tokens
sequencelengths 1
6
| freq
uint32 0
332M
| n
uint8 1
6
| tokens_str
stringlengths 1
66
| tok5
int32 -1
50.3k
| tok5_str
stringlengths 0
15
| tok4
int32 -1
50.3k
| tok4_str
stringlengths 0
14
| tok3
int32 -1
50.3k
| tok3_str
stringlengths 0
17
| tok2
int32 -1
50.3k
| tok2_str
stringlengths 0
16
| tok1
int32 -1
50.3k
| tok1_str
stringlengths 0
18
| tok0
int32 0
50.3k
| tok0_str
stringlengths 1
66
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[
0
] | 5,487,308 | 1 | ! | -1 | -1 | -1 | -1 | -1 | 0 | ! |
|||||
[
1
] | 13,327,355 | 1 | " | -1 | -1 | -1 | -1 | -1 | 1 | " |
|||||
[
2
] | 453,372 | 1 | # | -1 | -1 | -1 | -1 | -1 | 2 | # |
|||||
[
3
] | 519,325 | 1 | $ | -1 | -1 | -1 | -1 | -1 | 3 | $ |
|||||
[
4
] | 3,917,074 | 1 | % | -1 | -1 | -1 | -1 | -1 | 4 | % |
|||||
[
5
] | 668,676 | 1 | & | -1 | -1 | -1 | -1 | -1 | 5 | & |
|||||
[
6
] | 4,899,625 | 1 | ' | -1 | -1 | -1 | -1 | -1 | 6 | ' |
|||||
[
7
] | 2,959,408 | 1 | ( | -1 | -1 | -1 | -1 | -1 | 7 | ( |
|||||
[
8
] | 19,473,764 | 1 | ) | -1 | -1 | -1 | -1 | -1 | 8 | ) |
|||||
[
9
] | 788,274 | 1 | * | -1 | -1 | -1 | -1 | -1 | 9 | * |
|||||
[
10
] | 849,945 | 1 | + | -1 | -1 | -1 | -1 | -1 | 10 | + |
|||||
[
11
] | 331,770,469 | 1 | , | -1 | -1 | -1 | -1 | -1 | 11 | , |
|||||
[
12
] | 73,115,588 | 1 | - | -1 | -1 | -1 | -1 | -1 | 12 | - |
|||||
[
13
] | 317,302,752 | 1 | . | -1 | -1 | -1 | -1 | -1 | 13 | . |
|||||
[
14
] | 12,120,103 | 1 | / | -1 | -1 | -1 | -1 | -1 | 14 | / |
|||||
[
15
] | 2,955,772 | 1 | 0 | -1 | -1 | -1 | -1 | -1 | 15 | 0 |
|||||
[
16
] | 5,978,432 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 16 | 1 |
|||||
[
17
] | 5,073,915 | 1 | 2 | -1 | -1 | -1 | -1 | -1 | 17 | 2 |
|||||
[
18
] | 3,895,993 | 1 | 3 | -1 | -1 | -1 | -1 | -1 | 18 | 3 |
|||||
[
19
] | 3,167,346 | 1 | 4 | -1 | -1 | -1 | -1 | -1 | 19 | 4 |
|||||
[
20
] | 3,560,767 | 1 | 5 | -1 | -1 | -1 | -1 | -1 | 20 | 5 |
|||||
[
21
] | 2,358,514 | 1 | 6 | -1 | -1 | -1 | -1 | -1 | 21 | 6 |
|||||
[
22
] | 2,189,522 | 1 | 7 | -1 | -1 | -1 | -1 | -1 | 22 | 7 |
|||||
[
23
] | 2,258,639 | 1 | 8 | -1 | -1 | -1 | -1 | -1 | 23 | 8 |
|||||
[
24
] | 1,938,115 | 1 | 9 | -1 | -1 | -1 | -1 | -1 | 24 | 9 |
|||||
[
25
] | 33,924,449 | 1 | : | -1 | -1 | -1 | -1 | -1 | 25 | : |
|||||
[
26
] | 7,581,302 | 1 | ; | -1 | -1 | -1 | -1 | -1 | 26 | ; |
|||||
[
27
] | 307,115 | 1 | < | -1 | -1 | -1 | -1 | -1 | 27 | < |
|||||
[
28
] | 956,882 | 1 | = | -1 | -1 | -1 | -1 | -1 | 28 | = |
|||||
[
29
] | 988,348 | 1 | > | -1 | -1 | -1 | -1 | -1 | 29 | > |
|||||
[
30
] | 12,128,614 | 1 | ? | -1 | -1 | -1 | -1 | -1 | 30 | ? |
|||||
[
31
] | 761,206 | 1 | @ | -1 | -1 | -1 | -1 | -1 | 31 | @ |
|||||
[
32
] | 5,493,307 | 1 | A | -1 | -1 | -1 | -1 | -1 | 32 | A |
|||||
[
33
] | 2,692,962 | 1 | B | -1 | -1 | -1 | -1 | -1 | 33 | B |
|||||
[
34
] | 3,055,331 | 1 | C | -1 | -1 | -1 | -1 | -1 | 34 | C |
|||||
[
35
] | 2,874,327 | 1 | D | -1 | -1 | -1 | -1 | -1 | 35 | D |
|||||
[
36
] | 1,399,952 | 1 | E | -1 | -1 | -1 | -1 | -1 | 36 | E |
