File size: 15,129 Bytes
b39ef90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
'''
Usage:
benchmark --gold=GOLD_OIE (--openiefive=OPENIE5 | --stanford=STANFORD_OIE | --ollie=OLLIE_OIE |--reverb=REVERB_OIE | --clausie=CLAUSIE_OIE | --openiefour=OPENIEFOUR_OIE | --props=PROPS_OIE | --tabbed=TABBED_OIE | --benchmarkGold=BENCHMARK_GOLD | --allennlp=ALLENNLP_OIE ) [--exactMatch | --predMatch | --lexicalMatch | --binaryMatch | --simpleMatch | --strictMatch] [--error-file=ERROR_FILE] [--binary]
Options:
--gold=GOLD_OIE The gold reference Open IE file (by default, it should be under ./oie_corpus/all.oie).
--benchmarkgold=GOLD_OIE The benchmark's gold reference.
# --out-OUTPUT_FILE The output file, into which the precision recall curve will be written.
--clausie=CLAUSIE_OIE Read ClausIE format from file CLAUSIE_OIE.
--ollie=OLLIE_OIE Read OLLIE format from file OLLIE_OIE.
--openiefour=OPENIEFOUR_OIE Read Open IE 4 format from file OPENIEFOUR_OIE.
--openiefive=OPENIE5 Read Open IE 5 format from file OPENIE5.
--props=PROPS_OIE Read PropS format from file PROPS_OIE
--reverb=REVERB_OIE Read ReVerb format from file REVERB_OIE
--stanford=STANFORD_OIE Read Stanford format from file STANFORD_OIE
--tabbed=TABBED_OIE Read simple tab format file, where each line consists of:
sent, prob, pred,arg1, arg2, ...
--exactmatch Use exact match when judging whether an extraction is correct.
'''
from __future__ import division
import docopt
import string
import numpy as np
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import auc
import re
import logging
import pdb
import ipdb
from _collections import defaultdict
logging.basicConfig(level = logging.INFO)
from oie_readers.allennlpReader import AllennlpReader
from oie_readers.stanfordReader import StanfordReader
from oie_readers.ollieReader import OllieReader
from oie_readers.reVerbReader import ReVerbReader
from oie_readers.clausieReader import ClausieReader
from oie_readers.openieFourReader import OpenieFourReader
from oie_readers.openieFiveReader import OpenieFiveReader
from oie_readers.propsReader import PropSReader
from oie_readers.tabReader import TabReader
from oie_readers.benchmarkGoldReader import BenchmarkGoldReader
from oie_readers.goldReader import GoldReader
from matcher import Matcher
from operator import itemgetter
import pprint
from copy import copy
pp = pprint.PrettyPrinter(indent=4)
class Benchmark:
''' Compare the gold OIE dataset against a predicted equivalent '''
def __init__(self, gold_fn):
''' Load gold Open IE, this will serve to compare against using the compare function '''
gr = GoldReader()
gr.read(gold_fn)
self.gold = gr.oie
def compare(self, predicted, matchingFunc, output_fn=None, error_file=None, binary=False):
''' Compare gold against predicted using a specified matching function.
Outputs PR curve to output_fn '''
y_true = []
y_scores = []
errors = []
correct = 0
incorrect = 0
correctTotal = 0
unmatchedCount = 0
predicted = Benchmark.normalizeDict(predicted)
gold = Benchmark.normalizeDict(self.gold)
if binary:
predicted = Benchmark.binarize(predicted)
gold = Benchmark.binarize(gold)
#gold = self.gold
# taking all distinct values of confidences as thresholds
confidence_thresholds = set()
for sent in predicted:
for predicted_ex in predicted[sent]:
confidence_thresholds.add(predicted_ex.confidence)
confidence_thresholds = sorted(list(confidence_thresholds))
num_conf = len(confidence_thresholds)
results = {}
p = np.zeros(num_conf)
pl = np.zeros(num_conf)
r = np.zeros(num_conf)
rl = np.zeros(num_conf)
for sent, goldExtractions in gold.items():
if sent in predicted:
predictedExtractions = predicted[sent]
else:
predictedExtractions = []
scores = [[None for _ in predictedExtractions] for __ in goldExtractions]
