Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 3,018 Bytes
c9a496a a7d7a6b c9a496a a7d7a6b c9a496a a7d7a6b b24d869 a7d7a6b b24d869 a7d7a6b b24d869 a7d7a6b b24d869 a7d7a6b b24d869 a7d7a6b b24d869 a7d7a6b b24d869 a7d7a6b b24d869 a7d7a6b b24d869 a7d7a6b b24d869 c9a496a b24d869 c9a496a b24d869 e5adc1c b24d869 0ffd947 b24d869 c9a496a a7d7a6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
dataset_info:
features:
- name: context
dtype: string
- name: questions
dtype: string
splits:
- name: train
num_bytes: 20544587
num_examples: 18896
- name: validation
num_bytes: 2405721
num_examples: 2067
download_size: 12611933
dataset_size: 22950308
annotations_creators:
- crowdsourced
language:
- en
language_creators:
- crowdsourced
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: Question Generation for T5 based on Squad V1.1
size_categories:
- 10K<n<100K
source_datasets:
- extended|squad
tags:
- questiongeneration
- question-generation
- text2text-generation
task_categories:
- text2text-generation
task_ids: []
---
# Dataset Card for "squad-v1.1-t5-question-generation"
## Dataset Description
- **Homepage:** [https://rajpurkar.github.io/SQuAD-explorer/](https://rajpurkar.github.io/SQuAD-explorer/)
- **Paper:** [SQuAD: 100,000+ Questions for Machine Comprehension of Text](https://arxiv.org/abs/1606.05250)
### Dataset Summary
This is a modified Stanford Question Answering Dataset (SQuAD) to suit question generation with All Questions in One Line (AQOL) just like in [Transformer-based End-to-End Question Generation](https://arxiv.org/pdf/2005.01107v1.pdf)
specifically for the T5 family of models. The prefix is `generate questions: ` so that the task can be unique to a trained model.
Check out the generation notebook [here](https://nbviewer.org/urls/huggingface.co/datasets/derek-thomas/squad-v1.1-t5-question-generation/resolve/main/Squad_V1_Question_Generation.ipynb).
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
## Dataset Structure
### Data Instances
#### plain_text
An example of 'train' looks as follows.
```
{
"context": "generate questions: This is a test context.",
"question": "Is this a test? {sep_token} Is this another Test {sep_token}"
}
```
### Data Fields
The data fields are the same among all splits.
#### plain_text
- `context`: a `string` feature.
- `question`: a `string` feature.
### Data Splits
| name |train|validation|
|----------|----:|---------:|
|plain_text|18896| 2067|
### Citation Information
```
@article{2016arXiv160605250R,
author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
Konstantin and {Liang}, Percy},
title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
journal = {arXiv e-prints},
year = 2016,
eid = {arXiv:1606.05250},
pages = {arXiv:1606.05250},
archivePrefix = {arXiv},
eprint = {1606.05250},
}
```
### Contributions
Thanks to [Derek Thomas](https://huggingface.co/derek-thomas) and [Thomas Simonini](https://huggingface.co/ThomasSimonini) for adding this to the hub
Check out: [How to contribute more](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |