Datasets:

ArXiv:
community-pipelines-mirror / v0.26.1 /lpw_stable_diffusion_xl.py
Diffusers Bot
Upload folder using huggingface_hub
0d4fff7 verified
## ----------------------------------------------------------
# A SDXL pipeline can take unlimited weighted prompt
#
# Author: Andrew Zhu
# Github: https://github.com/xhinker
# Medium: https://medium.com/@xhinker
## -----------------------------------------------------------
import inspect
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from PIL import Image
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionModelWithProjection,
)
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from diffusers.models.attention_processor import (
AttnProcessor2_0,
FusedAttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
deprecate,
is_accelerate_available,
is_accelerate_version,
is_invisible_watermark_available,
logging,
replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
if is_invisible_watermark_available():
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
def parse_prompt_attention(text):
"""
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
Accepted tokens are:
(abc) - increases attention to abc by a multiplier of 1.1
(abc:3.12) - increases attention to abc by a multiplier of 3.12
[abc] - decreases attention to abc by a multiplier of 1.1
\\( - literal character '('
\\[ - literal character '['
\\) - literal character ')'
\\] - literal character ']'
\\ - literal character '\'
anything else - just text
>>> parse_prompt_attention('normal text')
[['normal text', 1.0]]
>>> parse_prompt_attention('an (important) word')
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
>>> parse_prompt_attention('(unbalanced')
[['unbalanced', 1.1]]
>>> parse_prompt_attention('\\(literal\\]')
[['(literal]', 1.0]]
>>> parse_prompt_attention('(unnecessary)(parens)')
[['unnecessaryparens', 1.1]]
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
[['a ', 1.0],
['house', 1.5730000000000004],
[' ', 1.1],
['on', 1.0],
[' a ', 1.1],
['hill', 0.55],
[', sun, ', 1.1],
['sky', 1.4641000000000006],
['.', 1.1]]
"""
import re
re_attention = re.compile(
r"""
\\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
\)|]|[^\\()\[\]:]+|:
""",
re.X,
)
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
res = []
round_brackets = []
square_brackets = []
round_bracket_multiplier = 1.1
square_bracket_multiplier = 1 / 1.1
def multiply_range(start_position, multiplier):
for p in range(start_position, len(res)):
res[p][1] *= multiplier
for m in re_attention.finditer(text):
text = m.group(0)
weight = m.group(1)
if text.startswith("\\"):
res.append([text[1:], 1.0])
elif text == "(":
round_brackets.append(len(res))
elif text == "[":
square_brackets.append(len(res))
elif weight is not None and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), float(weight))
elif text == ")" and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), round_bracket_multiplier)
elif text == "]" and len(square_brackets) > 0:
multiply_range(square_brackets.pop(), square_bracket_multiplier)
else:
parts = re.split(re_break, text)
for i, part in enumerate(parts):
if i > 0:
res.append(["BREAK", -1])
res.append([part, 1.0])
for pos in round_brackets:
multiply_range(pos, round_bracket_multiplier)
for pos in square_brackets:
multiply_range(pos, square_bracket_multiplier)
if len(res) == 0:
res = [["", 1.0]]
# merge runs of identical weights
i = 0
while i + 1 < len(res):
if res[i][1] == res[i + 1][1]:
res[i][0] += res[i + 1][0]
res.pop(i + 1)
else:
i += 1
return res
def get_prompts_tokens_with_weights(clip_tokenizer: CLIPTokenizer, prompt: str):
"""
Get prompt token ids and weights, this function works for both prompt and negative prompt
Args:
pipe (CLIPTokenizer)
A CLIPTokenizer
prompt (str)
A prompt string with weights
Returns:
text_tokens (list)
A list contains token ids
text_weight (list)
A list contains the correspodent weight of token ids
Example:
import torch
from transformers import CLIPTokenizer
clip_tokenizer = CLIPTokenizer.from_pretrained(
"stablediffusionapi/deliberate-v2"
, subfolder = "tokenizer"
, dtype = torch.float16
)
token_id_list, token_weight_list = get_prompts_tokens_with_weights(
clip_tokenizer = clip_tokenizer
,prompt = "a (red:1.5) cat"*70
)
"""
texts_and_weights = parse_prompt_attention(prompt)
text_tokens, text_weights = [], []
for word, weight in texts_and_weights:
# tokenize and discard the starting and the ending token
token = clip_tokenizer(word, truncation=False).input_ids[1:-1] # so that tokenize whatever length prompt
# the returned token is a 1d list: [320, 1125, 539, 320]
# merge the new tokens to the all tokens holder: text_tokens
text_tokens = [*text_tokens, *token]