# print("***Gold Extractions***")
# print("\n".join([goldExtractions[i].pred + ' ' + " ".join(goldExtractions[i].args) for i in range(len(goldExtractions))]))
# print("***Predicted Extractions***")
# print("\n".join([predictedExtractions[i].pred+ " ".join(predictedExtractions[i].args) for i in range(len(predictedExtractions))]))
for i, goldEx in enumerate(goldExtractions):
for j, predictedEx in enumerate(predictedExtractions):
score = matchingFunc(goldEx, predictedEx,ignoreStopwords = True,ignoreCase = True)
scores[i][j] = score
# OPTIMISED GLOBAL MATCH
sent_confidences = [extraction.confidence for extraction in predictedExtractions]
sent_confidences.sort()
prev_c = 0
for conf in sent_confidences:
c = confidence_thresholds.index(conf)
ext_indices = []
for ext_indx, extraction in enumerate(predictedExtractions):
if extraction.confidence >= conf:
ext_indices.append(ext_indx)
recall_numerator = 0
for i, row in enumerate(scores):
max_recall_row = max([row[ext_indx][1] for ext_indx in ext_indices ], default=0)
recall_numerator += max_recall_row
precision_numerator = 0
selected_rows = []
selected_cols = []
num_precision_matches = min(len(scores), len(ext_indices))
for t in range(num_precision_matches):
matched_row = -1
matched_col = -1
matched_precision = -1 # initialised to <0 so that it updates whenever precision is 0 as well
for i in range(len(scores)):
if i in selected_rows:
continue
for ext_indx in ext_indices:
if ext_indx in selected_cols:
continue
if scores[i][ext_indx][0] > matched_precision:
matched_precision = scores[i][ext_indx][0]
matched_row = i
matched_col = ext_indx
selected_rows.append(matched_row)
selected_cols.append(matched_col)
precision_numerator += scores[matched_row][matched_col][0]
p[prev_c:c+1] += precision_numerator
pl[prev_c:c+1] += len(ext_indices)
r[prev_c:c+1] += recall_numerator
rl[prev_c:c+1] += len(scores)
prev_c = c+1
# for indices beyond the maximum sentence confidence, len(scores) has to be added to the denominator of recall
rl[prev_c:] += len(scores)
prec_scores = [a/b if b>0 else 1 for a,b in zip(p,pl) ]
rec_scores = [a/b if b>0 else 0 for a,b in zip(r,rl)]
f1s = [Benchmark.f1(p,r) for p,r in zip(prec_scores, rec_scores)]
try:
optimal_idx = np.nanargmax(f1s)
optimal = (prec_scores[optimal_idx], rec_scores[optimal_idx], f1s[optimal_idx])
return np.round(optimal,3)
except ValueError:
# When there is no prediction
optimal = (0,0)
# In order to calculate auc, we need to add the point corresponding to precision=1 , recall=0 to the PR-curve
# temp_rec_scores = rec_scores.copy()
# temp_prec_scores = prec_scores.copy()
# temp_rec_scores.append(0)
# temp_prec_scores.append(1)
# # print("AUC: {}\t Optimal (precision, recall, F1): {}".format( np.round(auc(temp_rec_scores, temp_prec_scores),3), np.round(optimal,3) ))
#
# with open(output_fn, 'w') as fout:
# fout.write('{0}\t{1}\t{2}\n'.format("Precision", "Recall", "Confidence"))
# for cur_p, cur_r, cur_conf in sorted(zip(prec_scores, rec_scores, confidence_thresholds), key = lambda cur: cur[1]):
# fout.write('{0}\t{1}\t{2}\n'.format(cur_p, cur_r, cur_conf))
#
# if len(f1s)>0:
# return np.round(auc(temp_rec_scores, temp_prec_scores),3), np.round(optimal,3)
# else:
# # When there is no prediction
# return 0, (0,0,0)
@staticmethod
def binarize(extrs):
res = defaultdict(lambda: [])
for sent,extr in extrs.items():
for ex in extr:
#Add (a1, r, a2)
temp = copy(ex)
temp.args = ex.args[:2]
res[sent].append(temp)
if len(ex.args) <= 2:
continue
#Add (a1, r a2 , a3 ...)
for arg in ex.args[2:]:
temp.args = [ex.args[0]]
temp.pred = ex.pred + ' ' + ex.args[1]
words = arg.split()
#Add preposition of arg to rel
if words[0].lower() in Benchmark.PREPS:
temp.pred += ' ' + words[0]
words = words[1:]
temp.args.append(' '.join(words))
res[sent].append(temp)
return res
@staticmethod
def f1(prec, rec):
try:
return 2*prec*rec / (prec+rec)
except ZeroDivisionError:
return 0
@staticmethod
def aggregate_scores_greedily(scores):
