File size: 6,774 Bytes
9ec4c2f 6f26cb2 7d1bfca 6f26cb2 d821664 6f26cb2 05b500c b2fc247 cbf3321 8985a31 6f26cb2 8985a31 6f26cb2 8985a31 6f26cb2 d821664 05b500c 6f26cb2 b2fc247 cbf3321 8985a31 98e6355 8985a31 98e6355 8985a31 98e6355 6f26cb2 d821664 6f26cb2 05b500c b2fc247 cbf3321 6f26cb2 d821664 05b500c 6f26cb2 b2fc247 cbf3321 6f26cb2 05b500c 8985a31 5c01f5a d3f6f2a 5c01f5a 9ec4c2f 6f26cb2 395b220 6f26cb2 00a002d 395b220 6f26cb2 00a002d e59da7d 00a002d e59da7d 00a002d 6f26cb2 d821664 6f26cb2 6d60522 6f26cb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
---
license:
- cc-by-4.0
multilinguality:
- monolingual
- aligned
task_categories:
- text-classification
- text2text-generation
source_datasets:
- original
- >-
extended|other-turkcorpus,other-asset,other-questeval,other-simplicity_da,other-simp_da
language:
- en
tags:
- simplification-evaluation
- meaning-evaluation
pretty_name: CSMD
size_categories:
- 1K<n<10K
dataset_info:
- config_name: meaning
features:
- name: original
dtype: string
- name: simplification
dtype: string
- name: label
dtype: float64
splits:
- name: train
num_bytes: 251558
num_examples: 853
- name: dev
num_bytes: 27794
num_examples: 95
- name: test
num_bytes: 117686
num_examples: 407
download_size: 397038
dataset_size: 1355
- config_name: meaning_with_data_augmentation
features:
- name: original
dtype: string
- name: simplification
dtype: string
- name: label
dtype: float64
splits:
- name: train
num_bytes: 1242540
num_examples: 4267
- name: dev
num_bytes: 134726
num_examples: 475
- name: test
num_bytes: 592052
num_examples: 2033
download_size: 1969318
dataset_size: 6775
- config_name: meaning_holdout_identical
features:
- name: original
dtype: string
- name: simplification
dtype: string
- name: label
dtype: float64
splits:
- name: test
num_bytes: 89866
num_examples: 359
download_size: 89866
dataset_size: 359
- config_name: meaning_holdout_unrelated
features:
- name: original
dtype: string
- name: simplification
dtype: string
- name: label
dtype: float64
splits:
- name: test
num_bytes: 247835
num_examples: 359
download_size: 247835
dataset_size: 359
config_names:
- meaning
- meaning_with_data_augmentation
- meaning_holdout_identical
- meaning_holdout_unrelated
viewer: true
configs:
- config_name: meaning
data_files:
- split: train
path: "train.tsv"
- split: dev
path: "dev.tsv"
- split: test
path: "test.tsv"
- config_name: meaning_with_data_augmentation
data_files:
- split: train
path: "train_da.tsv"
- split: dev
path: "dev_da.tsv"
- split: test
path: "test_da.tsv"
- config_name: meaning_holdout_identical
data_files:
- split: test
path: "identical.tsv"
- config_name: meaning_holdout_unrelated
data_files:
- split: test
path: "unrelated.tsv"
---
# Dataset Card for "Continuous Scale Meaning Dataset" (CSMD)
CSMD was created for [MeaningBERT: Assessing Meaning Preservation Between Sentences](https://www.frontiersin.org/articles/10.3389/frai.2023.1223924/full).
It contains 1,355 English text simplification meaning preservation annotations. Meaning preservation measures how well the meaning of the output text corresponds to the meaning of the source ([Saggion, 2017](https://link.springer.com/book/10.1007/978-3-031-02166-4)).
The annotations were taken from the following four datasets:
- [ASSET](https://aclanthology.org/2020.acl-main.424/)
- [QuestEVal](https://arxiv.org/abs/2104.07560),
- [SimpDa_2022](https://aclanthology.org/2023.acl-long.905.pdf) and,
- [Simplicity-DA](https://direct.mit.edu/coli/article/47/4/861/106930/The-Un-Suitability-of-Automatic-Evaluation-Metrics).
It contains a data augmentation subset of 1,355 identical sentence triplets and 1,355 unrelated sentence triplets (See the "Sanity Checks" section (3.3.) in our [article](https://www.frontiersin.org/articles/10.3389/frai.2023.1223924/full)).
It also contains two holdout subsets of 359 identical sentence triplets and 359 unrelated sentence triples (See the "MeaningBERT" section (3.4.) in our [article](https://www.frontiersin.org/articles/10.3389/frai.2023.1223924/full)).
## Dataset Structure
### Data Instances
- `Meaning` configuration: an instance consists of 1,355 meaning preservation triplets (Document, simplification, label).
- `meaning_with_data_augmentation` configuration: an instance consists of 1,355 meaning preservation triplets (Document, simplification, label) along with 1,355 data augmentation triplets (Document, Document, 100) and 1,355 data augmentation triplets (Document, Unrelated Document, 0) (See the sanity checks in our [article](https://www.frontiersin.org/articles/10.3389/frai.2023.1223924/full)).
- `meaning_holdout_identical` configuration: an instance consists of 359 meaning holdout preservation identical triplets (Document, Document, 1) based on the ASSET Simplification dataset.
- `meaning_holdout_unrelated` configuration: an instance consists of 359 meaning holdout preservation unrelated triplets (Document, Unrelated Document, 0) based on the ASSET Simplification dataset.
### About the Data Augmentation
#### Unrelated Sentence
We have changed the data augmentation approach for the unrelated sentence. Instead of generating noisy sentences using an LLM, for each of the 1,355 sentences, we sample a sentence in the unlabeled sentence in ASSET (non included in the holdout nor the labelled sentence). We compute the Rouge1, Rouge2, RougeL and bleu scores to validate that the sentences are unrelated in terms of vocabulary. Namely, each metric score is below 0.20 or 20 for Bleu for all pairs. If a pair achieves a higher value, we select another sentence from ASSET to create a pair and reapply the test until a pair achieves a score below 0.20/20.
### Commutative Property
Since meaning preservation is a commutative function, i.e., Meaning(Sent_a, Sent_b) = Meaning(Sent_b, Sent_a), we also include the commutative version of the triplet in the data augmentation version of the dataset for sentences that are not identical.
### Data Fields
- `original`: an original sentence from the source datasets.
- `simplification`: a simplification of the original obtained by an automated system or a human.
- `label`: a meaning preservation rating between 0 and 100.
### Data Splits
The split statistics of CSMD are given below.
| | Train | Dev | Test | Total |
| ------ | ------ | ------ | ---- | ----- |
| Meaning | 853 | 95 | 407 | 1,355 |
| Meaning With Data Augmentation | 2,560 | 285 | 1,220 | 4,065 |
| Meaning Holdout Identical | NA | NA | 359 | 359 |
| Meaning Holdout Unrelated | NA | NA | 359 | 359 |
All the splits are randomly split using a 60-10-30 split with the seed `42`.
# Citation Information
```
@ARTICLE{10.3389/frai.2023.1223924,
AUTHOR={Beauchemin, David and Saggion, Horacio and Khoury, Richard},
TITLE={{MeaningBERT: Assessing Meaning Preservation Between Sentences}},
JOURNAL={Frontiers in Artificial Intelligence},
VOLUME={6},
YEAR={2023},
URL={https://www.frontiersin.org/articles/10.3389/frai.2023.1223924},
DOI={10.3389/frai.2023.1223924},
ISSN={2624-8212},
}
``` |