self.tokenizer.trunk.pad_token_id] = ignore_id prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 target[:slice_id] = ignore_id return target def collate_fn(self, batch): question_ids = [] image_ids = [] images = [] questions = [] answers = [] for item in batch: question_ids.append(item['question_id']) image_ids.append(item['image_id']) images.append(item['image']) questions.append(item['labels']['question']) answers.append(item['labels']['answers']) transform = self.image_preprocess_eval images = torch.stack([transform(img) for img in images]) return {'images': images, 'questions': questions, 'ground_truth_answers': answers, 'image_ids': image_ids, 'question_ids': question_ids} def step(self, batch): metrics = {} image_outputs = self.model.image_encoder(batch['images'].to(self.device_env.device)) for (output, question, answers, question_id) in zip(image_outputs, batch['questions'], batch['ground_truth_answers'], batch['question_ids']): self.all_ground_truths.append(answers) with torch.inference_mode(): current_string = self.task_start_token + '' + question + '' + '' input_ids = torch.tensor(self.tokenizer.trunk.encode(current_string, add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) max_steps = 512 for step in range(max_steps): inputs = self.prepare_inputs_for_inference(input_ids=input_ids, encoder_outputs=output) decoder_outputs = self.model.text_decoder(**inputs) probabilities = F.softmax(decoder_outputs['logits'], dim=-1) next_token_id = torch.argmax(probabilities[0, -1]).item() next_token = self.tokenizer.trunk.decode([next_token_id]) current_string += next_token if next_token == '': break input_ids = torch.tensor(self.tokenizer.trunk.encode(current_string, add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) predicted_json = token2json(current_string) if 'answer' in predicted_json: self.all_predictions.append(predicted_json['answer']) else: self.all_predictions.append('') return metrics def average_metrics(self, metrics: dict): anls = average_normalized_levenshtein_similarity(ground_truth=self.all_ground_truths, predicted_answers=self.all_predictions) return {'ANLS': anls} def end(self): pass def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() return state_dicts # File: pixparse-main/src/pixparse/task/task_cruller_eval_ocr.py import logging from dataclasses import dataclass, field from functools import partial from typing import Optional import torch import torchvision.transforms as transforms from pixparse.framework import TaskEvalCfg, TaskEval, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerHF, TokenizerCfg from pixparse.data import preprocess_text_anno from pixparse.utils import get_ocr_metrics from chug.common import LoaderBundle _logger = logging.getLogger(__name__) import time @dataclass class TaskCrullerEvalOCRCfg(TaskEvalCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerEvalOCR(TaskEval): def __init__(self, cfg: TaskCrullerEvalOCRCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '' self.prompt_end_token = self.task_start_token self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = True self.tokenizer = TokenizerHF(cfg.tokenizer) special_tokens = ['', self.task_start_token, self.prompt_end_token] newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) self.vocab_size = len(self.tokenizer.trunk) preproc_fn = preprocess_text_anno self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) if newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) self.eval_metrics = {} self.max_recursion_length = 1000 def time_and_log(func): def wrapper(self, *args, **kwargs): start_time = time.time() result = func(self, *args, **kwargs) end_time = time.time() execution_time = end_time - start_time _logger.info(f'Executed method {func.__name__} in {execution_time:.2f} seconds') return result return wrapper def setup(self): device = self.device_env.device self.model.load_state_dict(self.resume_state_dict) self.model.eval() self.model.to(device) def prepare_for_evaluation(self, loaders: dict[str, LoaderBundle]) -> dict[str, LoaderBundle]: loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} return loaders @time_and_log def step(self, sample): metrics = {} (image_input, text_input, text_target) = sample text_input = [item[0] for item in text_input] text_input = torch.stack(text_input, dim=0).to(self.device_env.device, non_blocking=True) text_target = [item[0] for item in text_target] text_target = torch.stack(text_target, dim=0).to(self.device_env.device, non_blocking=True) image_input = image_input.to(self.device_env.device, non_blocking=True) (ocr_metrics, _) = get_ocr_metrics(model=self.model, tokenizer=self.tokenizer, image_input=image_input, text_input=text_target, device_env=self.device_env, max_recursion_length=self.max_recursion_length, prompt_token=self.task_start_token) metrics['ocr_reconstruction'] = ocr_metrics return metrics def average_metrics(self, metrics: dict): wer_sum = 0 cer_sum = 0 for batch_metrics in metrics.values(): wer_sum += batch_metrics['ocr_reconstruction']['wer'] cer_sum += batch_metrics['ocr_reconstruction']['cer'] num_batches = len(metrics) average_wer = wer_sum / num_batches average_cer = cer_sum / num_batches return {'ocr_reconstruction': {'wer': average_wer, 'cer': average_cer}} def end(self): pass def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() return state_dicts # File: pixparse-main/src/pixparse/task/task_cruller_eval_rvlcdip.py import logging from collections import OrderedDict from dataclasses import dataclass, field from functools import partial from typing import Optional import PIL import torch import torch.nn.functional as F from torchvision import transforms from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from pixparse.framework import DeviceEnv, Monitor, TaskEval, TaskEvalCfg from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerCfg, TokenizerHF _logger = logging.getLogger(__name__) @dataclass class TaskCrullerEvalRVLCDIPCfg(TaskEvalCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerEvalRVLCDIP(TaskEval): def __init__(self, cfg: TaskCrullerEvalRVLCDIPCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '' self.prompt_end_token = self.task_start_token self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = True self.tokenizer = TokenizerHF(cfg.tokenizer) self.state_dict = OrderedDict() self.resume = False special_tokens = ['', self.task_start_token, self.prompt_end_token, '', '', '', '', '', '', '
