Datasets:

ArXiv:
community-pipelines-mirror / v0.27.2 /regional_prompting_stable_diffusion.py
Diffusers Bot
Upload folder using huggingface_hub
de550a6 verified
import math
from typing import Dict, Optional
import torch
import torchvision.transforms.functional as FF
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers import StableDiffusionPipeline
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import USE_PEFT_BACKEND
try:
from compel import Compel
except ImportError:
Compel = None
KCOMM = "ADDCOMM"
KBRK = "BREAK"
class RegionalPromptingStableDiffusionPipeline(StableDiffusionPipeline):
r"""
Args for Regional Prompting Pipeline:
rp_args:dict
Required
rp_args["mode"]: cols, rows, prompt, prompt-ex
for cols, rows mode
rp_args["div"]: ex) 1;1;1(Divide into 3 regions)
for prompt, prompt-ex mode
rp_args["th"]: ex) 0.5,0.5,0.6 (threshold for prompt mode)
Optional
rp_args["save_mask"]: True/False (save masks in prompt mode)
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
requires_safety_checker: bool = True,
):
super().__init__(
vae,
text_encoder,
tokenizer,
unet,
scheduler,
safety_checker,
feature_extractor,
requires_safety_checker,
)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
@torch.no_grad()
def __call__(
self,
prompt: str,
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: str = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
rp_args: Dict[str, str] = None,
):
active = KBRK in prompt[0] if isinstance(prompt, list) else KBRK in prompt
if negative_prompt is None:
negative_prompt = "" if isinstance(prompt, str) else [""] * len(prompt)
device = self._execution_device
regions = 0
self.power = int(rp_args["power"]) if "power" in rp_args else 1
prompts = prompt if isinstance(prompt, list) else [prompt]
n_prompts = negative_prompt if isinstance(prompt, str) else [negative_prompt]
self.batch = batch = num_images_per_prompt * len(prompts)
all_prompts_cn, all_prompts_p = promptsmaker(prompts, num_images_per_prompt)
all_n_prompts_cn, _ = promptsmaker(n_prompts, num_images_per_prompt)
equal = len(all_prompts_cn) == len(all_n_prompts_cn)
if Compel:
compel = Compel(tokenizer=self.tokenizer, text_encoder=self.text_encoder)
def getcompelembs(prps):
embl = []
for prp in prps:
embl.append(compel.build_conditioning_tensor(prp))
return torch.cat(embl)
conds = getcompelembs(all_prompts_cn)
unconds = getcompelembs(all_n_prompts_cn)
embs = getcompelembs(prompts)
n_embs = getcompelembs(n_prompts)
prompt = negative_prompt = None
else:
conds = self.encode_prompt(prompts, device, 1, True)[0]
unconds = (
self.encode_prompt(n_prompts, device, 1, True)[0]
if equal
else self.encode_prompt(all_n_prompts_cn, device, 1, True)[0]
)
embs = n_embs = None
if not active:
pcallback = None
mode = None
else:
if any(x in rp_args["mode"].upper() for x in ["COL", "ROW"]):
mode = "COL" if "COL" in rp_args["mode"].upper() else "ROW"
ocells, icells, regions = make_cells(rp_args["div"])
elif "PRO" in rp_args["mode"].upper():
regions = len(all_prompts_p[0])
mode = "PROMPT"
reset_attnmaps(self)
self.ex = "EX" in rp_args["mode"].upper()
self.target_tokens = target_tokens = tokendealer(self, all_prompts_p)
thresholds = [float(x) for x in rp_args["th"].split(",")]
orig_hw = (height, width)
revers = True
def pcallback(s_self, step: int, timestep: int, latents: torch.FloatTensor, selfs=None):
if "PRO" in mode: # in Prompt mode, make masks from sum of attension maps
self.step = step
if len(self.attnmaps_sizes) > 3:
self.history[step] = self.attnmaps.copy()
for hw in self.attnmaps_sizes:
allmasks = []
basemasks = [None] * batch
for tt, th in zip(target_tokens, thresholds):
for b in range(batch):
key = f"{tt}-{b}"
_, mask, _ = makepmask(self, self.attnmaps[key], hw[0], hw[1], th, step)
mask = mask.unsqueeze(0).unsqueeze(-1)
if self.ex:
allmasks[b::batch] = [x - mask for x in allmasks[b::batch]]
allmasks[b::batch] = [torch.where(x > 0, 1, 0) for x in allmasks[b::batch]]
allmasks.append(mask)
basemasks[b] = mask if basemasks[b] is None else basemasks[b] + mask
basemasks = [1 - mask for mask in basemasks]
basemasks = [torch.where(x > 0, 1, 0) for x in basemasks]
allmasks = basemasks + allmasks
