|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""COVID-QA: A Question Answering Dataset for COVID-19.""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{moller2020covid, |
|
title={COVID-QA: A Question Answering Dataset for COVID-19}, |
|
author={M{\"o}ller, Timo and Reina, Anthony and Jayakumar, Raghavan and Pietsch, Malte}, |
|
booktitle={Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
COVID-QA is a Question Answering dataset consisting of 2,019 question/answer pairs annotated by volunteer biomedical \ |
|
experts on scientific articles related to COVID-19. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/deepset-ai/COVID-QA" |
|
|
|
_LICENSE = "Apache License 2.0" |
|
|
|
_URL = "https://raw.githubusercontent.com/deepset-ai/COVID-QA/master/data/question-answering/" |
|
_URLs = {"covid_qa_deepset": _URL + "COVID-QA.json"} |
|
|
|
|
|
class CovidQADeepset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="covid_qa_deepset", version=VERSION, description="COVID-QA deepset"), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("int32"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"is_impossible": datasets.Value("bool"), |
|
"id": datasets.Value("int32"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
url = _URLs[self.config.name] |
|
downloaded_filepath = dl_manager.download_and_extract(url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": downloaded_filepath}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
covid_qa = json.load(f) |
|
for article in covid_qa["data"]: |
|
for paragraph in article["paragraphs"]: |
|
context = paragraph["context"].strip() |
|
document_id = paragraph["document_id"] |
|
for qa in paragraph["qas"]: |
|
question = qa["question"].strip() |
|
is_impossible = qa["is_impossible"] |
|
id_ = qa["id"] |
|
|
|
answer_starts = [answer["answer_start"] for answer in qa["answers"]] |
|
answers = [answer["text"].strip() for answer in qa["answers"]] |
|
|
|
|
|
|
|
yield id_, { |
|
"document_id": document_id, |
|
"context": context, |
|
"question": question, |
|
"is_impossible": is_impossible, |
|
"id": id_, |
|
"answers": { |
|
"answer_start": answer_starts, |
|
"text": answers, |
|
}, |
|
} |
|
|