', '', '', '', '', '', '', '', '', '', '', ''] newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 self.int2str = {0: 'letter', 1: 'form', 2: 'email', 3: 'handwritten', 4: 'advertisement', 5: 'scientific_report', 6: 'scientific_publication', 7: 'specification', 8: 'file_folder', 9: 'news_article', 10: 'budget', 11: 'invoice', 12: 'presentation', 13: 'questionnaire', 14: 'resume', 15: 'memo'} self.vocab_size = len(self.tokenizer.trunk) preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) if newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) def setup(self): device = self.device_env.device self.model.load_state_dict(self.resume_state_dict) self.model.eval() self.model.to(device) def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): if past is not None: past_key_values = past attention_mask = input_ids.ne(self.tokenizer.trunk.pad_token_id).long() if past_key_values is not None: input_ids = input_ids[:, -1:] output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} return output def prepare_for_evaluation(self, loaders): loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} return loaders def safe_image_transform(self, img): try: transformed_img = self.image_preprocess_eval(img) except PIL.UnidentifiedImageError as e: print(f'Encountered PIL issue {e}. Filtering...') transformed_img = None return transformed_img def collate_fn(self, batch): images = [item['image'] for item in batch if item is not None] labels = [item['label'] for item in batch if item is not None] if len(images) == 0: return None transformed_images = [self.safe_image_transform(img) for img in images] valid_indices = [i for (i, img) in enumerate(transformed_images) if img is not None] images = torch.stack([transformed_images[i] for i in valid_indices]) labels = torch.tensor([labels[i] for i in valid_indices], dtype=torch.int64) return {'image': images, 'label': labels} def step(self, sample): metrics = {} metrics['classification'] = dict() correct_samples = 0 ground_truths = [self.int2str[int(gt)] for gt in sample['label']] already_counted = [False] * len(ground_truths) with torch.inference_mode(): tensor_images = torch.stack([im for im in sample['image']]).to(self.device_env.device) output = self.model.image_encoder(tensor_images) current_strings = ['' for _ in range(tensor_images.shape[0])] input_ids = torch.tensor(self.tokenizer.trunk.encode('')[1]).unsqueeze(0).repeat(tensor_images.shape[0], 1).to(self.device_env.device) max_steps = 5 for step in range(max_steps): inputs = self.prepare_inputs_for_inference(input_ids=input_ids, encoder_outputs=output) decoder_outputs = self.model.text_decoder(**inputs) probabilities = F.softmax(decoder_outputs['logits'], dim=-1) next_token_ids = torch.argmax(probabilities, dim=-1) for idx in range(next_token_ids.shape[0]): next_token_id = next_token_ids[idx, -1].item() next_token = self.tokenizer.trunk.decode([next_token_id]) current_strings[idx] += next_token if next_token == '': generated_label = current_strings[idx].replace('', '').replace('', '').replace('', '').strip() ground_truth_label = '<' + ground_truths[idx] + '/>' if generated_label == ground_truth_label and (not already_counted[idx]): correct_samples += 1 already_counted[idx] = True input_ids = torch.tensor([self.tokenizer.trunk.encode(s)[1:] for s in current_strings]).to(self.device_env.device) metrics['classification']['correct_samples'] = correct_samples metrics['classification']['n_valid_samples'] = len(sample['label']) return metrics def average_metrics(self, metrics: dict): correct_samples = 0 total_samples = 0 for batch_metrics in metrics.values(): correct_samples += batch_metrics['classification']['correct_samples'] total_samples += batch_metrics['classification']['n_valid_samples'] average_acc = correct_samples / total_samples return {'classification': {'accuracy': average_acc}} def end(self): pass def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() return state_dicts # File: pixparse-main/src/pixparse/task/task_cruller_finetune_CORD.py import logging from contextlib import nullcontext from dataclasses import dataclass, field, asdict from functools import partial from typing import Optional, List, Any import torch from torch.utils.data import DataLoader import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms from torchvision.transforms import functional as transformsF from torchvision.transforms import Lambda import timm import timm.utils from timm.optim import create_optimizer_v2 from timm.scheduler import create_scheduler_v2 from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerHF, TokenizerCfg from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from timm.layers import SelectAdaptivePool2d from typing import Dict, List from collections import OrderedDict from ast import literal_eval from datasets import load_dataset from pixparse.utils.json_utils import json2token, token2json from transformers import DonutProcessor, VisionEncoderDecoderModel from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from pixparse.utils.json_utils import JSONParseEvaluator _logger = logging.getLogger(__name__) @dataclass class TaskCrullerFinetuneCORDCfg(TaskTrainCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' def prepare_inputs_for_inference(tokenizer, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): if past is not None: past_key_values = past attention_mask = input_ids.ne(tokenizer.trunk.pad_token_id).long() if past_key_values is not None: input_ids = input_ids[:, -1:] output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} return