Datasets:
Sub-tasks:
dialogue-modeling
Languages:
English
Size:
1K<n<10K
ArXiv:
Tags:
relation-extraction
License:
File size: 7,445 Bytes
8ffe18f b9d9027 8ffe18f b9d9027 8ffe18f aa8b506 8ffe18f d83a2d2 905f9a9 6fefe82 a3c295e c73e419 0f7f992 c73e419 8ffe18f 905f9a9 8ffe18f 905f9a9 8ffe18f 877ee8d 8ffe18f d83a2d2 8ffe18f d83a2d2 8ffe18f d83a2d2 8ffe18f d83a2d2 8ffe18f d83a2d2 8ffe18f d83a2d2 8ffe18f d83a2d2 8ffe18f d83a2d2 8ffe18f d83a2d2 cb12330 8ffe18f d83a2d2 8ffe18f d83a2d2 877ee8d a3c295e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- other
- text-generation
- fill-mask
task_ids:
- dialogue-modeling
paperswithcode_id: dialogre
pretty_name: DialogRE
tags:
- relation-extraction
dataset_info:
features:
- name: dialog
sequence: string
- name: relation_data
sequence:
- name: x
dtype: string
- name: y
dtype: string
- name: x_type
dtype: string
- name: y_type
dtype: string
- name: r
sequence: string
- name: rid
sequence: int32
- name: t
sequence: string
config_name: dialog_re
splits:
- name: train
num_bytes: 1520940
num_examples: 1073
- name: test
num_bytes: 472306
num_examples: 357
- name: validation
num_bytes: 490580
num_examples: 358
download_size: 3816234
dataset_size: 2483826
---
# Dataset Card for [DialogRE]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [DialogRE Homepage](https://dataset.org/dialogre/)
- **Repository:** [DialogRE Repository](https://github.com/nlpdata/dialogre)
- **Paper:** [Arxiv](https://arxiv.org/abs/2004.08056v1)
- **Point of Contact:** [[email protected]](mailto:[email protected])
### Dataset Summary
The DialogRE dataset is the first human-annotated dialogue-based relation extraction (RE) dataset, aiming to support the prediction of relation(s) between two arguments that appear in a dialogue. DialogRE can also act as a platform for studying cross-sentence RE as most facts span multiple sentences. Specifically, the dataset annotate all occurrences of 36 possible relation types that exist between pairs of arguments in the 1,788 dialogues originating from the complete transcripts of Friends (in English).
### Supported Tasks and Leaderboards
* `other-other-relation-extraction`: The dataset can be used to train a model for Relation Extraction, which consists of the prediction of relation between two arguments that appear in a dialogue. Success on this task is typically measured by achieving a *high* [F1 Score](https://huggingface.co/metrics/f1).
### Languages
The dialogues in the dataset is in English originating from the transcripts of Friends. The associated BCP-47 code is `en`.
## Dataset Structure
### Data Instances
A typical data point consists of a dialogue between speakers as a list of sentences. This is followed by the annotations of the relations between the entities in the dialog.
An example from the DialogRE train set looks as follows:
```
{'dialog': ["Speaker 1: It's been an hour and not one of my classmates has shown up! I tell you, when I actually die some people are gonna get seriously haunted!",
'Speaker 2: There you go! Someone came!',
"Speaker 1: Ok, ok! I'm gonna go hide! Oh, this is so exciting, my first mourner!",
'Speaker 3: Hi, glad you could come.',
'Speaker 2: Please, come in.',
"Speaker 4: Hi, you're Chandler Bing, right? I'm Tom Gordon, I was in your class.",
'Speaker 2: Oh yes, yes... let me... take your coat.',
"Speaker 4: Thanks... uh... I'm so sorry about Ross, it's...",
'Speaker 2: At least he died doing what he loved... watching blimps.',
'Speaker 1: Who is he?',
'Speaker 2: Some guy, Tom Gordon.',
"Speaker 1: I don't remember him, but then again I touched so many lives.",
'Speaker 3: So, did you know Ross well?',
"Speaker 4: Oh, actually I barely knew him. Yeah, I came because I heard Chandler's news. D'you know if he's seeing anyone?",
'Speaker 3: Yes, he is. Me.',
'Speaker 4: What? You... You... Oh! Can I ask you a personal question? Ho-how do you shave your beard so close?',
"Speaker 2: Ok Tommy, that's enough mourning for you! Here we go, bye bye!!",
'Speaker 4: Hey, listen. Call me.',
'Speaker 2: Ok!'],
'relation_data': {'r': [['per:alternate_names'],
['per:alumni'],
['per:alternate_names'],
['per:alumni', 'per:positive_impression'],
['per:alternate_names'],
['unanswerable']],
'rid': [[30], [4], [30], [4, 1], [30], [37]],
't': [[''], [''], [''], ['', 'call me'], [''], ['']],
'x': ['Speaker 2',
'Speaker 2',
'Speaker 4',
'Speaker 4',
'Speaker 4',
'Speaker 1'],
'x_type': ['PER', 'PER', 'PER', 'PER', 'PER', 'PER'],
'y': ['Chandler Bing',
'Speaker 4',
'Tom Gordon',
'Speaker 2',
'Tommy',
'Tommy'],
'y_type': ['PER', 'PER', 'PER', 'PER', 'PER', 'PER']}}
```
### Data Fields
* `dialog`
* List of dialog spoken between the speakers
* List of annotations per dialog per argument
* `x` : First entity
* `y` : Second entity
* `x_type` : Type of the first entity
* `y_type`: Type of the second entity
* `r` : List of relations
* `rid`: List of relation IDs
* `t`: List of relation Trigger words
### Data Splits
The data is split into a training, validation and test set as per the original dataset split.
| | train | validation | test |
| --------------------- |-------:|------------:|------:|
| Input dialog examples | 1073 | 358 | 357 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
DialogRE dataset is intended for non-commercial research purpose only
### Citation Information
```
@inproceedings{yu2020dialogue,
title={Dialogue-Based Relation Extraction},
author={Yu, Dian and Sun, Kai and Cardie, Claire and Yu, Dong},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020},
url={https://arxiv.org/abs/2004.08056v1}
}
```
### Contributions
Thanks to [@vineeths96](https://github.com/vineeths96) for adding this dataset. |