|||||
[
37
] | 2,110,413 | 1 | F | -1 | -1 | -1 | -1 | -1 | 37 | F |
|||||
[
38
] | 2,001,010 | 1 | G | -1 | -1 | -1 | -1 | -1 | 38 | G |
|||||
[
39
] | 1,862,554 | 1 | H | -1 | -1 | -1 | -1 | -1 | 39 | H |
|||||
[
40
] | 8,556,245 | 1 | I | -1 | -1 | -1 | -1 | -1 | 40 | I |
|||||
[
41
] | 1,311,763 | 1 | J | -1 | -1 | -1 | -1 | -1 | 41 | J |
|||||
[
42
] | 2,000,100 | 1 | K | -1 | -1 | -1 | -1 | -1 | 42 | K |
|||||
[
43
] | 1,855,725 | 1 | L | -1 | -1 | -1 | -1 | -1 | 43 | L |
|||||
[
44
] | 2,451,631 | 1 | M | -1 | -1 | -1 | -1 | -1 | 44 | M |
|||||
[
45
] | 1,762,596 | 1 | N | -1 | -1 | -1 | -1 | -1 | 45 | N |
|||||
[
46
] | 1,372,599 | 1 | O | -1 | -1 | -1 | -1 | -1 | 46 | O |
|||||
[
47
] | 2,107,505 | 1 | P | -1 | -1 | -1 | -1 | -1 | 47 | P |
|||||
[
48
] | 696,484 | 1 | Q | -1 | -1 | -1 | -1 | -1 | 48 | Q |
|||||
[
49
] | 2,174,567 | 1 | R | -1 | -1 | -1 | -1 | -1 | 49 | R |
|||||
[
50
] | 5,586,036 | 1 | S | -1 | -1 | -1 | -1 | -1 | 50 | S |
|||||
[
51
] | 2,116,146 | 1 | T | -1 | -1 | -1 | -1 | -1 | 51 | T |
|||||
[
52
] | 1,136,509 | 1 | U | -1 | -1 | -1 | -1 | -1 | 52 | U |
|||||
[
53
] | 1,401,815 | 1 | V | -1 | -1 | -1 | -1 | -1 | 53 | V |
|||||
[
54
] | 1,481,801 | 1 | W | -1 | -1 | -1 | -1 | -1 | 54 | W |
|||||
[
55
] | 884,765 | 1 | X | -1 | -1 | -1 | -1 | -1 | 55 | X |
|||||
[
56
] | 1,045,843 | 1 | Y | -1 | -1 | -1 | -1 | -1 | 56 | Y |
|||||
[
57
] | 861,450 | 1 | Z | -1 | -1 | -1 | -1 | -1 | 57 | Z |
|||||
[
58
] | 1,684,351 | 1 | [ | -1 | -1 | -1 | -1 | -1 | 58 | [ |
|||||
[
59
] | 861,769 | 1 | \ | -1 | -1 | -1 | -1 | -1 | 59 | \ |
|||||
[
60
] | 8,698,958 | 1 | ] | -1 | -1 | -1 | -1 | -1 | 60 | ] |
|||||
[
61
] | 136,885 | 1 | ^ | -1 | -1 | -1 | -1 | -1 | 61 | ^ |
|||||
[
62
] | 4,129,741 | 1 | _ | -1 | -1 | -1 | -1 | -1 | 62 | _ |
|||||
[
63
] | 125,031 | 1 | ` | -1 | -1 | -1 | -1 | -1 | 63 | ` |
|||||
[
64
] | 5,567,006 | 1 | a | -1 | -1 | -1 | -1 | -1 | 64 | a |
|||||
[
65
] | 2,184,387 | 1 | b | -1 | -1 | -1 | -1 | -1 | 65 | b |
|||||
[
66
] | 2,210,917 | 1 | c | -1 | -1 | -1 | -1 | -1 | 66 | c |
|||||
[
67
] | 3,317,323 | 1 | d | -1 | -1 | -1 | -1 | -1 | 67 | d |
|||||
[
68
] | 2,643,819 | 1 | e | -1 | -1 | -1 | -1 | -1 | 68 | e |
|||||
[
69
] | 1,986,830 | 1 | f | -1 | -1 | -1 | -1 | -1 | 69 | f |
|||||
[
70
] | 1,822,512 | 1 | g | -1 | -1 | -1 | -1 | -1 | 70 | g |
|||||
[
71
] | 2,085,684 | 1 | h | -1 | -1 | -1 | -1 | -1 | 71 | h |
|||||
[
72
] | 3,977,354 | 1 | i | -1 | -1 | -1 | -1 | -1 | 72 | i |
|||||
[
73
] | 1,385,829 | 1 | j | -1 | -1 | -1 | -1 | -1 | 73 | j |
|||||
[
74
] | 1,975,873 | 1 | k | -1 | -1 | -1 | -1 | -1 | 74 | k |
|||||
[
75
] | 1,878,104 | 1 | l | -1 | -1 | -1 | -1 | -1 | 75 | l |
|||||
[
76
] | 5,278,088 | 1 | m | -1 | -1 | -1 | -1 | -1 | 76 | m |
|||||
[
77
] | 1,990,360 | 1 | n | -1 | -1 | -1 | -1 | -1 | 77 | n |
|||||
[
78
] | 3,399,287 | 1 | o | -1 | -1 | -1 | -1 | -1 | 78 | o |
|||||
[
79
] | 1,698,336 | 1 | p | -1 | -1 | -1 | -1 | -1 | 79 | p |
|||||
[
80
