import json import argparse import sys from collections import defaultdict from transformers import AutoTokenizer def read_conjunctive_sentences(args): with open(args.conjunctions_file, 'r') as fin: sent = True sent2conj = defaultdict(list) conj2sent = dict() currentSentText = '' for line in fin: if line == '\n': sent = True continue if sent: currentSentText = line.replace('\n', '') sent = False else: conj_sent = line.replace('\n', '') sent2conj[currentSentText].append(conj_sent) conj2sent[conj_sent] = currentSentText return sent2conj def get_conj_free_sentence_dicts(sentence, sent_to_conj, sent_id): flat_extractions_list = [] sentence = sentence.replace('\n', '') if sentence in list(sent_to_conj.keys()): for s in sent_to_conj[sentence]: sentence_and_extractions_dict = { "sentence": s + " [unused1] [unused2] [unused3] [unused4] [unused5] [unused6]", "sentId": sent_id, "entityMentions": list(), "relationMentions": list(), "extractionMentions": list()} flat_extractions_list.append(sentence_and_extractions_dict) return flat_extractions_list return [{ "sentence": sentence + " [unused1] [unused2] [unused3] [unused4] [unused5] [unused6]", "sentId": sent_id, "entityMentions": list(), "relationMentions": list(), "extractionMentions": list()}] def add_joint_label(ext, ent_rel_id): """add_joint_label add joint labels for sentences """ none_id = ent_rel_id['None'] sentence_length = len(ext['sentText'].split(' ')) entity_label_matrix = [[none_id for j in range(sentence_length)] for i in range(sentence_length)] relation_label_matrix = [[none_id for j in range(sentence_length)] for i in range(sentence_length)] label_matrix = [[none_id for j in range(sentence_length)] for i in range(sentence_length)] ent2offset = {} for ent in ext['entityMentions']: ent2offset[ent['emId']] = ent['span_ids'] try: for i in ent['span_ids']: for j in ent['span_ids']: entity_label_matrix[i][j] = ent_rel_id[ent['label']] except: print("span ids: ", sentence_length, ent['span_ids'], ext) sys.exit(1) ext['entityLabelMatrix'] = entity_label_matrix for rel in ext['relationMentions']: arg1_span = ent2offset[rel['arg1']['emId']] arg2_span = ent2offset[rel['arg2']['emId']] for i in arg1_span: for j in arg2_span: # to be consistent with the linking model relation_label_matrix[i][j] = ent_rel_id[rel['label']] - 2 relation_label_matrix[j][i] = ent_rel_id[rel['label']] - 2 label_matrix[i][j] = ent_rel_id[rel['label']] label_matrix[j][i] = ent_rel_id[rel['label']] ext['relationLabelMatrix'] = relation_label_matrix ext['jointLabelMatrix'] = label_matrix def tokenize_sentences(ext, tokenizer): cls = tokenizer.cls_token sep = tokenizer.sep_token wordpiece_tokens = [cls] wordpiece_tokens_index = [] cur_index = len(wordpiece_tokens) # for token in ext['sentText'].split(' '): for token in ext['sentence'].split(' '): tokenized_token = list(tokenizer.tokenize(token)) wordpiece_tokens.extend(tokenized_token) wordpiece_tokens_index.append([cur_index, cur_index + len(tokenized_token)]) cur_index += len(tokenized_token) wordpiece_tokens.append(sep) wordpiece_segment_ids = [1] * (len(wordpiece_tokens)) return { 'sentId': ext['sentId'], 'sentText': ext['sentence'], 'entityMentions': ext['entityMentions'], 'relationMentions': ext['relationMentions'], 'extractionMentions': ext['extractionMentions'], 'wordpieceSentText': " ".join(wordpiece_tokens), 'wordpieceTokensIndex': wordpiece_tokens_index, 'wordpieceSegmentIds': wordpiece_segment_ids } def write_dataset_to_file(dataset, dataset_path): print("dataset: {}, size: {}".format(dataset_path, len(dataset))) with open(dataset_path, 'w', encoding='utf-8') as fout: for idx, ext in enumerate(dataset): fout.write(json.dumps(ext)) if idx != len(dataset) - 1: fout.write('\n') def process(args, sent2conj): extractions_list = [] auto_tokenizer = AutoTokenizer.from_pretrained(args.embedding_model) print("Load {} tokenizer successfully.".format(args.embedding_model)) ent_rel_id = json.load(open(args.ent_rel_file, 'r', encoding='utf-8'))["id"] sentId = 0 with open(args.source_file, 'r', encoding='utf-8') as fin, open(args.target_file, 'w', encoding='utf-8') as fout: for line in fin: sentId += 1 exts = get_conj_free_sentence_dicts(line, sent2conj, sentId) for ext in exts: # ext = ext.strip() ext_dict = tokenize_sentences(ext, auto_tokenizer) add_joint_label(ext_dict, ent_rel_id) extractions_list.append(ext_dict) fout.write(json.dumps(ext_dict)) fout.write('\n') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Process sentences.') parser.add_argument("--source_file", type=str, help='source file path') parser.add_argument("--target_file", type=str, help='target file path') parser.add_argument("--conjunctions_file", type=str, help='conjunctions file.') parser.add_argument("--ent_rel_file", type=str, default="ent_rel_file.json", help='entity and relation file.') parser.add_argument("--embedding_model", type=str, default="bert-base-uncased", help='embedding model.') args = parser.parse_args() sent2conj = read_conjunctive_sentences(args) process(args, sent2conj)