# each token chunk will come with one weight, like ['red cat', 2.0]
# need to expand weight for each token.
chunk_weights = [weight] * len(token)
# append the weight back to the weight holder: text_weights
text_weights = [*text_weights, *chunk_weights]
return text_tokens, text_weights
def group_tokens_and_weights(token_ids: list, weights: list, pad_last_block=False):
"""
Produce tokens and weights in groups and pad the missing tokens
Args:
token_ids (list)
The token ids from tokenizer
weights (list)
The weights list from function get_prompts_tokens_with_weights
pad_last_block (bool)
Control if fill the last token list to 75 tokens with eos
Returns:
new_token_ids (2d list)
new_weights (2d list)
Example:
token_groups,weight_groups = group_tokens_and_weights(
token_ids = token_id_list
, weights = token_weight_list
)
"""
bos, eos = 49406, 49407
# this will be a 2d list
new_token_ids = []
new_weights = []
while len(token_ids) >= 75:
# get the first 75 tokens
head_75_tokens = [token_ids.pop(0) for _ in range(75)]
head_75_weights = [weights.pop(0) for _ in range(75)]
# extract token ids and weights
temp_77_token_ids = [bos] + head_75_tokens + [eos]
temp_77_weights = [1.0] + head_75_weights + [1.0]
# add 77 token and weights chunk to the holder list
new_token_ids.append(temp_77_token_ids)
new_weights.append(temp_77_weights)
# padding the left
if len(token_ids) > 0:
padding_len = 75 - len(token_ids) if pad_last_block else 0
temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
new_token_ids.append(temp_77_token_ids)
temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
new_weights.append(temp_77_weights)
return new_token_ids, new_weights
def get_weighted_text_embeddings_sdxl(
pipe: StableDiffusionXLPipeline,
prompt: str = "",
prompt_2: str = None,
neg_prompt: str = "",
neg_prompt_2: str = None,
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
clip_skip: Optional[int] = None,
):
"""
This function can process long prompt with weights, no length limitation
for Stable Diffusion XL
Args:
pipe (StableDiffusionPipeline)
prompt (str)
prompt_2 (str)
neg_prompt (str)
neg_prompt_2 (str)
num_images_per_prompt (int)
device (torch.device)
clip_skip (int)
Returns:
prompt_embeds (torch.Tensor)
neg_prompt_embeds (torch.Tensor)
"""
device = device or pipe._execution_device
if prompt_2:
prompt = f"{prompt} {prompt_2}"
if neg_prompt_2:
neg_prompt = f"{neg_prompt} {neg_prompt_2}"
prompt_t1 = prompt_t2 = prompt
neg_prompt_t1 = neg_prompt_t2 = neg_prompt
if isinstance(pipe, TextualInversionLoaderMixin):
prompt_t1 = pipe.maybe_convert_prompt(prompt_t1, pipe.tokenizer)
neg_prompt_t1 = pipe.maybe_convert_prompt(neg_prompt_t1, pipe.tokenizer)
prompt_t2 = pipe.maybe_convert_prompt(prompt_t2, pipe.tokenizer_2)
neg_prompt_t2 = pipe.maybe_convert_prompt(neg_prompt_t2, pipe.tokenizer_2)
eos = pipe.tokenizer.eos_token_id
# tokenizer 1
prompt_tokens, prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, prompt_t1)
neg_prompt_tokens, neg_prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt_t1)
# tokenizer 2
prompt_tokens_2, prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt_t2)
neg_prompt_tokens_2, neg_prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt_t2)
# padding the shorter one for prompt set 1
prompt_token_len = len(prompt_tokens)
neg_prompt_token_len = len(neg_prompt_tokens)
if prompt_token_len > neg_prompt_token_len:
# padding the neg_prompt with eos token
neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
else:
# padding the prompt
prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
# padding the shorter one for token set 2
prompt_token_len_2 = len(prompt_tokens_2)
neg_prompt_token_len_2 = len(neg_prompt_tokens_2)
if prompt_token_len_2 > neg_prompt_token_len_2:
# padding the neg_prompt with eos token
neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
else:
# padding the prompt
prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
embeds = []
neg_embeds = []
prompt_token_groups, prompt_weight_groups = group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy())
neg_prompt_token_groups, neg_prompt_weight_groups = group_tokens_and_weights(
neg_prompt_tokens.copy(), neg_prompt_weights.copy()
)
prompt_token_groups_2, prompt_weight_groups_2 = group_tokens_and_weights(
prompt_tokens_2.copy(), prompt_weights_2.copy()
)
neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = group_tokens_and_weights(
neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy()
)
