import pandas as pd
import stanza
nlp = stanza.Pipeline(lang='en', processors='tokenize,pos,lemma,depparse')
articles = ['a', 'an', 'the']
# input file is the compactIE output extractions on a set of sentences. set this variable accordingly.
INPUT_FILE = 'compactIE_predictions.txt'
def verb_count(part, sent):
s_doc = nlp(sent)
text2token = {}
for i in range(len(s_doc.sentences)):
tokens = [word.to_dict() for word in s_doc.sentences[i].words]
for t in tokens:
text2token[t["text"]] = t
doc = nlp(part)
doc = doc.sentences[0]
tokens = [word.to_dict() for word in doc.words]
verbs = 0
for token in tokens:
if (token['upos'] == 'VERB' and (token['deprel'] not in ['xcomp', 'amod', 'case', 'obl'])) or (token['upos'] == "AUX" and token['deprel'] == 'cop'):
try:
if text2token[token["text"]]["deprel"] == token['deprel']:
# print(token["text"], token["deprel"])
verbs += 1
except:
continue
return verbs
def clausal_constituents(extraction):
clausal_consts = 0
if extraction["predicate"].strip() != "":
pred_count = verb_count(extraction["predicate"], extraction["sentence"])
if pred_count > 1:
clausal_consts += pred_count - 1
if extraction["subject"].strip() != "":
clausal_consts += verb_count(extraction["subject"], extraction["sentence"])
if extraction["object"].strip() != "":
clausal_consts += verb_count(extraction["object"], extraction["sentence"])
# if clausal_consts > 0:
# print("clausal consts within extraction: ", extraction["subject"], extraction["predicate"], extraction["object"], clausal_consts)
return clausal_consts
if __name__ == "__main__":
extractions_df = pd.DataFrame(columns=["sentence", "subject", "predicate", "object"])
with open(INPUT_FILE, 'r') as f:
lines = f.readlines()
sentences = set()
for line in lines:
sentence, ext, score = line.split('\t')
sentences.add(sentence)
try:
arg1 = ext[ext.index('') + 6:ext.index('')]
except:
arg1 = ""
try:
rel = ext[ext.index('') + 5:ext.index('')]
except:
rel = ""
try:
arg2 = ext[ext.index('') + 6:ext.index('')]
except:
arg2 = ""
row = pd.DataFrame(
{"sentence": [sentence],
"subject": [arg1],
"predicate": [rel],
"object": [arg2]}
)
extractions_df = pd.concat([extractions_df, row])
# overlapping arguments
grouped_df = extractions_df.groupby("sentence")
total_number_of_arguments = 0
number_of_unique_arguments = 0
num_of_sentences = len(grouped_df.groups.keys())
for sent in grouped_df.groups.keys():
per_sentence_argument_set = set()
sen_group = grouped_df.get_group(sent).reset_index(drop=True)
extractions_list = list(sen_group.T.to_dict().values())
for extr in extractions_list:
if extr["subject"] not in ['', 'nan']:
total_number_of_arguments += 1
per_sentence_argument_set.add(extr["subject"])
if extr["object"] not in ['', 'nan']:
total_number_of_arguments += 1
per_sentence_argument_set.add(extr["object"])
number_of_unique_arguments += len(per_sentence_argument_set)
print("average # repetitions per argument: {}".format(total_number_of_arguments/number_of_unique_arguments))
print("average # extractions per sentence: {}".format(extractions_df.shape[0]/len(sentences)))
avg_arguments_size = 0.0
for sent in sentences:
extractions_per_sent = extractions_df[extractions_df["sentence"] == sent]
sent_extractions = extractions_per_sent.shape[0]
extractions_per_sent["avg_arg_length"] = extractions_per_sent.apply(lambda r: (len(str(r["subject"]).split(' ')) + len(str(r["predicate"]).split(' ')) + len(str(r["object"]).split(' ')))/3, axis=1)
avg_arguments_size += sum(extractions_per_sent["avg_arg_length"].values.tolist()) / extractions_per_sent.shape[0]
print("average length of constituents (per sentence, per extraction): ", avg_arguments_size/len(sentences))
extractions_df["clause_counts"] = extractions_df.apply(lambda r: clausal_constituents(r), axis=1)
avg_clause_count = sum(extractions_df["clause_counts"].values.tolist()) / len(sentences)
print("number of verbal clauses within arguments: ", avg_clause_count)