Datasets:
File size: 5,637 Bytes
c39bf9e de606a1 c39bf9e 4e8902a c39bf9e 488365c 8f47c49 4e8902a f8ec971 5d2fdc9 0add847 188e225 d2fb376 de606a1 8d04219 54ced44 c39bf9e 488365c 8f47c49 4e8902a f8ec971 5d2fdc9 0add847 188e225 d2fb376 de606a1 8d04219 54ced44 fbb8afd de606a1 65bddda 0baebf1 65bddda 40732c7 65bddda 3c7db3b 65bddda 40732c7 65bddda 40732c7 65bddda 40732c7 65bddda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
language:
- en
- es
license: mit
task_categories:
- token-classification
- image-to-text
dataset_info:
- config_name: en-digital-seq
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 3422825072.42
num_examples: 7324
- name: test
num_bytes: 1800300619.069
num_examples: 4349
- name: validation
num_bytes: 867013113.894
num_examples: 1831
download_size: 6044707011
dataset_size: 6090138805.383
- config_name: en-render-seq
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 19131026017.588
num_examples: 7324
- name: test
num_bytes: 11101342722.574
num_examples: 4349
- name: validation
num_bytes: 4749558423.85
num_examples: 1831
download_size: 34947880371
dataset_size: 34981927164.012
- config_name: es-digital-seq
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 3515604711.065
num_examples: 8115
- name: test
num_bytes: 2068684395.052
num_examples: 4426
- name: validation
num_bytes: 880373678.928
num_examples: 2028
download_size: 6392517545
dataset_size: 6464662785.045
- config_name: es-render-seq
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 20956369016.935
num_examples: 8115
- name: test
num_bytes: 11530001568.862
num_examples: 4426
- name: validation
num_bytes: 5264019060.636
num_examples: 2028
download_size: 37775576850
dataset_size: 37750389646.433
configs:
- config_name: en-digital-seq
data_files:
- split: train
path: en-digital-seq/train-*
- split: test
path: en-digital-seq/test-*
- split: validation
path: en-digital-seq/validation-*
- config_name: en-render-seq
data_files:
- split: train
path: en-render-seq/train-*
- split: test
path: en-render-seq/test-*
- split: validation
path: en-render-seq/validation-*
- config_name: es-digital-seq
data_files:
- split: train
path: es-digital-seq/train-*
- split: test
path: es-digital-seq/test-*
- split: validation
path: es-digital-seq/validation-*
- config_name: es-render-seq
data_files:
- split: train
path: es-render-seq/train-*
- split: test
path: es-render-seq/test-*
- split: validation
path: es-render-seq/validation-*
tags:
- synthetic
---
<p align="center" style="margin-top: 50px; margin-bottom: 50px;">
<img src="figs/merit-dataset.png" alt="Visual Abstract" width="500" />
</p>
# The MERIT Dataset ๐๐๐
The MERIT Dataset is a multimodal dataset (image + text + layout) designed for training and benchmarking Large Language Models (LLMs) on Visually Rich Document Understanding (VrDU) tasks. It is a fully labeled synthetic dataset generated using our opensource pipeline available on [GitHub](https://github.com/nachoDRT/MERIT-Dataset). You can explore more details about the dataset and pipeline reading our [paper](https://arxiv.org/abs/2409.00447).
## Introduction โน๏ธ
AI faces some dynamic and technical issues that push end-users to create and gather their own data. In addition, multimodal LLMs are gaining more and more attention, but datasets to train them might be improved to be more complex, more flexible, and easier to gather/generate.
In this research project, we identify school transcripts of records as a suitable niche to generate a synthetic challenging multimodal dataset (image + text + layout) for Token Classification or Sequence Generation.
<p align="center" style="margin-top: 50px; margin-bottom: 50px;">
<img src="figs/demo-samples.gif" alt="demo" width="200" />
</p>
## Hardware โ๏ธ
We ran the dataset generator on an MSI Meg Infinite X 10SF-666EU with an Intel Core i9-10900KF and an Nvidia RTX 2080 GPU, running on Ubuntu 20.04. Energy values in the table refer to 1k samples, and time values refer to one sample.
| Task | Energy (kWh) | Time (s) |
|------------------------------|--------------|----------|
| Generate digital samples | 0.016 | 2 |
| Modify samples in Blender | 0.366 | 34 |
## Benchmark ๐ช
We train the LayoutLM family models on Token Classification to demonstrate the suitability of our dataset. The MERIT Dataset poses a challenging scenario with more than 400 labels.
We benchmark on three scenarios with an increasing presence of Blender-modified samples.
+ Scenario 1: We train and test on digital samples.
+ Scenario 2: We train with digital samples and test with Blender-modified samples.
+ Scenario 3: We train and test with Blender-modified samples.
| | **Scenario 1** | **Scenario 2** | **Scenario 3** | **FUNSD/** | **Lang.** | **(Tr./Val./Test)** |
|------------------|----------------|----------------|----------------|------------|-----------|----------------------|
| | Dig./Dig. | Dig./Mod. | Mod./Mod | XFUND | | |
| | F1 | F1 | F1 | F1 | | |
| **LayoutLMv2** | 0.5536 | 0.3764 | 0.4984 | 0.8276 | Eng. | 7324 / 1831 / 4349 |
| **LayoutLMv3** | 0.3452 | 0.2681 | 0.6370 | 0.9029 | Eng. | 7324 / 1831 / 4349 |
| **LayoutXLM** | 0.5977 | 0.3295 | 0.4489 | 0.7550 | Spa. | 8115 / 2028 / 4426 | |