# get prompt embeddings one by one is not working.
for i in range(len(prompt_token_groups)):
# get positive prompt embeddings with weights
token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=device)
weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=device)
token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=device)
# use first text encoder
prompt_embeds_1 = pipe.text_encoder(token_tensor.to(device), output_hidden_states=True)
# use second text encoder
prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(device), output_hidden_states=True)
pooled_prompt_embeds = prompt_embeds_2[0]
if clip_skip is None:
prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2]
prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2]
else:
# "2" because SDXL always indexes from the penultimate layer.
prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-(clip_skip + 2)]
prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-(clip_skip + 2)]
prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states]
token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0)
for j in range(len(weight_tensor)):
if weight_tensor[j] != 1.0:
token_embedding[j] = (
token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j]
)
token_embedding = token_embedding.unsqueeze(0)
embeds.append(token_embedding)
# get negative prompt embeddings with weights
neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=device)
neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=device)
neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=device)
# use first text encoder
neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(device), output_hidden_states=True)
neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2]
# use second text encoder
neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(device), output_hidden_states=True)
neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2]
negative_pooled_prompt_embeds = neg_prompt_embeds_2[0]
neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states]
neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0)
for z in range(len(neg_weight_tensor)):
if neg_weight_tensor[z] != 1.0:
neg_token_embedding[z] = (
neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z]
)
neg_token_embedding = neg_token_embedding.unsqueeze(0)
neg_embeds.append(neg_token_embedding)
prompt_embeds = torch.cat(embeds, dim=1)
negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view(
bs_embed * num_images_per_prompt, -1
)
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view(
bs_embed * num_images_per_prompt, -1
)
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
# -------------------------------------------------------------------------------------------------------------------------------
# reuse the backbone code from StableDiffusionXLPipeline
# -------------------------------------------------------------------------------------------------------------------------------
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0"
, torch_dtype = torch.float16
, use_safetensors = True
, variant = "fp16"
, custom_pipeline = "lpw_stable_diffusion_xl",
)
prompt = "a white cat running on the grass"*20
prompt2 = "play a football"*20
prompt = f"{prompt},{prompt2}"
neg_prompt = "blur, low quality"
pipe.to("cuda")
images = pipe(
prompt = prompt
, negative_prompt = neg_prompt
).images[0]
pipe.to("cpu")
torch.cuda.empty_cache()
images
```
"""
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class SDXLLongPromptWeightingPipeline(
DiffusionPipeline, FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
):
r"""
Pipeline for text-to-image generation using Stable Diffusion XL.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion XL uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
text_encoder_2 ([` CLIPTextModelWithProjection`]):
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
specifically the
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
tokenizer_2 (`CLIPTokenizer`):
Second Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]):
Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
"""
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
_optional_components = [
"tokenizer",
"tokenizer_2",
"text_encoder",
"text_encoder_2",
"image_encoder",
"feature_extractor",
]
_callback_tensor_inputs = [
"latents",
"prompt_embeds",
"negative_prompt_embeds",
"add_text_embeds",
"add_time_ids",
"negative_pooled_prompt_embeds",
"negative_add_time_ids",
]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
text_encoder_2: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
tokenizer_2: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
feature_extractor: Optional[CLIPImageProcessor] = None,
image_encoder: Optional[CLIPVisionModelWithProjection] = None,
force_zeros_for_empty_prompt: bool = True,
add_watermarker: Optional[bool] = None,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
unet=unet,
scheduler=scheduler,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
)
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
)
self.default_sample_size = self.unet.config.sample_size
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
if add_watermarker:
self.watermark = StableDiffusionXLWatermarker()
else:
self.watermark = None
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
def enable_model_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
model_sequence = (
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
)
model_sequence.extend([self.unet, self.vae])
hook = None
for cpu_offloaded_model in model_sequence:
