|
import time |
|
import os |
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' |
|
|
|
from options import get_options |
|
from data import create_dataset |
|
from networks import create_model, get_model_options |
|
from argparse import ArgumentParser as AP |
|
|
|
import pytorch_lightning as pl |
|
from pytorch_lightning.loggers import TensorBoardLogger |
|
|
|
from util.callbacks import LogAndCheckpointEveryNSteps |
|
from human_id import generate_id |
|
|
|
def start(cmdline): |
|
|
|
pl.trainer.seed_everything(cmdline.seed) |
|
opt = get_options(cmdline) |
|
|
|
dataset = create_dataset(opt) |
|
model = create_model(opt) |
|
|
|
callbacks = [] |
|
|
|
logger = None |
|
if not cmdline.debug: |
|
root_dir = os.path.join('logs/', generate_id()) if cmdline.id == None else os.path.join('logs/', cmdline.id) |
|
logger = TensorBoardLogger(save_dir=os.path.join(root_dir, 'tensorboard')) |
|
logger.log_hyperparams(opt) |
|
callbacks.append(LogAndCheckpointEveryNSteps(save_step_frequency=opt.save_latest_freq, |
|
viz_frequency=opt.display_freq, |
|
log_frequency=opt.print_freq)) |
|
else: |
|
root_dir = os.path.join('/tmp', generate_id()) |
|
|
|
precision = 16 if cmdline.mixed_precision else 32 |
|
|
|
trainer = pl.Trainer(default_root_dir=os.path.join(root_dir, 'checkpoints'), callbacks=callbacks, |
|
gpus=cmdline.gpus, logger=logger, precision=precision, amp_level='01') |
|
trainer.fit(model, dataset) |
|
|
|
|
|
if __name__ == '__main__': |
|
ap = AP() |
|
ap.add_argument('--id', default=None, type=str, help='Set an existing uuid to resume a training') |
|
ap.add_argument('--debug', default=False, action='store_true', help='Disables experiment saving') |
|
ap.add_argument('--gpus', default=[0], type=int, nargs='+', help='gpus to train on') |
|
ap.add_argument('--model', default='comomunit', type=str, help='Choose model for training') |
|
ap.add_argument('--data_importer', default='day2timelapse', type=str, help='Module name of the dataset importer') |
|
ap.add_argument('--path_data', default='/datasets/waymo_comogan/train/', type=str, help='Path to the dataset') |
|
ap.add_argument('--learning_rate', default=0.0001, type=float, help='Learning rate') |
|
ap.add_argument('--scheduler_policy', default='step', type=str, help='Scheduler policy') |
|
ap.add_argument('--decay_iters_step', default=200000, type=int, help='Decay iterations step') |
|
ap.add_argument('--decay_step_gamma', default=0.5, type=float, help='Decay step gamma') |
|
ap.add_argument('--seed', default=1, type=int, help='Random seed') |
|
ap.add_argument('--mixed_precision', default=False, action='store_true', help='Use mixed precision to reduce memory usage') |
|
start(ap.parse_args()) |
|
|
|
|