Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
khulnasoft commited on
Commit
0069356
1 Parent(s): 1beb6dd

Create carb/pr_plot.py

Browse files
Files changed (1) hide show
  1. evaluation_data/carb/pr_plot.py +58 -0
evaluation_data/carb/pr_plot.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Usage:
2
+ pr_plot --in=DIR_NAME --out=OUTPUT_FILENAME
3
+
4
+ Options:
5
+ --in=DIR_NAME Folder in which to search for *.dat files, all of which should be in a P/R column format (outputs from benchmark.py)
6
+ --out=OUTPUT_FILENAME Output filename, filetype will determine the format. Possible formats: pdf, pgf, png
7
+
8
+
9
+ """
10
+
11
+ import os
12
+ import ntpath
13
+ import numpy as np
14
+ from glob import glob
15
+ from docopt import docopt
16
+ import matplotlib.pyplot as plt
17
+ import logging
18
+ import ipdb
19
+ logging.basicConfig(level = logging.INFO)
20
+
21
+ plt.rcParams.update({'font.size': 14})
22
+
23
+ def trend_name(path):
24
+ ''' return a system trend name from dat file path '''
25
+ head, tail = ntpath.split(path)
26
+ ret = tail or ntpath.basename(head)
27
+ return ret.split('.')[0]
28
+
29
+ def get_pr(path):
30
+ ''' get PR curve from file '''
31
+ with open(path) as fin:
32
+ # remove header line
33
+ fin.readline()
34
+ prc = list(zip(*[[float(x) for x in line.strip().split('\t')] for line in fin]))
35
+ p = prc[0]
36
+ r = prc[1]
37
+ return p, r
38
+
39
+ if __name__ == '__main__':
40
+ args = docopt(__doc__)
41
+ input_folder = args['--in']
42
+ output_file = args['--out']
43
+
44
+ # plot graphs for all *.dat files in input path
45
+ files = glob(os.path.join(input_folder, '*.dat'))
46
+ for _file in files:
47
+ p, r = get_pr(_file)
48
+ name = trend_name(_file)
49
+ plt.plot(r, p, label = name)
50
+
51
+ # Set figure properties and save
52
+ logging.info("Plotting P/R graph to {}".format(output_file))
53
+ plt.ylim([0.0, 1.05])
54
+ plt.xlim([0.0, 0.8])
55
+ plt.xlabel('Recall')
56
+ plt.ylabel('Precision')
57
+ plt.legend(loc="lower right")
58
+ plt.savefig(output_file)