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
# We'll offload the last model manually.
self.final_offload_hook = hook
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(
self,
prompt: str,
prompt_2: Optional[str] = None,
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[str] = None,
negative_prompt_2: Optional[str] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in both text-encoders
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
input argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
device = device or self._execution_device
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# Define tokenizers and text encoders
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
text_encoders = (
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
)
if prompt_embeds is None:
prompt_2 = prompt_2 or prompt
# textual inversion: procecss multi-vector tokens if necessary
prompt_embeds_list = []
prompts = [prompt, prompt_2]
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, tokenizer)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {tokenizer.model_max_length} tokens: {removed_text}"
)
prompt_embeds = text_encoder(
text_input_ids.to(device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
# get unconditional embeddings for classifier free guidance
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
elif do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt_2 = negative_prompt_2 or negative_prompt
uncond_tokens: List[str]
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt, negative_prompt_2]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = [negative_prompt, negative_prompt_2]
negative_prompt_embeds_list = []
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
if isinstance(self, TextualInversionLoaderMixin):
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = tokenizer(
negative_prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds = text_encoder(
uncond_input.input_ids.to(device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
negative_prompt_embeds_list.append(negative_prompt_embeds)
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
if do_classifier_free_guidance:
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
dtype = next(self.image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):
image = self.feature_extractor(image, return_tensors="pt").pixel_values
image = image.to(device=device, dtype=dtype)
if output_hidden_states:
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
uncond_image_enc_hidden_states = self.image_encoder(
torch.zeros_like(image), output_hidden_states=True
).hidden_states[-2]
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
num_images_per_prompt, dim=0
)
return image_enc_hidden_states, uncond_image_enc_hidden_states
else:
image_embeds = self.image_encoder(image).image_embeds
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
uncond_image_embeds = torch.zeros_like(image_embeds)
return image_embeds, uncond_image_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
prompt_2,
height,
width,
strength,
callback_steps,
negative_prompt=None,
negative_prompt_2=None,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt_2 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
)
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
The suffixes after the scaling factors represent the stages where they are being applied.
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
Args:
s1 (`float`):
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
mitigate "oversmoothing effect" in the enhanced denoising process.
s2 (`float`):
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
mitigate "oversmoothing effect" in the enhanced denoising process.
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
"""
if not hasattr(self, "unet"):
raise ValueError("The pipeline must have `unet` for using FreeU.")
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
def disable_freeu(self):
"""Disables the FreeU mechanism if enabled."""
self.unet.disable_freeu()
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections
def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
Args:
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
"""
self.fusing_unet = False
self.fusing_vae = False
if unet:
self.fusing_unet = True
self.unet.fuse_qkv_projections()
self.unet.set_attn_processor(FusedAttnProcessor2_0())
if vae:
if not isinstance(self.vae, AutoencoderKL):
raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
self.fusing_vae = True
self.vae.fuse_qkv_projections()
self.vae.set_attn_processor(FusedAttnProcessor2_0())
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections
def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
"""Disable QKV projection fusion if enabled.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
Args:
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
"""
if unet:
if not self.fusing_unet:
logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
else:
self.unet.unfuse_qkv_projections()
self.fusing_unet = False
if vae:
if not self.fusing_vae:
logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
else:
self.vae.unfuse_qkv_projections()
self.fusing_vae = False
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
# get the original timestep using init_timestep
if denoising_start is None:
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
else:
t_start = 0
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
# Strength is irrelevant if we directly request a timestep to start at;
# that is, strength is determined by the denoising_start instead.
if denoising_start is not None:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_start * self.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
# if the scheduler is a 2nd order scheduler we might have to do +1
# because `num_inference_steps` might be even given that every timestep
# (except the highest one) is duplicated. If `num_inference_steps` is even it would
# mean that we cut the timesteps in the middle of the denoising step
# (between 1st and 2nd devirative) which leads to incorrect results. By adding 1
# we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
num_inference_steps = num_inference_steps + 1
# because t_n+1 >= t_n, we slice the timesteps starting from the end
timesteps = timesteps[-num_inference_steps:]
return timesteps, num_inference_steps
return timesteps, num_inference_steps - t_start
def prepare_latents(
self,
image,
mask,
width,
height,
num_channels_latents,
timestep,
batch_size,
num_images_per_prompt,
dtype,
device,
generator=None,
add_noise=True,
latents=None,
is_strength_max=True,
return_noise=False,
return_image_latents=False,
):
batch_size *= num_images_per_prompt
if image is None:
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
elif mask is None:
if not isinstance(image, (torch.Tensor, Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
# Offload text encoder if `enable_model_cpu_offload` was enabled
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.text_encoder_2.to("cpu")
torch.cuda.empty_cache()
image = image.to(device=device, dtype=dtype)
if image.shape[1] == 4:
init_latents = image
else:
# make sure the VAE is in float32 mode, as it overflows in float16
if self.vae.config.force_upcast:
image = image.float()
self.vae.to(dtype=torch.float32)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
elif isinstance(generator, list):
init_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
if self.vae.config.force_upcast:
self.vae.to(dtype)
init_latents = init_latents.to(dtype)
init_latents = self.vae.config.scaling_factor * init_latents
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
# expand init_latents for batch_size
additional_image_per_prompt = batch_size // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents], dim=0)
if add_noise:
shape = init_latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# get latents
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents
else:
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if (image is None or timestep is None) and not is_strength_max:
raise ValueError(
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
"However, either the image or the noise timestep has not been provided."
)
if image.shape[1] == 4:
image_latents = image.to(device=device, dtype=dtype)
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
elif return_image_latents or (latents is None and not is_strength_max):
image = image.to(device=device, dtype=dtype)
image_latents = self._encode_vae_image(image=image, generator=generator)
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
if latents is None and add_noise:
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# if strength is 1. then initialise the latents to noise, else initial to image + noise
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
# if pure noise then scale the initial latents by the Scheduler's init sigma
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
elif add_noise:
noise = latents.to(device)
latents = noise * self.scheduler.init_noise_sigma
else:
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = image_latents.to(device)
outputs = (latents,)
if return_noise:
outputs += (noise,)
if return_image_latents:
outputs += (image_latents,)
return outputs
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
dtype = image.dtype
if self.vae.config.force_upcast:
image = image.float()
self.vae.to(dtype=torch.float32)
if isinstance(generator, list):
image_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
if self.vae.config.force_upcast:
self.vae.to(dtype)
image_latents = image_latents.to(dtype)
image_latents = self.vae.config.scaling_factor * image_latents
return image_latents
def prepare_mask_latents(
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
):
# resize the mask to latents shape as we concatenate the mask to the latents
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
# and half precision
mask = torch.nn.functional.interpolate(
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
)
mask = mask.to(device=device, dtype=dtype)
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
if masked_image is not None and masked_image.shape[1] == 4:
masked_image_latents = masked_image
else:
masked_image_latents = None
if masked_image is not None:
if masked_image_latents is None:
masked_image = masked_image.to(device=device, dtype=dtype)
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(
batch_size // masked_image_latents.shape[0], 1, 1, 1
)
masked_image_latents = (
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
)
# aligning device to prevent device errors when concating it with the latent model input
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
