File size: 4,830 Bytes
8ffe18f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cfd3fc
8ffe18f
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""DialogRE: the first human-annotated dialogue-based relation extraction dataset"""


import json
import os

import datasets


_CITATION = """\
@inproceedings{yu2020dialogue,
  title={Dialogue-Based Relation Extraction},
  author={Yu, Dian and Sun, Kai and Cardie, Claire and Yu, Dong},
  booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
  year={2020},
  url={https://arxiv.org/abs/2004.08056v1}
}
"""

_DESCRIPTION = """\
DialogRE is the first human-annotated dialogue based relation extraction (RE) dataset aiming
to support the prediction of relation(s) between two arguments that appear in a dialogue.
The dataset annotates all occurrences of 36 possible relation types that exist between pairs
of arguments in the 1,788 dialogues originating from the complete transcripts of Friends.
"""

_HOMEPAGE = "https://github.com/nlpdata/dialogre"

_LICENSE = "https://github.com/nlpdata/dialogre/blob/master/license.txt"

_URL = "https://raw.githubusercontent.com/nlpdata/dialogre/master/data_v2/en/data/"
_URLs = {
    "train": _URL + "train.json",
    "dev": _URL + "dev.json",
    "test": _URL + "test.json",
}


class DialogREConfig(datasets.BuilderConfig):
    """BuilderConfig for DialogRE"""

    def __init__(self, **kwargs):
        """BuilderConfig for DialogRE.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(DialogREConfig, self).__init__(**kwargs)


class DialogRE(datasets.GeneratorBasedBuilder):
    """DialogRE: Human-annotated dialogue-based relation extraction dataset Version 2"""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        DialogREConfig(
            name="dialog_re",
            version=datasets.Version("1.1.0"),
            description="DialogRE: Human-annotated dialogue-based relation extraction dataset",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "dialog": datasets.Sequence(datasets.Value("string")),
                    "relation_data": datasets.Sequence(
                        {
                            "x": datasets.Value("string"),
                            "y": datasets.Value("string"),
                            "x_type": datasets.Value("string"),
                            "y_type": datasets.Value("string"),
                            "r": datasets.Sequence(datasets.Value("string")),
                            "rid": datasets.Sequence(datasets.Value("int32")),
                            "t": datasets.Sequence(datasets.Value("string")),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        data_dir = dl_manager.download_and_extract(_URLs)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(data_dir["train"]),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": os.path.join(data_dir["test"]), "split": "test"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join(data_dir["dev"]),
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        """Yields examples."""

        with open(filepath, encoding="utf-8") as f:
            dataset = json.load(f)

            for id_, data in enumerate(dataset):
                dialog = data[0]
                relation_data = data[1]

                yield id_, {
                    "dialog": dialog,
                    "relation_data": relation_data,
                }