Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
File size: 6,049 Bytes
123b5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import json
import argparse
import sys
from collections import defaultdict
from transformers import AutoTokenizer


def read_conjunctive_sentences(args):
    with open(args.conjunctions_file, 'r') as fin:
        sent = True
        sent2conj = defaultdict(list)
        conj2sent = dict()
        currentSentText = ''
        for line in fin:
            if line == '\n':
                sent = True
                continue
            if sent:
                currentSentText = line.replace('\n', '')
                sent = False
            else:
                conj_sent = line.replace('\n', '')
                sent2conj[currentSentText].append(conj_sent)
                conj2sent[conj_sent] = currentSentText

    return sent2conj


def get_conj_free_sentence_dicts(sentence, sent_to_conj, sent_id):
    flat_extractions_list = []
    sentence = sentence.replace('\n', '')
    if sentence in list(sent_to_conj.keys()):
        for s in sent_to_conj[sentence]:
            sentence_and_extractions_dict = {
                "sentence": s + " [unused1] [unused2] [unused3] [unused4] [unused5] [unused6]",
                "sentId": sent_id, "entityMentions": list(),
                "relationMentions": list(), "extractionMentions": list()}
            flat_extractions_list.append(sentence_and_extractions_dict)
        return flat_extractions_list

    return [{
        "sentence": sentence + " [unused1] [unused2] [unused3] [unused4] [unused5] [unused6]",
        "sentId": sent_id, "entityMentions": list(),
        "relationMentions": list(), "extractionMentions": list()}]


def add_joint_label(ext, ent_rel_id):
    """add_joint_label add joint labels for sentences
    """

    none_id = ent_rel_id['None']
    sentence_length = len(ext['sentText'].split(' '))
    entity_label_matrix = [[none_id for j in range(sentence_length)] for i in range(sentence_length)]
    relation_label_matrix = [[none_id for j in range(sentence_length)] for i in range(sentence_length)]
    label_matrix = [[none_id for j in range(sentence_length)] for i in range(sentence_length)]
    ent2offset = {}
    for ent in ext['entityMentions']:
        ent2offset[ent['emId']] = ent['span_ids']
        try:
            for i in ent['span_ids']:
                for j in ent['span_ids']:
                    entity_label_matrix[i][j] = ent_rel_id[ent['label']]
        except:
            print("span ids: ", sentence_length, ent['span_ids'], ext)
            sys.exit(1)
    ext['entityLabelMatrix'] = entity_label_matrix
    for rel in ext['relationMentions']:
        arg1_span = ent2offset[rel['arg1']['emId']]
        arg2_span = ent2offset[rel['arg2']['emId']]

        for i in arg1_span:
            for j in arg2_span:
                # to be consistent with the linking model
                relation_label_matrix[i][j] = ent_rel_id[rel['label']] - 2
                relation_label_matrix[j][i] = ent_rel_id[rel['label']] - 2
                label_matrix[i][j] = ent_rel_id[rel['label']]
                label_matrix[j][i] = ent_rel_id[rel['label']]
    ext['relationLabelMatrix'] = relation_label_matrix
    ext['jointLabelMatrix'] = label_matrix


def tokenize_sentences(ext, tokenizer):
    cls = tokenizer.cls_token
    sep = tokenizer.sep_token
    wordpiece_tokens = [cls]

    wordpiece_tokens_index = []
    cur_index = len(wordpiece_tokens)
    # for token in ext['sentText'].split(' '):
    for token in ext['sentence'].split(' '):
        tokenized_token = list(tokenizer.tokenize(token))
        wordpiece_tokens.extend(tokenized_token)
        wordpiece_tokens_index.append([cur_index, cur_index + len(tokenized_token)])
        cur_index += len(tokenized_token)
    wordpiece_tokens.append(sep)

    wordpiece_segment_ids = [1] * (len(wordpiece_tokens))
    return {
        'sentId': ext['sentId'],
        'sentText': ext['sentence'],
        'entityMentions': ext['entityMentions'],
        'relationMentions': ext['relationMentions'],
        'extractionMentions': ext['extractionMentions'],
        'wordpieceSentText': " ".join(wordpiece_tokens),
        'wordpieceTokensIndex': wordpiece_tokens_index,
        'wordpieceSegmentIds': wordpiece_segment_ids
    }


def write_dataset_to_file(dataset, dataset_path):
    print("dataset: {}, size: {}".format(dataset_path, len(dataset)))
    with open(dataset_path, 'w', encoding='utf-8') as fout:
        for idx, ext in enumerate(dataset):
            fout.write(json.dumps(ext))
            if idx != len(dataset) - 1:
                fout.write('\n')


def process(args, sent2conj):
    extractions_list = []
    auto_tokenizer = AutoTokenizer.from_pretrained(args.embedding_model)
    print("Load {} tokenizer successfully.".format(args.embedding_model))

    ent_rel_id = json.load(open(args.ent_rel_file, 'r', encoding='utf-8'))["id"]
    sentId = 0
    with open(args.source_file, 'r', encoding='utf-8') as fin, open(args.target_file, 'w', encoding='utf-8') as fout:
        for line in fin:
            sentId += 1
            exts = get_conj_free_sentence_dicts(line, sent2conj, sentId)
            for ext in exts:
                # ext = ext.strip()
                ext_dict = tokenize_sentences(ext, auto_tokenizer)
                add_joint_label(ext_dict, ent_rel_id)
                extractions_list.append(ext_dict)
                fout.write(json.dumps(ext_dict))
                fout.write('\n')


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Process sentences.')
    parser.add_argument("--source_file", type=str, help='source file path')
    parser.add_argument("--target_file", type=str, help='target file path')
    parser.add_argument("--conjunctions_file", type=str, help='conjunctions file.')
    parser.add_argument("--ent_rel_file", type=str, default="ent_rel_file.json", help='entity and relation file.')
    parser.add_argument("--embedding_model", type=str, default="bert-base-uncased", help='embedding model.')

    args = parser.parse_args()
    sent2conj = read_conjunctive_sentences(args)
    process(args, sent2conj)