return mask, masked_image_latents
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
add_time_ids = list(original_size + crops_coords_top_left + target_size)
passed_add_embed_dim = (
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
)
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps (`torch.Tensor`):
generate embedding vectors at these timesteps
embedding_dim (`int`, *optional*, defaults to 512):
dimension of the embeddings to generate
dtype:
data type of the generated embeddings
Returns:
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
@property
def guidance_scale(self):
return self._guidance_scale
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def clip_skip(self):
return self._clip_skip
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
@property
def cross_attention_kwargs(self):
return self._cross_attention_kwargs
@property
def denoising_end(self):
return self._denoising_end
@property
def denoising_start(self):
return self._denoising_start
@property
def num_timesteps(self):
return self._num_timesteps
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: str = None,
prompt_2: Optional[str] = None,
image: Optional[PipelineImageInput] = None,
mask_image: Optional[PipelineImageInput] = None,
masked_image_latents: Optional[torch.FloatTensor] = None,
height: Optional[int] = None,
width: Optional[int] = None,
strength: float = 0.8,
num_inference_steps: int = 50,
timesteps: List[int] = None,
denoising_start: Optional[float] = None,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[str] = None,
negative_prompt_2: Optional[str] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str`):
The prompt to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str`):
The prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in both text-encoders
image (`PipelineImageInput`, *optional*):
`Image`, or tensor representing an image batch, that will be used as the starting point for the
process.
mask_image (`PipelineImageInput`, *optional*):
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
strength (`float`, *optional*, defaults to 0.8):
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
`image` will be used as a starting point, adding more noise to it the larger the `strength`. The
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
noise will be maximum and the denoising process will run for the full number of iterations specified in
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
denoising_start (`float`, *optional*):
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
denoising_end (`float`, *optional*):
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
completed before it is intentionally prematurely terminated. As a result, the returned sample will
still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refine Image
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
guidance_scale (`float`, *optional*, defaults to 5.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str`):
The prompt not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
negative_prompt_2 (`str`):
The prompt not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
ip_adapter_image: (`PipelineImageInput`, *optional*):
Optional image input to work with IP Adapters.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
of a plain tuple.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
guidance_rescale (`float`, *optional*, defaults to 0.0):
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
Guidance rescale factor should fix overexposure when using zero terminal SNR.
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
For most cases, `target_size` should be set to the desired height and width of the generated image. If
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeine class.
Examples:
Returns:
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
`tuple`. When returning a tuple, the first element is a list with the generated images.
"""
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
# 0. Default height and width to unet
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
strength,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._denoising_end = denoising_end
self._denoising_start = denoising_start
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
if ip_adapter_image is not None:
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
image_embeds, negative_image_embeds = self.encode_image(
ip_adapter_image, device, num_images_per_prompt, output_hidden_state
)
if self.do_classifier_free_guidance:
image_embeds = torch.cat([negative_image_embeds, image_embeds])
# 3. Encode input prompt
(self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None)
negative_prompt = negative_prompt if negative_prompt is not None else ""
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = get_weighted_text_embeddings_sdxl(
pipe=self,
prompt=prompt,
neg_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
clip_skip=clip_skip,
)
dtype = prompt_embeds.dtype
if isinstance(image, Image.Image):
image = self.image_processor.preprocess(image, height=height, width=width)
if image is not None:
image = image.to(device=self.device, dtype=dtype)
if isinstance(mask_image, Image.Image):
mask = self.mask_processor.preprocess(mask_image, height=height, width=width)
else:
mask = mask_image
if mask_image is not None:
mask = mask.to(device=self.device, dtype=dtype)
if masked_image_latents is not None:
masked_image = masked_image_latents
elif image.shape[1] == 4:
# if image is in latent space, we can't mask it
masked_image = None
else:
masked_image = image * (mask < 0.5)
else:
mask = None
# 4. Prepare timesteps
def denoising_value_valid(dnv):
return isinstance(self.denoising_end, float) and 0 < dnv < 1
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
if image is not None:
timesteps, num_inference_steps = self.get_timesteps(
num_inference_steps,
strength,
device,
denoising_start=self.denoising_start if denoising_value_valid else None,
)
# check that number of inference steps is not < 1 - as this doesn't make sense
if num_inference_steps < 1:
raise ValueError(
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
is_strength_max = strength == 1.0
add_noise = True if self.denoising_start is None else False
# 5. Prepare latent variables
num_channels_latents = self.vae.config.latent_channels
num_channels_unet = self.unet.config.in_channels
return_image_latents = num_channels_unet == 4
latents = self.prepare_latents(
image=image,
mask=mask,
width=width,
height=height,
num_channels_latents=num_channels_unet,
timestep=latent_timestep,
batch_size=batch_size,
num_images_per_prompt=num_images_per_prompt,
dtype=prompt_embeds.dtype,
device=device,
generator=generator,
add_noise=add_noise,
latents=latents,
is_strength_max=is_strength_max,
return_noise=True,
return_image_latents=return_image_latents,
)
if mask is not None:
if return_image_latents:
latents, noise, image_latents = latents
else:
latents, noise = latents
# 5.1 Prepare mask latent variables
if mask is not None:
mask, masked_image_latents = self.prepare_mask_latents(
mask=mask,
masked_image=masked_image,
batch_size=batch_size * num_images_per_prompt,
height=height,
width=width,
dtype=prompt_embeds.dtype,
device=device,
generator=generator,
do_classifier_free_guidance=self.do_classifier_free_guidance,
)
# Check that sizes of mask, masked image and latents match
if num_channels_unet == 9:
# default case for runwayml/stable-diffusion-inpainting
num_channels_mask = mask.shape[1]
num_channels_masked_image = masked_image_latents.shape[1]
if num_channels_latents + num_channels_mask + num_channels_masked_image != num_channels_unet:
raise ValueError(
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
" `pipeline.unet` or your `mask_image` or `image` input."
)
elif num_channels_unet != 4:
raise ValueError(
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 6.1 Add image embeds for IP-Adapter
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else {}
height, width = latents.shape[-2:]
height = height * self.vae_scale_factor
width = width * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 7. Prepare added time ids & embeddings
add_text_embeds = pooled_prompt_embeds
add_time_ids = self._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
# 7.1 Apply denoising_end
if (
self.denoising_end is not None
and self.denoising_start is not None
and denoising_value_valid(self.denoising_end)
and denoising_value_valid(self.denoising_start)
and self.denoising_start >= self.denoising_end
):
raise ValueError(
f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
+ f" {self.denoising_end} when using type float."
)
elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
timesteps = timesteps[:num_inference_steps]
# 8. Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
self._num_timesteps = len(timesteps)
# 9. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if mask is not None and num_channels_unet == 9:
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
# predict the noise residual
added_cond_kwargs.update({"text_embeds": add_text_embeds, "time_ids": add_time_ids})
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=timestep_cond,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
if self.do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if mask is not None and num_channels_unet == 4:
init_latents_proper = image_latents
if self.do_classifier_free_guidance:
init_mask, _ = mask.chunk(2)
else:
init_mask = mask
if i < len(timesteps) - 1:
noise_timestep = timesteps[i + 1]
init_latents_proper = self.scheduler.add_noise(
init_latents_proper, noise, torch.tensor([noise_timestep])
)
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
negative_pooled_prompt_embeds = callback_outputs.pop(
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
)
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if not output_type == "latent":
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
else:
image = latents
return StableDiffusionXLPipelineOutput(images=image)
# apply watermark if available
if self.watermark is not None:
image = self.watermark.apply_watermark(image)
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image,)
return StableDiffusionXLPipelineOutput(images=image)
def text2img(
self,
prompt: str = None,
prompt_2: Optional[str] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
timesteps: List[int] = None,
denoising_start: Optional[float] = None,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[str] = None,
negative_prompt_2: Optional[str] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
):
r"""
Function invoked when calling pipeline for text-to-image.
Refer to the documentation of the `__call__` method for parameter descriptions.