self.attnmasks[hw] = torch.cat(allmasks)
self.maskready = True
return latents
def hook_forward(module):
# diffusers==0.23.2
def forward(
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
) -> torch.Tensor:
attn = module
xshape = hidden_states.shape
self.hw = (h, w) = split_dims(xshape[1], *orig_hw)
if revers:
nx, px = hidden_states.chunk(2)
else:
px, nx = hidden_states.chunk(2)
if equal:
hidden_states = torch.cat(
[px for i in range(regions)] + [nx for i in range(regions)],
0,
)
encoder_hidden_states = torch.cat([conds] + [unconds])
else:
hidden_states = torch.cat([px for i in range(regions)] + [nx], 0)
encoder_hidden_states = torch.cat([conds] + [unconds])
residual = hidden_states
args = () if USE_PEFT_BACKEND else (scale,)
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
args = () if USE_PEFT_BACKEND else (scale,)
query = attn.to_q(hidden_states, *args)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, *args)
value = attn.to_v(encoder_hidden_states, *args)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = scaled_dot_product_attention(
self,
query,
key,
value,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=False,
getattn="PRO" in mode,
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
#### Regional Prompting Col/Row mode
if any(x in mode for x in ["COL", "ROW"]):
reshaped = hidden_states.reshape(hidden_states.size()[0], h, w, hidden_states.size()[2])
center = reshaped.shape[0] // 2
px = reshaped[0:center] if equal else reshaped[0:-batch]
nx = reshaped[center:] if equal else reshaped[-batch:]
outs = [px, nx] if equal else [px]
for out in outs:
c = 0
for i, ocell in enumerate(ocells):
for icell in icells[i]:
if "ROW" in mode:
out[
0:batch,
int(h * ocell[0]) : int(h * ocell[1]),
int(w * icell[0]) : int(w * icell[1]),
:,
] = out[
c * batch : (c + 1) * batch,
int(h * ocell[0]) : int(h * ocell[1]),
int(w * icell[0]) : int(w * icell[1]),
:,
]
else:
out[
0:batch,
int(h * icell[0]) : int(h * icell[1]),
int(w * ocell[0]) : int(w * ocell[1]),
:,
] = out[
c * batch : (c + 1) * batch,
int(h * icell[0]) : int(h * icell[1]),
int(w * ocell[0]) : int(w * ocell[1]),
:,
]
c += 1
px, nx = (px[0:batch], nx[0:batch]) if equal else (px[0:batch], nx)
hidden_states = torch.cat([nx, px], 0) if revers else torch.cat([px, nx], 0)
hidden_states = hidden_states.reshape(xshape)
#### Regional Prompting Prompt mode
elif "PRO" in mode:
px, nx = (
torch.chunk(hidden_states) if equal else hidden_states[0:-batch],
hidden_states[-batch:],
)
if (h, w) in self.attnmasks and self.maskready:
def mask(input):
out = torch.multiply(input, self.attnmasks[(h, w)])
for b in range(batch):
for r in range(1, regions):
out[b] = out[b] + out[r * batch + b]
return out
px, nx = (mask(px), mask(nx)) if equal else (mask(px), nx)
px, nx = (px[0:batch], nx[0:batch]) if equal else (px[0:batch], nx)
hidden_states = torch.cat([nx, px], 0) if revers else torch.cat([px, nx], 0)
return hidden_states
return forward
def hook_forwards(root_module: torch.nn.Module):
for name, module in root_module.named_modules():
if "attn2" in name and module.__class__.__name__ == "Attention":
module.forward = hook_forward(module)
hook_forwards(self.unet)
output = StableDiffusionPipeline(**self.components)(
prompt=prompt,
prompt_embeds=embs,
negative_prompt=negative_prompt,
negative_prompt_embeds=n_embs,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback_on_step_end=pcallback,
)
if "save_mask" in rp_args:
save_mask = rp_args["save_mask"]
else:
save_mask = False
if mode == "PROMPT" and save_mask:
saveattnmaps(
self,
output,
height,
width,
thresholds,
num_inference_steps // 2,
regions,
)
return output
### Make prompt list for each regions
def promptsmaker(prompts, batch):
out_p = []
plen = len(prompts)
for prompt in prompts:
add = ""
if KCOMM in prompt:
add, prompt = prompt.split(KCOMM)
add = add + " "
prompts = prompt.split(KBRK)
out_p.append([add + p for p in prompts])
out = [None] * batch * len(out_p[0]) * len(out_p)
for p, prs in enumerate(out_p): # inputs prompts
for r, pr in enumerate(prs): # prompts for regions
start = (p + r * plen) * batch
out[start : start + batch] = [pr] * batch # P1R1B1,P1R1B2...,P1R2B1,P1R2B2...,P2R1B1...