] | 532,952 | 1 | q | -1 | -1 | -1 | -1 | -1 | 80 | q |
|||||
[
81
] | 1,718,866 | 1 | r | -1 | -1 | -1 | -1 | -1 | 81 | r |
|||||
[
82
] | 46,501,587 | 1 | s | -1 | -1 | -1 | -1 | -1 | 82 | s |
|||||
[
83
] | 15,084,616 | 1 | t | -1 | -1 | -1 | -1 | -1 | 83 | t |
|||||
[
84
] | 1,776,410 | 1 | u | -1 | -1 | -1 | -1 | -1 | 84 | u |
|||||
[
85
] | 1,492,903 | 1 | v | -1 | -1 | -1 | -1 | -1 | 85 | v |
|||||
[
86
] | 1,261,040 | 1 | w | -1 | -1 | -1 | -1 | -1 | 86 | w |
|||||
[
87
] | 1,993,162 | 1 | x | -1 | -1 | -1 | -1 | -1 | 87 | x |
|||||
[
88
] | 3,326,055 | 1 | y | -1 | -1 | -1 | -1 | -1 | 88 | y |
|||||
[
89
] | 1,838,137 | 1 | z | -1 | -1 | -1 | -1 | -1 | 89 | z |
|||||
[
90
] | 261,610 | 1 | { | -1 | -1 | -1 | -1 | -1 | 90 | { |
|||||
[
91
] | 577,959 | 1 | | | -1 | -1 | -1 | -1 | -1 | 91 | | |
|||||
[
92
] | 410,243 | 1 | } | -1 | -1 | -1 | -1 | -1 | 92 | } |
|||||
[
93
] | 112,424 | 1 | ~ | -1 | -1 | -1 | -1 | -1 | 93 | ~ |
|||||
[
94
] | 187,522 | 1 | � | -1 | -1 | -1 | -1 | -1 | 94 | � |
|||||
[
95
] | 114,158 | 1 | � | -1 | -1 | -1 | -1 | -1 | 95 | � |
|||||
[
96
] | 137,071 | 1 | � | -1 | -1 | -1 | -1 | -1 | 96 | � |
|||||
[
97
] | 165,632 | 1 | � | -1 | -1 | -1 | -1 | -1 | 97 | � |
|||||
[
98
] | 161,228 | 1 | � | -1 | -1 | -1 | -1 | -1 | 98 | � |
|||||
[
99
] | 93,769 | 1 | � | -1 | -1 | -1 | -1 | -1 | 99 | � |
End of preview. Expand
in Dataset Viewer.
Dataset Card for OpenWebText n-grams
Dataset Summary
This dataset contains 246K of the most common token-based (GPT-2/GPT-3) n-grams (n=1 to n=6), in the OpenWebText (OWT) dataset.
For convenient searching, it provides full tokens/strings, as well as per-position tokens/strings.
Usage
Generally, this dataset allows identifying the most common n-grams in a text corpus.
When researching LLMs tokenized similarly to GPT-2/GPT-3, it allows:
- Constructing intermediate vectors spanning the most common short phrases (n-grams), e.g. for similarity sampling.
- Fast searches for common phrases containing particular tokens or substrings (and in particular sequence positions).
- Showing the effects of training set n-gram frequency.
The authors (Thomas Dooms and Dan Wilhelm) used this dataset to show that sparse auto-encoders are biased toward reconstructing the most common n-grams.
Loading the Dataset
We recommend you convert the dataset to a Pandas DataFrame for easy querying:
from datasets import load_dataset
ngrams = load_dataset('danwil/owt-ngrams')['train'].to_pandas()
Contents
Below, we list the number of n-grams and their count/frequency in the original ~9B-token OWT corpus.
- We include all individual tokens (1-grams).
- Note that if an n-gram occurs >N times, then every contiguous subsequence must also occur >N times.
total | n=1 | n=2 | n=3 | n=4 | n=5 | n=6 | |
---|---|---|---|---|---|---|---|
owt_1-6grams_246k | 245831 | 50257 | 58302 | 44560 | 32831 | 13566 | 12495 |
count in OWT | >= 0 | >= 10000 | >= 10000 | > 5000 | > 5000 | > 2000 |
Point of Contact: Dan Wilhelm
- Downloads last month
- 44