# Greedy match: pick the prediction/gold match with the best f1 and exclude
# them both, until nothing left matches. Each input square is a [prec, rec]
# pair. Returns precision and recall as score-and-denominator pairs.
matches = []
while True:
max_s = 0
gold, pred = None, None
for i, gold_ss in enumerate(scores):
if i in [m[0] for m in matches]:
# Those are already taken rows
continue
for j, pred_s in enumerate(scores[i]):
if j in [m[1] for m in matches]:
# Those are used columns
continue
if pred_s and Benchmark.f1(*pred_s) > max_s:
max_s = Benchmark.f1(*pred_s)
gold = i
pred = j
if max_s == 0:
break
matches.append([gold, pred])
# Now that matches are determined, compute final scores.
prec_scores = [scores[i][j][0] for i,j in matches]
rec_scores = [scores[i][j][1] for i,j in matches]
total_prec = sum(prec_scores)
total_rec = sum(rec_scores)
scoring_metrics = {"precision" : [total_prec, len(scores[0])],
"recall" : [total_rec, len(scores)],
"precision_of_matches" : prec_scores,
"recall_of_matches" : rec_scores
}
return scoring_metrics
# Helper functions:
@staticmethod
def normalizeDict(d):
return dict([(Benchmark.normalizeKey(k), v) for k, v in d.items()])
@staticmethod
def normalizeKey(k):
# return Benchmark.removePunct(unicode(Benchmark.PTB_unescape(k.replace(' ','')), errors = 'ignore'))
return Benchmark.removePunct(str(Benchmark.PTB_unescape(k.replace(' ',''))))
@staticmethod
def PTB_escape(s):
for u, e in Benchmark.PTB_ESCAPES:
s = s.replace(u, e)
return s
@staticmethod
def PTB_unescape(s):
for u, e in Benchmark.PTB_ESCAPES:
s = s.replace(e, u)
return s
@staticmethod
def removePunct(s):
return Benchmark.regex.sub('', s)
# CONSTANTS
regex = re.compile('[%s]' % re.escape(string.punctuation))
# Penn treebank bracket escapes
# Taken from: https://github.com/nlplab/brat/blob/master/server/src/gtbtokenize.py
PTB_ESCAPES = [('(', '-LRB-'),
(')', '-RRB-'),
('[', '-LSB-'),
(']', '-RSB-'),
('{', '-LCB-'),
('}', '-RCB-'),]
PREPS = ['above','across','against','along','among','around','at','before','behind','below','beneath','beside','between','by','for','from','in','into','near','of','off','on','to','toward','under','upon','with','within']
def f_beta(precision, recall, beta = 1):
"""
Get F_beta score from precision and recall.
"""
beta = float(beta) # Make sure that results are in float
return (1 + pow(beta, 2)) * (precision * recall) / ((pow(beta, 2) * precision) + recall)
if __name__ == '__main__':
args = docopt.docopt(__doc__)
logging.debug(args)
if args['--allennlp']:
predicted = AllennlpReader()
predicted.read(args['--allennlp'])
if args['--stanford']:
predicted = StanfordReader()
predicted.read(args['--stanford'])
if args['--props']:
predicted = PropSReader()
predicted.read(args['--props'])
if args['--ollie']:
predicted = OllieReader()
predicted.read(args['--ollie'])
if args['--reverb']:
predicted = ReVerbReader()
predicted.read(args['--reverb'])
if args['--clausie']:
predicted = ClausieReader()
predicted.read(args['--clausie'])
if args['--openiefour']:
predicted = OpenieFourReader()
predicted.read(args['--openiefour'])
if args['--openiefive']:
predicted = OpenieFiveReader()
predicted.read(args['--openiefive'])
if args['--benchmarkGold']:
predicted = BenchmarkGoldReader()
predicted.read(args['--benchmarkGold'])
if args['--tabbed']:
predicted = TabReader()
predicted.read(args['--tabbed'])
if args['--binaryMatch']:
matchingFunc = Matcher.binary_tuple_match
elif args['--simpleMatch']:
matchingFunc = Matcher.simple_tuple_match
elif args['--exactMatch']:
matchingFunc = Matcher.argMatch
elif args['--predMatch']:
matchingFunc = Matcher.predMatch
elif args['--lexicalMatch']:
matchingFunc = Matcher.lexicalMatch
elif args['--strictMatch']:
matchingFunc = Matcher.tuple_match
else:
matchingFunc = Matcher.binary_linient_tuple_match
b = Benchmark(args['--gold'])
# out_filename = args['--out']
optimal_f1_point = b.compare(predicted = predicted.oie,
matchingFunc = matchingFunc,
error_file = args["--error-file"],
binary = args["--binary"])
print("Precision: {}, Recall: {}, F1-score: {}".format(optimal_f1_point[0], optimal_f1_point[1], optimal_f1_point[2])) |