return out, out_p
### make regions from ratios
### ";" makes outercells, "," makes inner cells
def make_cells(ratios):
if ";" not in ratios and "," in ratios:
ratios = ratios.replace(",", ";")
ratios = ratios.split(";")
ratios = [inratios.split(",") for inratios in ratios]
icells = []
ocells = []
def startend(cells, array):
current_start = 0
array = [float(x) for x in array]
for value in array:
end = current_start + (value / sum(array))
cells.append([current_start, end])
current_start = end
startend(ocells, [r[0] for r in ratios])
for inratios in ratios:
if 2 > len(inratios):
icells.append([[0, 1]])
else:
add = []
startend(add, inratios[1:])
icells.append(add)
return ocells, icells, sum(len(cell) for cell in icells)
def make_emblist(self, prompts):
with torch.no_grad():
tokens = self.tokenizer(
prompts,
max_length=self.tokenizer.model_max_length,
padding=True,
truncation=True,
return_tensors="pt",
).input_ids.to(self.device)
embs = self.text_encoder(tokens, output_hidden_states=True).last_hidden_state.to(self.device, dtype=self.dtype)
return embs
def split_dims(xs, height, width):
xs = xs
def repeat_div(x, y):
while y > 0:
x = math.ceil(x / 2)
y = y - 1
return x
scale = math.ceil(math.log2(math.sqrt(height * width / xs)))
dsh = repeat_div(height, scale)
dsw = repeat_div(width, scale)
return dsh, dsw
##### for prompt mode
def get_attn_maps(self, attn):
height, width = self.hw
target_tokens = self.target_tokens
if (height, width) not in self.attnmaps_sizes:
self.attnmaps_sizes.append((height, width))
for b in range(self.batch):
for t in target_tokens:
power = self.power
add = attn[b, :, :, t[0] : t[0] + len(t)] ** (power) * (self.attnmaps_sizes.index((height, width)) + 1)
add = torch.sum(add, dim=2)
key = f"{t}-{b}"
if key not in self.attnmaps:
self.attnmaps[key] = add
else:
if self.attnmaps[key].shape[1] != add.shape[1]:
add = add.view(8, height, width)
add = FF.resize(add, self.attnmaps_sizes[0], antialias=None)
add = add.reshape_as(self.attnmaps[key])
self.attnmaps[key] = self.attnmaps[key] + add
def reset_attnmaps(self): # init parameters in every batch
self.step = 0
self.attnmaps = {} # maked from attention maps
self.attnmaps_sizes = [] # height,width set of u-net blocks
self.attnmasks = {} # maked from attnmaps for regions
self.maskready = False
self.history = {}
def saveattnmaps(self, output, h, w, th, step, regions):
masks = []
for i, mask in enumerate(self.history[step].values()):
img, _, mask = makepmask(self, mask, h, w, th[i % len(th)], step)
if self.ex:
masks = [x - mask for x in masks]
masks.append(mask)
if len(masks) == regions - 1:
output.images.extend([FF.to_pil_image(mask) for mask in masks])
masks = []
else:
output.images.append(img)
def makepmask(
self, mask, h, w, th, step
): # make masks from attention cache return [for preview, for attention, for Latent]
th = th - step * 0.005
if 0.05 >= th:
th = 0.05
mask = torch.mean(mask, dim=0)
mask = mask / mask.max().item()
mask = torch.where(mask > th, 1, 0)
mask = mask.float()
mask = mask.view(1, *self.attnmaps_sizes[0])
img = FF.to_pil_image(mask)
img = img.resize((w, h))
mask = FF.resize(mask, (h, w), interpolation=FF.InterpolationMode.NEAREST, antialias=None)
lmask = mask
mask = mask.reshape(h * w)
mask = torch.where(mask > 0.1, 1, 0)
return img, mask, lmask
def tokendealer(self, all_prompts):
for prompts in all_prompts:
targets = [p.split(",")[-1] for p in prompts[1:]]
tt = []
for target in targets:
ptokens = (
self.tokenizer(
prompts,
max_length=self.tokenizer.model_max_length,
padding=True,
truncation=True,
return_tensors="pt",
).input_ids
)[0]
ttokens = (
self.tokenizer(
target,
max_length=self.tokenizer.model_max_length,
padding=True,
truncation=True,
return_tensors="pt",
).input_ids
)[0]
tlist = []
for t in range(ttokens.shape[0] - 2):
for p in range(ptokens.shape[0]):
if ttokens[t + 1] == ptokens[p]:
tlist.append(p)
if tlist != []:
tt.append(tlist)
return tt
def scaled_dot_product_attention(
self,
query,
key,
value,
attn_mask=None,
dropout_p=0.0,
is_causal=False,
scale=None,
getattn=False,
) -> torch.Tensor:
# Efficient implementation equivalent to the following:
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(L, S, dtype=query.dtype, device=self.device)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
if getattn:
get_attn_maps(self, attn_weight)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight @ value