{"task_id":"HumanEval\/0","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(numbers: List[float], threshold: float) -> bool:\n \"\"\" Check if in given list of numbers, are any two numbers closer to each other than\n given threshold. \tassert f6([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True, \"Test 0\"\n\tassert f6([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False,\"Test 1\"\n\tassert f6([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True,\"Test 2\"\n\tassert f6([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False,\"Test 3\"\n\tassert f6([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True,\"Test 4\"\n\tassert f6([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True,\"Test 5\"\n\tassert f6([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False,\"Test 6\"\n\t\"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f6 translation\n","entry_point":"has_close_elements","canonical_solution":" for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n","test":"def check(candidate):\n assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True, \"Test 0\"\n assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False,\"Test 1\"\n assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True,\"Test 2\"\n assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False,\"Test 3\"\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True,\"Test 4\"\n assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True,\"Test 5\"\n assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False,\"Test 6\"\n"} {"task_id":"HumanEval\/1","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(paren_string: str) -> List[str]:\n \"\"\" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to\n separate those group into separate strings and return the list of those.\n Separate groups are balanced (each open brace is properly closed) and not nested within each other\n Ignore any spaces in the input string. \tassert f6('(()()) ((())) () ((())()())') == ['(()())', '((()))', '()', '((())()())'], \"Test 0\"\n\tassert f6('() (()) ((())) (((())))') == ['()', '(())', '((()))', '(((())))'], \"Test 1\"\n\tassert f6('(()(())((())))') == ['(()(())((())))'], \"Test 2\"\n\tassert f6('( ) (( )) (( )( ))') == ['()', '(())', '(()())'], \"Test 3\"\n\t\"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f6 translation\n","entry_point":"separate_paren_groups","canonical_solution":" result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n","test":"def check(candidate):\n assert candidate('(()()) ((())) () ((())()())') == ['(()())', '((()))', '()', '((())()())'], \"Test 0\"\n assert candidate('() (()) ((())) (((())))') == ['()', '(())', '((()))', '(((())))'], \"Test 1\"\n assert candidate('(()(())((())))') == ['(()(())((())))'], \"Test 2\"\n assert candidate('( ) (( )) (( )( ))') == ['()', '(())', '(()())'], \"Test 3\"\n"} {"task_id":"HumanEval\/2","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(number: float) -> float:\n \"\"\" Given a positive floating point number, it can be decomposed into\n and integer part (largest integer smaller than given number) and decimals\n (leftover part always smaller than 1).\n\n Return the decimal part of the number. \tassert f6(3.5) == 0.5,\"Test 0\"\n\tassert abs(f6(1.33) - 0.33) < 1e-6,\"Test 1\"\n\tassert abs(f6(123.456) - 0.456) < 1e-6,\"Test 2\"\n\t\"\"\"\n return number % 1.0\n\n# Rust f6 translation\n","entry_point":"truncate_number","canonical_solution":" return number % 1.0\n","test":"def check(candidate):\n assert candidate(3.5) == 0.5,\"Test 0\"\n assert abs(candidate(1.33) - 0.33) < 1e-6,\"Test 1\"\n assert abs(candidate(123.456) - 0.456) < 1e-6,\"Test 2\"\n"} {"task_id":"HumanEval\/3","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(operations: List[int]) -> bool:\n \"\"\" You're given a list of deposit and withdrawal operations on a bank account that starts with\n zero balance. Your task is to detect if at any point the balance of account fallls below zero, and\n\tassert f6([]) == False,\"Test 0\"\n\tassert f6([1, 2, -3, 1, 2, -3]) == False,\"Test 1\"\n\tassert f6([1, 2, -4, 5, 6]) == True,\"Test 2\"\n\tassert f6([1, -1, 2, -2, 5, -5, 4, -4]) == False,\"Test 3\"\n\tassert f6([1, -1, 2, -2, 5, -5, 4, -5]) == True,\"Test 4\"\n\tassert f6([1, -2, 2, -2, 5, -5, 4, -4]) == True,\"Test 5\"\n\t\"\"\"\n balance = 0\n\n for op in operations:\n balance += op\n if balance < 0:\n return True\n\n return False\n\n# Rust f6 translation\n","entry_point":"below_zero","canonical_solution":" balance = 0\n\n for op in operations:\n balance += op\n if balance < 0:\n return True\n\n return False\n","test":"def check(candidate):\n assert candidate([]) == False,\"Test 0\"\n assert candidate([1, 2, -3, 1, 2, -3]) == False,\"Test 1\"\n assert candidate([1, 2, -4, 5, 6]) == True,\"Test 2\"\n assert candidate([1, -1, 2, -2, 5, -5, 4, -4]) == False,\"Test 3\"\n assert candidate([1, -1, 2, -2, 5, -5, 4, -5]) == True,\"Test 4\"\n assert candidate([1, -2, 2, -2, 5, -5, 4, -4]) == True,\"Test 5\"\n"} {"task_id":"HumanEval\/4","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(numbers: List[float]) -> float:\n \"\"\" For a given list of input numbers, calculate Mean Absolute Deviation\n around the mean of this dataset.