output class TaskCrullerFinetuneCORD(TaskTrain): def __init__(self, cfg: TaskCrullerFinetuneCORDCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '' self.prompt_end_token = self.task_start_token self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = True self.tokenizer = TokenizerHF(cfg.tokenizer) self.state_dict = OrderedDict() self.resume = False self.special_tokens_finetune = ['', self.task_start_token, self.prompt_end_token, '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', ''] preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) '' self.finetune_donut_weights = False _logger.info(f'Finetuning donut weights? {self.finetune_donut_weights}') if self.finetune_donut_weights: self.model = VisionEncoderDecoderModel.from_pretrained('naver-clova-ix/donut-base') else: self.model = Cruller(cfg.model) special_tokens_from_pretrain = ['', ''] num_tokens_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) if num_tokens_from_pretrain > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.loss = nn.CrossEntropyLoss(ignore_index=-100) self.has_no_sync = False if self.finetune_donut_weights: self.num_image_chs = 3 else: self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 if self.finetune_donut_weights: img_mean = IMAGENET_DEFAULT_MEAN img_std = IMAGENET_DEFAULT_STD else: img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std if self.finetune_donut_weights: image_size = (1280, 960) color_transform = Lambda(lambda x: x) else: image_size = cfg.model.image_encoder.image_size color_transform = transforms.Grayscale() self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), color_transform, transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) def train_setup(self, num_batches_per_interval: int): if self.finetune_donut_weights: self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) self.vocab_size = len(self.tokenizer.trunk) if self.newly_added_num > 0: self.model.decoder.resize_token_embeddings(len(self.tokenizer.trunk)) else: _logger.info(f'Resuming from existing checkpoint. ') self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} self.model.load_state_dict(self.state_dict) self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) self.vocab_size = len(self.tokenizer.trunk) if self.newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) device = self.device_env.device self.model.to(device) if self.device_env.world_size > 1: self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) self.has_no_sync = hasattr(self.model, 'no_sync') opt_kwargs = {} if self.cfg.opt.betas is not None: opt_kwargs['betas'] = self.cfg.opt.betas if self.cfg.opt.momentum is not None: opt_kwargs['momentum'] = self.cfg.opt.momentum self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) if self.cfg.amp: self.scaler = timm.utils.NativeScaler() self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) else: self.scaler = None self.autocast = nullcontext self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps (self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) self.scheduler.step_update(0) def text_input_to_target(self, text_input, ignore_id=-100): target = text_input.clone() target[target == self.tokenizer.trunk.pad_token_id] = ignore_id prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 target[:slice_id] = ignore_id return target def collate_fn(self, batch): tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=512, padding='max_length', truncation=True).input_ids[0] images = [item['image'] for item in batch] raw_texts = [literal_eval(item['ground_truth'])['gt_parse'] for item in batch] inputs_to_stack = [] for text in raw_texts: (tokens_from_json, _) = json2token(text, self.tokenizer.trunk.all_special_tokens, sort_json_key=False) inputs_to_stack.append(tokenizer_fn(self.task_start_token + tokens_from_json + self.tokenizer.trunk.eos_token)) text_inputs = torch.stack(inputs_to_stack) targets = torch.stack([self.text_input_to_target(text) for text in text_inputs]) transform = self.image_preprocess_train images = torch.stack([transform(img) for img in images]) text_inputs = text_inputs[:, :-1] targets = targets[:, 1:] return {'image': images, 'label': text_inputs, 'text_target': targets} def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: image_input = sample['image'] label = sample['label'] text_target = sample['text_target'] result = {} image_input = image_input.to(self.device_env.device, non_blocking=True) label = label.to(self.device_env.device, non_blocking=True) text_target = text_target.to(self.device_env.device, non_blocking=True) accum_steps = self.cfg.opt.grad_accum_steps need_update = (self.interval_batch_idx + 1) % accum_steps == 0 def _forward(): with self.autocast(): if self.finetune_donut_weights: output = self.model(pixel_values=image_input, decoder_input_ids=label, labels=text_target) logits = output['logits'] else: output = self.model(image_input, label) logits = output['logits'] loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) if accum_steps > 1: loss /= accum_steps return loss def _backward(_loss): if self.scaler is not None: self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) else: _loss.backward() if need_update: if self.cfg.opt.clip_grad_value is not None: timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) self.optimizer.step() if self.has_no_sync and (not need_update): with self.model.no_sync(): loss = _forward() _backward(loss) else: loss = _forward() _backward(loss) self.batch_idx += 1 self.interval_batch_idx += 1 if self.step % 100 == 0: self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) if not need_update: return result self.step += 1 self.scheduler.step_update(self.step) self.optimizer.zero_grad() def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() state_dicts['tokenizer'] = self.tokenizer.state_dict() return state_dicts # File: pixparse-main/src/pixparse/task/task_cruller_finetune_RVLCDIP.py import logging from contextlib import nullcontext from dataclasses import dataclass, field, asdict