|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""RISCBAC: a synthetic bilingual automotive insurance contract dataset""" |
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{beaucheminrisc, |
|
title={{RISC: Generating Realistic Synthetic Bilingual Insurance |
|
Contract}}, |
|
author={David Beauchemin and Richard Khoury}, |
|
year={2023}, |
|
eprint={2304.04212}, |
|
archivePrefix={arXiv} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
RISCBAC was created using [RISC](https://github.com/GRAAL-Research/risc), an open-source Python package data |
|
generator. RISC generates look-alike automobile insurance contracts based on the Quebec regulatory insurance |
|
form in French and English. |
|
|
|
It contains 10,000 English and French insurance contracts generated using the same seed. Thus, contracts share |
|
the same deterministic synthetic data (RISCBAC can be used as an aligned dataset). RISC can be used to generate |
|
more data for RISCBAC. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/davebulaval/RISCBAC" |
|
|
|
_LICENSE = "Attribution 4.0 International (CC BY 4.0)" |
|
|
|
_URLS = { |
|
"en": "https://huggingface.co/datasets/davebulaval/RISCBAC/blob/main/en.zip", |
|
"fr": "https://huggingface.co/datasets/davebulaval/RISCBAC/blob/main/fr.zip", |
|
} |
|
|
|
|
|
class RISCBAC(datasets.GeneratorBasedBuilder): |
|
"""RISCBAC: a synthetic bilingual automotive insurance contract dataset""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="en", version=VERSION, description="This part of the dataset are automobile contract in English." |
|
), |
|
datasets.BuilderConfig( |
|
name="fr", version=VERSION, description="This part of the dataset are automobile contract in French." |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[self.config.name] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
if self.config.name == "en": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"files_dir_path": os.path.join(data_dir, "en"), |
|
"split": "full", |
|
}, |
|
) |
|
] |
|
else: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"files_dir_path": os.path.join(data_dir, "fr"), |
|
"split": "full", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, files_dir_path, split): |
|
files = os.listdir(files_dir_path) |
|
for key, file in enumerate(files): |
|
with open(os.path.join(files_dir_path, file), "r", encoding="utf-8") as f: |
|
yield key, {"text": f.readlines()} |
|
|