""" Usage: pr_plot --in=DIR_NAME --out=OUTPUT_FILENAME Options: --in=DIR_NAME Folder in which to search for *.dat files, all of which should be in a P/R column format (outputs from benchmark.py) --out=OUTPUT_FILENAME Output filename, filetype will determine the format. Possible formats: pdf, pgf, png """ import os import ntpath import numpy as np from glob import glob from docopt import docopt import matplotlib.pyplot as plt import logging import ipdb logging.basicConfig(level = logging.INFO) plt.rcParams.update({'font.size': 14}) def trend_name(path): ''' return a system trend name from dat file path ''' head, tail = ntpath.split(path) ret = tail or ntpath.basename(head) return ret.split('.')[0] def get_pr(path): ''' get PR curve from file ''' with open(path) as fin: # remove header line fin.readline() prc = list(zip(*[[float(x) for x in line.strip().split('\t')] for line in fin])) p = prc[0] r = prc[1] return p, r if __name__ == '__main__': args = docopt(__doc__) input_folder = args['--in'] output_file = args['--out'] # plot graphs for all *.dat files in input path files = glob(os.path.join(input_folder, '*.dat')) for _file in files: p, r = get_pr(_file) name = trend_name(_file) plt.plot(r, p, label = name) # Set figure properties and save logging.info("Plotting P/R graph to {}".format(output_file)) plt.ylim([0.0, 1.05]) plt.xlim([0.0, 0.8]) plt.xlabel('Recall') plt.ylabel('Precision') plt.legend(loc="lower right") plt.savefig(output_file)