Datasets:

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 3,321 Bytes
d355a12
 
 
 
 
 
80c14c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d355a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: unknown
size_categories: 10K<n<100K
task_categories:
- image-classification
pretty_name: Rademacher noise
dataset_info:
  features:
  - name: image
    dtype: image
  splits:
  - name: train
    num_bytes: 333318820.0
    num_examples: 10000
  download_size: 333386324
  dataset_size: 333318820.0
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

# Dataset Card for Rademacher noise for OOD Detection

<!-- Provide a quick summary of the dataset. -->



## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->



- **Original Dataset Authors**: [More Information Needed]
- **OOD Split Authors:** Dan Hendrycks, Mantas Mazeika, Thomas Dietterich
- **Shared by:** Eduardo Dadalto
- **License:** unknown

### Dataset Sources

<!-- Provide the basic links for the dataset. -->

- **Original Dataset Paper:** [More Information Needed]
- **First OOD Application Paper:** http://arxiv.org/abs/1812.04606v3


### Direct Use

<!-- This section describes suitable use cases for the dataset. -->

This dataset is intended to be used as an ouf-of-distribution dataset for image classification benchmarks.

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->

This dataset is not annotated.


### Curation Rationale

<!-- Motivation for the creation of this dataset. -->

The goal in curating and sharing this dataset to the HuggingFace Hub is to accelerate research and promote reproducibility in generalized Out-of-Distribution (OOD) detection.

Check the python library [detectors](https://github.com/edadaltocg/detectors) if you are interested in OOD detection.

### Personal and Sensitive Information

<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->

Please check original paper for details on the dataset.

### Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

Please check original paper for details on the dataset.

## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```bibtex
@software{detectors2023,
author = {Eduardo Dadalto},
title = {Detectors: a Python Library for Generalized Out-Of-Distribution Detection},
url = {https://github.com/edadaltocg/detectors},
doi = {https://doi.org/10.5281/zenodo.7883596},
month = {5},
year = {2023}
}

@article{1812.04606v3,
author        = {Dan Hendrycks and Mantas Mazeika and Thomas Dietterich},
title         = {Deep Anomaly Detection with Outlier Exposure},
year          = {2018},
month         = {12},
note          = {ICLR 2019; PyTorch code available at
  https://github.com/hendrycks/outlier-exposure},
archiveprefix = {arXiv},
url           = {http://arxiv.org/abs/1812.04606v3}
}
```

## Dataset Card Authors

Eduardo Dadalto

## Dataset Card Contact

https://huggingface.co/edadaltocg