from __future__ import division import string from nltk.translate.bleu_score import sentence_bleu from nltk.corpus import stopwords from copy import copy import ipdb class Matcher: @staticmethod def bowMatch(ref, ex, ignoreStopwords, ignoreCase): """ A binary function testing for exact lexical match (ignoring ordering) between reference and predicted extraction """ s1 = ref.bow() s2 = ex.bow() if ignoreCase: s1 = s1.lower() s2 = s2.lower() s1Words = s1.split(' ') s2Words = s2.split(' ') if ignoreStopwords: s1Words = Matcher.removeStopwords(s1Words) s2Words = Matcher.removeStopwords(s2Words) return sorted(s1Words) == sorted(s2Words) @staticmethod def predMatch(ref, ex, ignoreStopwords, ignoreCase): """ Return whehter gold and predicted extractions agree on the predicate """ s1 = ref.elementToStr(ref.pred) s2 = ex.elementToStr(ex.pred) if ignoreCase: s1 = s1.lower() s2 = s2.lower() s1Words = s1.split(' ') s2Words = s2.split(' ') if ignoreStopwords: s1Words = Matcher.removeStopwords(s1Words) s2Words = Matcher.removeStopwords(s2Words) return s1Words == s2Words @staticmethod def argMatch(ref, ex, ignoreStopwords, ignoreCase): """ Return whehter gold and predicted extractions agree on the arguments """ sRef = ' '.join([ref.elementToStr(elem) for elem in ref.args]) sEx = ' '.join([ex.elementToStr(elem) for elem in ex.args]) count = 0 for w1 in sRef: for w2 in sEx: if w1 == w2: count += 1 # We check how well does the extraction lexically cover the reference # Note: this is somewhat lenient as it doesn't penalize the extraction for # being too long coverage = float(count) / len(sRef) return coverage > Matcher.LEXICAL_THRESHOLD @staticmethod def bleuMatch(ref, ex, ignoreStopwords, ignoreCase): sRef = ref.bow() sEx = ex.bow() bleu = sentence_bleu(references = [sRef.split(' ')], hypothesis = sEx.split(' ')) return bleu > Matcher.BLEU_THRESHOLD @staticmethod def lexicalMatch(ref, ex, ignoreStopwords, ignoreCase): sRef = ref.bow().split(' ') sEx = ex.bow().split(' ') count = 0 #for w1 in sRef: # if w1 in sEx: # count += 1 # sEx.remove(w1) for w1 in sRef: for w2 in sEx: if w1 == w2: count += 1 # We check how well does the extraction lexically cover the reference # Note: this is somewhat lenient as it doesn't penalize the extraction for # being too long coverage = float(count) / len(sRef) return coverage > Matcher.LEXICAL_THRESHOLD @staticmethod def tuple_match(ref, ex, ignoreStopwords, ignoreCase): precision = [0, 0] # 0 out of 0 predicted words match recall = [0, 0] # 0 out of 0 reference words match # If, for each part, any word is the same as a reference word, then it's a match. predicted_words = ex.pred.split() gold_words = ref.pred.split() precision[1] += len(predicted_words) recall[1] += len(gold_words) # matching_words = sum(1 for w in predicted_words if w in gold_words) matching_words = 0 for w in gold_words: if w in predicted_words: matching_words += 1 predicted_words.remove(w) if matching_words == 0: return False # t <-> gt is not a match precision[0] += matching_words recall[0] += matching_words for i in range(len(ref.args)): gold_words = ref.args[i].split() recall[1] += len(gold_words) if len(ex.args) <= i: if i<2: return False else: continue predicted_words = ex.args[i].split() precision[1] += len(predicted_words) matching_words = 0 for w in gold_words: if w in predicted_words: matching_words += 1 predicted_words.remove(w) if matching_words == 0 and i<2: return False # t <-> gt is not a match precision[0] += matching_words # Currently this slightly penalises systems when the reference # reformulates the sentence words, because the reformulation doesn't # match the predicted word. It's a one-wrong-word penalty to precision, # to all systems that correctly extracted the reformulated word. recall[0] += matching_words prec = 1.0 * precision[0] / precision[1] rec = 1.0 * recall[0] / recall[1] return [prec, rec] # STRICTER LINIENT MATCH def linient_tuple_match(ref, ex, ignoreStopwords, ignoreCase): precision = [0, 0] # 0 out of 0 predicted words match recall = [0, 0] # 0 out of 0 reference words match # If, for each part, any word is the same as a reference word, then it's a match. predicted_words = ex.pred.split() gold_words = ref.pred.split() precision[1] += len(predicted_words) recall[1] += len(gold_words) # matching_words = sum(1 for w in predicted_words if w in gold_words) matching_words = 0 for w in gold_words: if w in predicted_words: matching_words += 1 