"""
return self.__call__(
prompt=prompt,
prompt_2=prompt_2,
height=height,
width=width,
num_inference_steps=num_inference_steps,
timesteps=timesteps,
denoising_start=denoising_start,
denoising_end=denoising_end,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
ip_adapter_image=ip_adapter_image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
output_type=output_type,
return_dict=return_dict,
cross_attention_kwargs=cross_attention_kwargs,
guidance_rescale=guidance_rescale,
original_size=original_size,
crops_coords_top_left=crops_coords_top_left,
target_size=target_size,
clip_skip=clip_skip,
callback_on_step_end=callback_on_step_end,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
**kwargs,
)
def img2img(
self,
prompt: str = None,
prompt_2: Optional[str] = None,
image: Optional[PipelineImageInput] = None,
height: Optional[int] = None,
width: Optional[int] = None,
strength: float = 0.8,
num_inference_steps: int = 50,
timesteps: List[int] = None,
denoising_start: Optional[float] = None,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[str] = None,
negative_prompt_2: Optional[str] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
):
r"""
Function invoked when calling pipeline for image-to-image.
Refer to the documentation of the `__call__` method for parameter descriptions.
"""
return self.__call__(
prompt=prompt,
prompt_2=prompt_2,
image=image,
height=height,
width=width,
strength=strength,
num_inference_steps=num_inference_steps,
timesteps=timesteps,
denoising_start=denoising_start,
denoising_end=denoising_end,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
ip_adapter_image=ip_adapter_image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
output_type=output_type,
return_dict=return_dict,
cross_attention_kwargs=cross_attention_kwargs,
guidance_rescale=guidance_rescale,
original_size=original_size,
crops_coords_top_left=crops_coords_top_left,
target_size=target_size,
clip_skip=clip_skip,
callback_on_step_end=callback_on_step_end,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
**kwargs,
)
def inpaint(
self,
prompt: str = None,
prompt_2: Optional[str] = None,
image: Optional[PipelineImageInput] = None,
mask_image: Optional[PipelineImageInput] = None,
masked_image_latents: Optional[torch.FloatTensor] = None,
height: Optional[int] = None,
width: Optional[int] = None,
strength: float = 0.8,
num_inference_steps: int = 50,
timesteps: List[int] = None,
denoising_start: Optional[float] = None,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[str] = None,
negative_prompt_2: Optional[str] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
):
r"""
Function invoked when calling pipeline for inpainting.
Refer to the documentation of the `__call__` method for parameter descriptions.
"""
return self.__call__(
prompt=prompt,
prompt_2=prompt_2,
image=image,
mask_image=mask_image,
masked_image_latents=masked_image_latents,
height=height,
width=width,
strength=strength,
num_inference_steps=num_inference_steps,
timesteps=timesteps,
denoising_start=denoising_start,
denoising_end=denoising_end,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
ip_adapter_image=ip_adapter_image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
output_type=output_type,
return_dict=return_dict,
cross_attention_kwargs=cross_attention_kwargs,
guidance_rescale=guidance_rescale,
original_size=original_size,
crops_coords_top_left=crops_coords_top_left,
target_size=target_size,
clip_skip=clip_skip,
callback_on_step_end=callback_on_step_end,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
**kwargs,
)
# Overrride to properly handle the loading and unloading of the additional text encoder.
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
# We could have accessed the unet config from `lora_state_dict()` too. We pass
# it here explicitly to be able to tell that it's coming from an SDXL
# pipeline.
state_dict, network_alphas = self.lora_state_dict(
pretrained_model_name_or_path_or_dict,
unet_config=self.unet.config,
**kwargs,
)
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
)
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
if len(text_encoder_2_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_2_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder_2,
prefix="text_encoder_2",
lora_scale=self.lora_scale,
)
@classmethod
def save_lora_weights(
self,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = False,
):
state_dict = {}
def pack_weights(layers, prefix):
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
return layers_state_dict
state_dict.update(pack_weights(unet_lora_layers, "unet"))
if text_encoder_lora_layers and text_encoder_2_lora_layers:
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
self.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def _remove_text_encoder_monkey_patch(self):
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)