from functools import partial from typing import Optional, List, Any import torch import torch.nn as nn import torchvision.transforms as transforms import timm import timm.utils from timm.optim import create_optimizer_v2 from timm.scheduler import create_scheduler_v2 from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerHF, TokenizerCfg from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from timm.layers import SelectAdaptivePool2d from typing import Dict, List from collections import OrderedDict _logger = logging.getLogger(__name__) class GetCLSToken(nn.Module): def forward(self, x): return x[:, 0, :] @dataclass class TaskCrullerFinetuneRVLCDIPCfg(TaskTrainCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerFinetuneRVLCDIP(TaskTrain): def __init__(self, cfg: TaskCrullerFinetuneRVLCDIPCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '' self.prompt_end_token = self.task_start_token self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = True self.tokenizer = TokenizerHF(cfg.tokenizer) self.state_dict = OrderedDict() self.resume = False self.special_tokens_finetune = ['', self.task_start_token, self.prompt_end_token, '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', ''] self.int2str = {0: 'letter', 1: 'form', 2: 'email', 3: 'handwritten', 4: 'advertisement', 5: 'scientific_report', 6: 'scientific_publication', 7: 'specification', 8: 'file_folder', 9: 'news_article', 10: 'budget', 11: 'invoice', 12: 'presentation', 13: 'questionnaire', 14: 'resume', 15: 'memo'} preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) special_tokens_from_pretrain = ['', ''] num_tokens_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) if num_tokens_from_pretrain > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.loss = nn.CrossEntropyLoss(ignore_index=-100) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) def train_setup(self, num_batches_per_interval: int): _logger.info(f'Resuming from existing checkpoint. ') self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} self.model.load_state_dict(self.state_dict) self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) self.vocab_size = len(self.tokenizer.trunk) if self.newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) device = self.device_env.device self.model.to(device) if self.device_env.world_size > 1: self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) self.has_no_sync = hasattr(self.model, 'no_sync') opt_kwargs = {} if self.cfg.opt.betas is not None: opt_kwargs['betas'] = self.cfg.opt.betas if self.cfg.opt.momentum is not None: opt_kwargs['momentum'] = self.cfg.opt.momentum self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) if self.cfg.amp: self.scaler = timm.utils.NativeScaler() self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) else: self.scaler = None self.autocast = nullcontext self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps (self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) self.scheduler.step_update(0) def text_input_to_target(self, text_input, ignore_id=-100): target = text_input.clone() target[target == self.tokenizer.trunk.pad_token_id] = ignore_id prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) target[:torch.nonzero(target == prompt_end_token_id).sum() + 1] = ignore_id return target def collate_fn(self, batch): images = [item['image'] for item in batch] labels = [item['label'] for item in batch] tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=5, padding='max_length', truncation=True).input_ids[0] labels_tokens = [tokenizer_fn(self.task_start_token + '<' + self.int2str[label] + '/>' + self.tokenizer.trunk.eos_token) for label in labels] transform = self.image_preprocess_train images = torch.stack([transform(img) for img in images]) labels = torch.stack(labels_tokens) targets = torch.stack([self.text_input_to_target(text) for text in labels]) labels = labels[:, :-1] targets = targets[:, 1:] return {'image': images, 'label': labels, 'text_target': targets} def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: image_input = sample['image'] label = sample['label'] text_target = sample['text_target'] result = {} image_input = image_input.to(self.device_env.device, non_blocking=True) label = label.to(self.device_env.device, non_blocking=True) text_target = text_target.to(self.device_env.device, non_blocking=True) accum_steps = self.cfg.opt.grad_accum_steps need_update = (self.interval_batch_idx + 1) % accum_steps == 0 def _forward(): with self.autocast(): output = self.model(image_input, label) logits = output['logits'] loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) if accum_steps > 1: loss /= accum_steps return loss def _backward(_loss): if self.scaler is not None: self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) else: _loss.backward() if need_update: if self.cfg.opt.clip_grad_value is not None: timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) self.optimizer.step() if self.has_no_sync and (not need_update): with self.model.no_sync(): loss = _forward() _backward(loss) else: loss = _forward() _backward(loss) self.batch_idx += 1 self.interval_batch_idx += 1 if self.step % self.eval_frequency == 0: self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) if not need_update: return result self.step += 1 self.scheduler.step_update(self.step) self.optimizer.zero_grad() # File: pixparse-main/src/pixparse/task/task_cruller_finetune_docvqa.py import logging from contextlib import nullcontext from dataclasses import dataclass, field, asdict from functools import partial from typing import Optional, List, Any import torch from torch.utils.data import DataLoader import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms from torchvision.transforms import functional as transformsF from torchvision.transforms import Lambda import timm import timm.utils from timm.optim import create_optimizer_v2 from timm.scheduler import create_scheduler_v2 from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerHF, TokenizerCfg from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from timm.layers import SelectAdaptivePool2d from typing import Dict, List from collections import OrderedDict from ast import literal_eval from datasets import load_dataset from pixparse.utils.json_utils import json2token, token2json from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from pixparse.utils.json_utils import JSONParseEvaluator import numpy as np _logger = logging.getLogger(__name__) @dataclass class TaskCrullerFinetuneDOCVQACfg(TaskTrainCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerFinetuneDOCVQA(TaskTrain): def __init__(self, cfg: TaskCrullerFinetuneDOCVQACfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '' self.prompt_end_token = '' self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = True self.tokenizer = TokenizerHF(cfg.tokenizer) self.state_dict = OrderedDict() self.resume = False self.special_tokens_finetune = ['', self.task_start_token, self.prompt_end_token, '', '', ''] preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) special_tokens_from_pretrain = ['', ''] num_tokens_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) if num_tokens_from_pretrain > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.loss = nn.CrossEntropyLoss(ignore_index=-100) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std image_size = cfg.model.image_encoder.image_size color_transform = transforms.Grayscale() self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), color_transform, transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) def train_setup(self, num_batches_per_interval: int): _logger.info(f'Resuming from existing checkpoint. ') self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} self.model.load_state_dict(self.state_dict) self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) self.vocab_size = len(self.tokenizer.trunk) if self.newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) device = self.device_env.device self.model.to(device) if self.device_env.world_size > 1: self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) self.has_no_sync = hasattr(self.model, 'no_sync') opt_kwargs = {} if self.cfg.opt.betas is not None: opt_kwargs['betas'] = self.cfg.opt.betas if self.cfg.opt.momentum is not None: opt_kwargs['momentum'] = self.cfg.opt.momentum self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) if self.cfg.amp: self.scaler = timm.utils.NativeScaler() self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) else: self.scaler = None self.autocast = nullcontext self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps (self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) self.scheduler.step_update(0) def text_input_to_target(self, text_input, ignore_id=-100): target = text_input.clone() target[target == self.tokenizer.trunk.pad_token_id] = ignore_id prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 target[:slice_id] = ignore_id return target def collate_fn(self, batch): tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=512, padding='max_length', truncation=True).input_ids[0] images = [item['image'] for item in batch] q_and_as = [np.random.choice(item['labels']) for item in batch] inputs_to_stack = [] for text in q_and_as: inputs_to_stack.append(tokenizer_fn('' + text + self.tokenizer.trunk.eos_token)) text_inputs = torch.stack(inputs_to_stack) targets = torch.stack([self.text_input_to_target(text) for text in text_inputs]) transform = self.image_preprocess_train images = torch.stack([transform(img) for img in images]) text_inputs = text_inputs[:, :-1] targets = targets[:, 1:] return {'image': images, 'label': text_inputs, 'text_target': targets} def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: image_input = sample['image'] label = sample['label'] text_target = sample['text_target'] result = {} image_input = image_input.to(self.device_env.device, non_blocking=True) label = label.to(self.device_env.device, non_blocking=True) text_target = text_target.to(self.device_env.device, non_blocking=True) accum_steps = self.cfg.opt.grad_accum_steps need_update = (self.interval_batch_idx + 1) % accum_steps == 0 def _forward(): with self.autocast(): output = self.model(image_input, label) logits = output['logits'] loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) if accum_steps > 1: loss /= accum_steps return loss def _backward(_loss): if self.scaler is not None: self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) else: _loss.backward() if need_update: if self.cfg.opt.clip_grad_value is not None: timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) self.optimizer.step() if self.has_no_sync and (not need_update): with self.model.no_sync(): loss = _forward() _backward(loss) else: loss = _forward() _backward(loss) self.batch_idx += 1 self.interval_batch_idx += 1 if self.step % 100 == 0: self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) if not need_update: return result self.step += 1 self.scheduler.step_update(self.step) self.optimizer.zero_grad() def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() state_dicts['tokenizer'] = self.tokenizer.state_dict() return state_dicts # File: pixparse-main/src/pixparse/task/task_cruller_finetune_xent.py import logging from contextlib import nullcontext from dataclasses import dataclass, field, asdict from functools import partial from typing import Optional, List, Any import torch import torch.nn as nn import torchvision.transforms as transforms import timm import timm.utils from timm.optim import create_optimizer_v2 from timm.scheduler import create_scheduler_v2 from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerHF, TokenizerCfg from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from timm.layers import SelectAdaptivePool2d from typing import Dict, List from collections import OrderedDict _logger = logging.getLogger(__name__) class GetCLSToken(nn.Module): def forward(self, x): return x[:, 0, :] @dataclass class TaskCrullerFinetuneXentCfg(TaskTrainCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerFinetuneXent(TaskTrain): def __init__(self, cfg: TaskCrullerFinetuneXentCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '' self.prompt_end_token = self.task_start_token self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = False self.tokenizer = TokenizerHF(cfg.tokenizer) self.state_dict = OrderedDict() self.resume = False special_tokens = ['', self.task_start_token, self.prompt_end_token] newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) self.vocab_size = len(self.tokenizer.trunk) preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) if newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.loss = nn.CrossEntropyLoss(ignore_index=-100) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) def train_setup(self, num_batches_per_interval: int): if self.resume: _logger.info(f'Resuming from existing checkpoint. ') self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} self.model.load_state_dict(self.state_dict) self.model = nn.Sequential(OrderedDict([('encoder', self.model.image_encoder), ('token_pool', GetCLSToken()), ('final_fc', nn.Linear(768, 16))])) device = self.device_env.device print(f'Local rank for this process: {self.device_env.local_rank}') device = torch.device(f'cuda:{self.device_env.local_rank}') self.model.to(device) if self.device_env.world_size > 1: self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) self.has_no_sync = hasattr(self.model, 'no_sync') opt_kwargs = {} if self.cfg.opt.betas is not None: opt_kwargs['betas'] = self.cfg.opt.betas if self.cfg.opt.momentum is not None: opt_kwargs['momentum'] = self.cfg.opt.momentum self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) if self.cfg.amp: self.scaler = timm.utils.NativeScaler() self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) else: self.scaler = None self.autocast = nullcontext self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps (self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) self.scheduler.step_update(0) def collate_fn(self, batch): images = [item['image'] for item in batch] labels = [item['label'] for item in batch] transform = self.image_preprocess_train images = torch.stack([transform(img) for img in images]) labels = torch.tensor(labels, dtype=torch.int64) return {'image': images, 'label': labels} def train_interval_start(self): self.optimizer.zero_grad() self.interval_batch_idx = 0 def train_interval_end(self): self.monitor.log_phase('finetune', self.interval_idx) self.interval_idx += 1 def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: image_input = sample['image'] label = sample['label'] result = {} image_input = image_input.to(self.device_env.device, non_blocking=True) label = label.to(self.device_env.device, non_blocking=True) accum_steps = self.cfg.opt.grad_accum_steps need_update = (self.interval_batch_idx + 1) % accum_steps == 0 def _forward(): with self.autocast(): outputs = self.model(image_input) loss = self.loss(outputs, label) if accum_steps > 1: loss /= accum_steps return loss def _backward(_loss): if self.scaler is not None: self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) else: _loss.backward() if need_update: if self.cfg.opt.clip_grad_value is not None: timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) self.optimizer.step() if self.has_no_sync and (not need_update): with self.model.no_sync(): loss = _forward() _backward(loss) else: loss = _forward() _backward(loss) self.batch_idx += 1 self.interval_batch_idx += 1 if self.step % self.eval_frequency == 0: self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) if not need_update: return result self.step += 1 self.scheduler.step_update(self.step) self.optimizer.zero_grad() def eval_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: pass def get_current_lr(self): lrl = [param_group['lr'] for param_group in self.optimizer.param_groups] lr = sum(lrl) / len(lrl) return lr # File: pixparse-main/src/pixparse/task/task_cruller_pretrain.py import logging from contextlib import nullcontext from dataclasses import dataclass, field, asdict from functools import partial from typing import Optional, List, Any import torch import torch.nn as nn import torchvision.transforms as transforms import timm import timm.utils from timm.optim import create_optimizer_v2 from timm.scheduler import create_scheduler_v2 from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerHF, TokenizerCfg from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from pixparse.utils.ocr_utils import get_ocr_metrics _logger = logging.getLogger(__name__) @dataclass class TaskCrullerPretrainCfg(TaskTrainCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerPretrain(TaskTrain): def __init__(self, cfg: TaskCrullerPretrainCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '' self.prompt_end_token = self.task_start_token self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = False self.tokenizer = TokenizerHF(cfg.tokenizer) special_tokens = ['', self.task_start_token, self.prompt_end_token] newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) self.vocab_size = len(self.tokenizer.trunk) preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) if newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.loss = nn.CrossEntropyLoss(ignore_index=-100) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) self.image_preprocess_eval = None self.train_metrics = {} self.eval_metrics = {} self.max_recursion_length = 1000 def train_setup(self, num_batches_per_interval: int): device = self.device_env.device self.model.to(device) if self.device_env.world_size > 1: self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) self.has_no_sync = hasattr(self.model, 'no_sync') opt_kwargs = {} if self.cfg.opt.betas is not None: opt_kwargs['betas'] = self.cfg.opt.betas if self.cfg.opt.momentum is not None: opt_kwargs['momentum'] = self.cfg.opt.momentum self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) if self.cfg.amp: self.scaler = timm.utils.NativeScaler() self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) else: self.scaler = None self.autocast = nullcontext self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps (self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) self.scheduler.step_update(0) def train_interval_start(self): self.optimizer.zero_grad() self.interval_batch_idx = 0 def train_interval_end(self): self.monitor.log_phase('train', self.interval_idx) self.interval_idx += 1 def train_step(self, sample): (image_input, text_input, text_target) = sample result = {} image_input = image_input.to(self.device_env.device, non_blocking=True) text_input = text_input[:, :-1].to(self.device_env.device, non_blocking=True) text_target = text_target[:, 1:].to(self.device_env.device, non_blocking=True) accum_steps = self.cfg.opt.grad_accum_steps need_update = (self.interval_batch_idx + 1) % accum_steps == 0 def _forward(): with self.autocast(): output = self.model(image_input, text_input) logits = output['logits'] loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) if accum_steps > 1: loss /= accum_steps return loss def _backward(_loss): if self.scaler is not None: self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) else: _loss.backward() if need_update: if self.cfg.opt.clip_grad_value is not None: timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) self.optimizer.step() if self.has_no_sync and (not need_update): with self.model.no_sync(): loss = _forward() _backward(loss) else: loss = _forward() _backward(loss) self.batch_idx += 1 self.interval_batch_idx += 1 if not need_update: return result self.step += 1 self.scheduler.step_update(self.step) self.optimizer.zero_grad() if self.step % self.eval_frequency == 0: (metrics, eval_gallery) = self.get_train_ocr_metrics(sample) self.train_metrics |= metrics self.monitor.log_step('train', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=self.train_metrics, eval_data=eval_gallery) return result def get_train_ocr_metrics(self, sample): metrics = {} eval_data = {} (image_input, text_input, text_target) = sample image_input = image_input.to(self.device_env.device, non_blocking=True) text_input = text_input[:, :-1].to(self.device_env.device, non_blocking=True) text_target = text_target[:, 1:].to(self.device_env.device, non_blocking=True) '' (ocr_metrics, ocr_reconstructed_sample) = get_ocr_metrics(model=self.model, tokenizer=self.tokenizer, image_input=image_input, text_input=text_target, device_env=self.device_env, max_recursion_length=self.max_recursion_length) if ocr_metrics and ocr_reconstructed_sample: metrics['ocr_reconstruction'] = ocr_metrics eval_data['ocr_reconstruction_data'] = ocr_reconstructed_sample else: _logger.info("Can't generate text from current batch. Skipping metrics...") return (metrics, eval_data) def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() state_dicts['optimizer'] = self.optimizer.state_dict() if hasattr(self.scheduler, 'state_dict'): state_dicts['scheduler'] = self.scheduler.state_dict() if self.scaler is not None: state_dicts['scaler'] = self.scaler.state_dict() return state_dicts def load_state_dict(self, state_dict): pass def __repr__(self): outputs = [f'model: {repr(self.model)}', f'opt: {repr(self.optimizer)}', f'sched: {repr(self.scheduler)}'] return '\n'.join(outputs) # File: pixparse-main/src/pixparse/task/task_donut_eval_ocr.py from PIL import Image import re from transformers import DonutProcessor, VisionEncoderDecoderModel import torch from dataclasses import dataclass from functools import partial from pixparse.framework import TaskEvalCfg, TaskEval, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.data import preprocess_text_anno from pixparse.utils import get_ocr_metrics from pixparse.utils.ocr_utils import get_cer_wer_metrics import jiwer.transforms as tr import torch import torchvision.transforms as transforms import numpy as np @dataclass class TaskDonutEvalOCRCfg(TaskEvalCfg): def __post_init__(self): pass class TaskDonutEvalOCR(TaskEval): def __init__(self, cfg: TaskDonutEvalOCRCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.processor = DonutProcessor.from_pretrained('naver-clova-ix/donut-base-finetuned-cord-v2') self.model = VisionEncoderDecoderModel.from_pretrained('naver-clova-ix/donut-base-finetuned-cord-v2') self.task_prompt = '' self.decoder_input_ids = self.processor.tokenizer(self.task_prompt, add_special_tokens=False, return_tensors='pt').input_ids self.vocab_size = len(self.processor.tokenizer) preproc_fn = preprocess_text_anno self.max_position_embeddings = 768 self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.processor.tokenizer, max_position_embeddings=self.max_position_embeddings, task_start_token='', prompt_end_token=self.task_prompt) self.model.eval() self.has_no_sync = False self.num_image_chs = 3 self.image_preprocess_eval = lambda x: x self.cer_transforms = tr.Compose([tr.RemoveSpecificWords(''), tr.Strip(), tr.ReduceToListOfListOfChars()]) self.wer_transforms = tr.Compose([tr.RemoveSpecificWords(''), tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToListOfListOfWords()]) self.eval_metrics = {} self.max_recursion_length = 1000 def setup(self): device = self.device_env.device self.model.to(device) def prepare_for_evaluation(self, loaders): loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} return loaders def clean_text(self, text: str) -> str: sequence = text.replace(self.processor.tokenizer.eos_token, '').replace(self.processor.tokenizer.pad_token, '') cleaned_text = re.sub('<.*?