predicted_words.remove(w) # matching 'be' with its different forms forms_of_be = ["be","is","am","are","was","were","been","being"] if "be" in predicted_words: for form in forms_of_be: if form in gold_words: matching_words += 1 predicted_words.remove("be") break if matching_words == 0: return [0,0] # t <-> gt is not a match precision[0] += matching_words recall[0] += matching_words for i in range(len(ref.args)): gold_words = ref.args[i].split() recall[1] += len(gold_words) if len(ex.args) <= i: if i<2: return [0,0] # changed else: continue predicted_words = ex.args[i].split() precision[1] += len(predicted_words) matching_words = 0 for w in gold_words: if w in predicted_words: matching_words += 1 predicted_words.remove(w) precision[0] += matching_words # Currently this slightly penalises systems when the reference # reformulates the sentence words, because the reformulation doesn't # match the predicted word. It's a one-wrong-word penalty to precision, # to all systems that correctly extracted the reformulated word. recall[0] += matching_words if(precision[1] == 0): prec = 0 else: prec = 1.0 * precision[0] / precision[1] if(recall[1] == 0): rec = 0 else: rec = 1.0 * recall[0] / recall[1] return [prec, rec] @staticmethod def simple_tuple_match(ref, ex, ignoreStopwords, ignoreCase): ref.args = [ref.args[0], ' '.join(ref.args[1:])] ex.args = [ex.args[0], ' '.join(ex.args[1:])] precision = [0, 0] # 0 out of 0 predicted words match recall = [0, 0] # 0 out of 0 reference words match # If, for each part, any word is the same as a reference word, then it's a match. predicted_words = ex.pred.split() gold_words = ref.pred.split() precision[1] += len(predicted_words) recall[1] += len(gold_words) matching_words = 0 for w in gold_words: if w in predicted_words: matching_words += 1 predicted_words.remove(w) precision[0] += matching_words recall[0] += matching_words for i in range(len(ref.args)): gold_words = ref.args[i].split() recall[1] += len(gold_words) if len(ex.args) <= i: break predicted_words = ex.args[i].split() precision[1] += len(predicted_words) matching_words = 0 for w in gold_words: if w in predicted_words: matching_words += 1 predicted_words.remove(w) precision[0] += matching_words # Currently this slightly penalises systems when the reference # reformulates the sentence words, because the reformulation doesn't # match the predicted word. It's a one-wrong-word penalty to precision, # to all systems that correctly extracted the reformulated word. recall[0] += matching_words prec = 1.0 * precision[0] / precision[1] rec = 1.0 * recall[0] / recall[1] return [prec, rec] # @staticmethod # def binary_linient_tuple_match(ref, ex, ignoreStopwords, ignoreCase): # if len(ref.args)>=2: # # r = ref.copy() # r = copy(ref) # r.args = [ref.args[0], ' '.join(ref.args[1:])] # else: # r = ref # if len(ex.args)>=2: # # e = ex.copy() # e = copy(ex) # e.args = [ex.args[0], ' '.join(ex.args[1:])] # else: # e = ex # return Matcher.linient_tuple_match(r, e, ignoreStopwords, ignoreCase) @staticmethod def binary_linient_tuple_match(ref, ex, ignoreStopwords, ignoreCase): if len(ref.args)>=2: r = copy(ref) r.args = [ref.args[0], ' '.join(ref.args[1:])] else: r = ref if len(ex.args)>=2: e = copy(ex) e.args = [ex.args[0], ' '.join(ex.args[1:])] else: e = ex stright_match = Matcher.linient_tuple_match(r, e, ignoreStopwords, ignoreCase) said_type_reln = ["said", "told", "added", "adds", "says", "adds"] said_type_sentence = False for said_verb in said_type_reln: if said_verb in ref.pred: said_type_sentence = True break if not said_type_sentence: return stright_match else: if len(ex.args)>=2: e = copy(ex) e.args = [' '.join(ex.args[1:]), ex.args[0]] else: e = ex reverse_match = Matcher.linient_tuple_match(r, e, ignoreStopwords, ignoreCase) return max(stright_match, reverse_match) @staticmethod def binary_tuple_match(ref, ex, ignoreStopwords, ignoreCase): if len(ref.args)>=2: # r = ref.copy() r = copy(ref) r.args = [ref.args[0], ' '.join(ref.args[1:])] else: r = ref if len(ex.args)>=2: # e = ex.copy() e = copy(ex) e.args = [ex.args[0], ' '.join(ex.args[1:])] else: e = ex return Matcher.tuple_match(r, e, ignoreStopwords, ignoreCase) @staticmethod def removeStopwords(ls): return [w for w in ls if w.lower() not in Matcher.stopwords] # CONSTANTS BLEU_THRESHOLD = 0.4 LEXICAL_THRESHOLD = 0.5 # Note: changing this value didn't change the ordering of the tested systems stopwords = stopwords.words('english') + list(string.punctuation)