|
from oie_readers.oieReader import OieReader |
|
from oie_readers.extraction import Extraction |
|
|
|
|
|
class PropSReader(OieReader): |
|
|
|
def __init__(self): |
|
self.name = 'PropS' |
|
|
|
def read(self, fn): |
|
d = {} |
|
with open(fn) as fin: |
|
for line in fin: |
|
if not line.strip(): |
|
continue |
|
data = line.strip().split('\t') |
|
confidence, text, rel = data[:3] |
|
curExtraction = Extraction(pred = rel, sent = text, confidence = float(confidence), head_pred_index=-1) |
|
|
|
for arg in data[4::2]: |
|
curExtraction.addArg(arg) |
|
|
|
d[text] = d.get(text, []) + [curExtraction] |
|
self.oie = d |
|
|
|
|
|
|
|
def normalizeConfidence(self): |
|
''' Normalize confidence to resemble probabilities ''' |
|
EPSILON = 1e-3 |
|
|
|
self.confidences = [extraction.confidence for sent in self.oie for extraction in self.oie[sent]] |
|
maxConfidence = max(self.confidences) |
|
minConfidence = min(self.confidences) |
|
|
|
denom = maxConfidence - minConfidence + (2*EPSILON) |
|
|
|
for sent, extractions in self.oie.items(): |
|
for extraction in extractions: |
|
extraction.confidence = ( (extraction.confidence - minConfidence) + EPSILON) / denom |
|
|
|
|
|
|
|
|
|
|