>', '', sequence) return cleaned_text def step(self, sample): metrics = {} (image_input, text_input, text_target) = sample text_input = [item[0] for item in text_input] text_input = torch.stack(text_input, dim=0).to(self.device_env.device, non_blocking=True) text_target = [item[0] for item in text_target] text_target = torch.stack(text_target, dim=0).to(self.device_env.device, non_blocking=True) decoder_input_ids = self.processor.tokenizer(self.task_prompt, add_special_tokens=False, return_tensors='pt').input_ids pixel_values = self.processor([im.convert('RGB') for im in image_input], return_tensors='pt').pixel_values with torch.inference_mode(): outputs = [self.model.generate(pixel_value.unsqueeze(0).to(self.device_env.device), decoder_input_ids=decoder_input_ids.to(self.device_env.device), max_length=self.max_position_embeddings, early_stopping=True, pad_token_id=self.processor.tokenizer.pad_token_id, eos_token_id=self.processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[self.processor.tokenizer.unk_token_id]], return_dict_in_generate=True) for pixel_value in pixel_values] generated_text = [self.clean_text(self.processor.decode(greedy_outputs.sequences[0])) for greedy_outputs in outputs] text_input[text_input == -100] = self.processor.tokenizer.pad_token_id raw_decoded_texts = self.processor.tokenizer.batch_decode(text_input) decoded_texts = [self.clean_text(t) for t in raw_decoded_texts] filtered = [(ref, pred) for (ref, pred) in zip(decoded_texts, generated_text) if ref and pred] if not filtered: return (None, None) (decoded_texts, ocr_predictions) = zip(*filtered) decoded_texts = list(decoded_texts) ocr_predictions = list(ocr_predictions) ocr_predictions = [text[0:len(reftext)] for (text, reftext) in zip(ocr_predictions, decoded_texts)] metrics['ocr_reconstruction'] = get_cer_wer_metrics(self.cer_transforms, self.wer_transforms, dict(), ocr_predictions, decoded_texts) return metrics def average_metrics(self, metrics: dict): wer_sum = 0 cer_sum = 0 for batch_metrics in metrics.values(): wer_sum += batch_metrics['ocr_reconstruction']['wer'] cer_sum += batch_metrics['ocr_reconstruction']['cer'] num_batches = len(metrics) average_wer = wer_sum / num_batches average_cer = cer_sum / num_batches return {'ocr_reconstruction': {'wer': average_wer, 'cer': average_cer}} def end(self): pass def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() return state_dicts # File: pixparse-main/src/pixparse/task/task_factory.py import logging from dataclasses import dataclass, field from functools import partial from typing import Optional import torch import torchvision.transforms as transforms from pixparse.framework import TaskEvalCfg, TaskEval, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerHF, TokenizerCfg from pixparse.data import preprocess_text_anno from pixparse.utils import get_ocr_metrics from pixparse.task import TaskCrullerEvalOCR, TaskCrullerEvalOCRCfg, TaskDonutEvalOCR, TaskDonutEvalOCRCfg, TaskCrullerEvalRVLCDIP, TaskCrullerEvalRVLCDIPCfg, TaskCrullerEvalCORD, TaskCrullerEvalCORDCfg, TaskCrullerEvalDOCVQA, TaskCrullerEvalDOCVQACfg, TaskCrullerPretrain, TaskCrullerPretrainCfg, TaskCrullerFinetuneRVLCDIP, TaskCrullerFinetuneRVLCDIPCfg, TaskCrullerFinetuneCORD, TaskCrullerFinetuneCORDCfg, TaskCrullerFinetuneDOCVQA, TaskCrullerFinetuneDOCVQACfg, TaskCrullerFinetuneXent, TaskCrullerFinetuneXentCfg class TaskFactory: TASK_CLASS_REGISTRY = {'cruller_eval_ocr': (TaskCrullerEvalOCR, TaskCrullerEvalOCRCfg), 'cruller_eval_rvlcdip': (TaskCrullerEvalRVLCDIP, TaskCrullerEvalRVLCDIPCfg), 'cruller_eval_cord': (TaskCrullerEvalCORD, TaskCrullerEvalCORDCfg), 'cruller_eval_docvqa': (TaskCrullerEvalDOCVQA, TaskCrullerEvalDOCVQACfg), 'donut_eval_ocr': (TaskDonutEvalOCR, TaskDonutEvalOCRCfg), 'cruller_pretrain': (TaskCrullerPretrain, TaskCrullerPretrainCfg), 'cruller_finetune_rvlcdip': (TaskCrullerFinetuneRVLCDIP, TaskCrullerFinetuneRVLCDIPCfg), 'cruller_finetune_cord': (TaskCrullerFinetuneCORD, TaskCrullerFinetuneCORDCfg), 'cruller_finetune_docvqa': (TaskCrullerFinetuneDOCVQA, TaskCrullerFinetuneDOCVQACfg), 'cruller_finetune_xent': (TaskCrullerFinetuneXent, TaskCrullerFinetuneXentCfg)} @classmethod def create_task(cls, task_name: str, task_args, device_env: DeviceEnv, monitor: Monitor): task_name = task_name.lower() if task_name not in cls.TASK_CLASS_REGISTRY: raise ValueError(f'Unknown task type: {task_name}. Available tasks are {list(cls.TASK_CLASS_REGISTRY.keys())}') task_cls = cls.TASK_CLASS_REGISTRY[task_name][0] task_cfg = cls.TASK_CLASS_REGISTRY[task_name][1] task_cfg_instance = task_cfg(**vars(task_args)) task_cls_instance = task_cls(cfg=task_cfg_instance, device_env=device_env, monitor=monitor) return (task_cls_instance, task_cfg_instance) # File: pixparse-main/src/pixparse/tokenizers/config.py import copy import re from pathlib import Path from dataclasses import dataclass, field from typing import Optional, Tuple from simple_parsing.helpers import Serializable from pixparse.utils.name_utils import _natural_key, clean_name _TOKENIZER_CONFIG_PATHS = [Path(__file__).parent / f'configs/'] _TOKENIZER_CONFIGS = {} @dataclass class TokenizerCfg(Serializable): name: str = 'facebook/bart-large' pretrained: bool = True def _scan_tokenizer_configs(): global _TOKENIZER_CONFIGS config_ext = ('.json',) config_files = [] for config_path in _TOKENIZER_CONFIG_PATHS: if config_path.is_file() and config_path.suffix in config_ext: config_files.append(config_path) elif config_path.is_dir(): for ext in config_ext: config_files.extend(config_path.glob(f'*{ext}')) for cf in config_files: tokenizer_cfg = TokenizerCfg.load(cf) _TOKENIZER_CONFIGS[cf.stem] = tokenizer_cfg _TOKENIZER_CONFIGS = {k: v for (k, v) in sorted(_TOKENIZER_CONFIGS.items(), key=lambda x: _natural_key(x[0]))} _scan_tokenizer_configs() def list_tokenizers(): return list(_TOKENIZER_CONFIGS.keys()) def get_tokenizer_config(tokenizer_name): tokenizer_name = clean_name(tokenizer_name) cfg = _TOKENIZER_CONFIGS.get(tokenizer_name, None) return copy.deepcopy(cfg) # File: pixparse-main/src/pixparse/tokenizers/tokenizer_hf.py from torch import nn as nn from pixparse.tokenizers.config import TokenizerCfg from transformers import AutoTokenizer def create_tokenizer(cfg: TokenizerCfg): assert cfg.name extra_kwargs = {} tokenizer = AutoTokenizer.from_pretrained(cfg.name, **extra_kwargs) return tokenizer class TokenizerHF(nn.Module): def __init__(self, cfg: TokenizerCfg): super().__init__() self.trunk = create_tokenizer(cfg)