\n Mean Absolute Deviation is the average absolute difference between each\n element and a centerpoint (mean in this case):\n MAD = average | x - x_mean | \tassert abs(f6([1.0, 2.0, 3.0]) - 2.0\/3.0) < 1e-6,\"Test 0\"\n\tassert abs(f6([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6,\"Test 1\"\n\tassert abs(f6([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0\/5.0) < 1e-6,\"Test 2\"\n\t\"\"\"\n mean = sum(numbers) \/ len(numbers)\n return sum(abs(x - mean) for x in numbers) \/ len(numbers)\n\n# Rust f6 translation\n","entry_point":"mean_absolute_deviation","canonical_solution":" mean = sum(numbers) \/ len(numbers)\n return sum(abs(x - mean) for x in numbers) \/ len(numbers)\n","test":"def check(candidate):\n assert abs(candidate([1.0, 2.0, 3.0]) - 2.0\/3.0) < 1e-6,\"Test 0\"\n assert abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6,\"Test 1\"\n assert abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0\/5.0) < 1e-6,\"Test 2\"\n"} {"task_id":"HumanEval\/5","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(numbers: List[int], delimeter: int) -> List[int]:\n \"\"\" Insert a number 'delimeter' between every two consecutive elements of input list `numbers' \tassert f6([], 7) == [],\"Test 0\"\n\tassert f6([5, 6, 3, 2], 8) == [5, 8, 6, 8, 3, 8, 2],\"Test 1\"\n\tassert f6([2, 2, 2], 2) == [2, 2, 2, 2, 2],\"Test 2\"\n\t\"\"\"\n if not numbers:\n return []\n\n result = []\n\n for n in numbers[:-1]:\n result.append(n)\n result.append(delimeter)\n\n result.append(numbers[-1])\n\n return result\n\n# Rust f6 translation\n","entry_point":"intersperse","canonical_solution":" if not numbers:\n return []\n\n result = []\n\n for n in numbers[:-1]:\n result.append(n)\n result.append(delimeter)\n\n result.append(numbers[-1])\n\n return result\n","test":"def check(candidate):\n assert candidate([], 7) == [],\"Test 0\"\n assert candidate([5, 6, 3, 2], 8) == [5, 8, 6, 8, 3, 8, 2],\"Test 1\"\n assert candidate([2, 2, 2], 2) == [2, 2, 2, 2, 2],\"Test 2\"\n"} {"task_id":"HumanEval\/6","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(paren_string: str) -> List[int]:\n \"\"\" Input to this function is a string represented multiple groups for nested parentheses separated by spaces.\n For each of the group, output the deepest level of nesting of parentheses.\n E.g. (()()) has maximum two levels of nesting while ((())) has three. \tassert f6('(()()) ((())) () ((())()())') == [2, 3, 1, 3],\"Test 0\"\n\tassert f6('() (()) ((())) (((())))') == [1, 2, 3, 4],\"Test 1\"\n\tassert f6('(()(())((())))') == [4],\"Test 2\"\n\t\"\"\"\n def parse_paren_group(s):\n depth = 0\n max_depth = 0\n for c in s:\n if c == '(':\n depth += 1\n max_depth = max(depth, max_depth)\n else:\n depth -= 1\n\n return max_depth\n\n return [parse_paren_group(x) for x in paren_string.split(' ') if x]\n\n# Rust f6 translation\n","entry_point":"parse_nested_parens","canonical_solution":" def parse_paren_group(s):\n depth = 0\n max_depth = 0\n for c in s:\n if c == '(':\n depth += 1\n max_depth = max(depth, max_depth)\n else:\n depth -= 1\n\n return max_depth\n\n return [parse_paren_group(x) for x in paren_string.split(' ') if x]\n","test":"def check(candidate):\n assert candidate('(()()) ((())) () ((())()())') == [2, 3, 1, 3],\"Test 0\"\n assert candidate('() (()) ((())) (((())))') == [1, 2, 3, 4],\"Test 1\"\n assert candidate('(()(())((())))') == [4],\"Test 2\"\n"} {"task_id":"HumanEval\/7","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(strings: List[str], substring: str) -> List[str]:\n \"\"\" Filter an input list of strings only for ones that contain given substring \tassert f6([], 'john') == [],\"Test 0\"\n\tassert f6(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx'],\"Test 1\"\n\tassert f6(['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx') == ['xxx', 'aaaxxy', 'xxxAAA', 'xxx'],\"Test 2\"\n\tassert f6(['grunt', 'trumpet', 'prune', 'gruesome'], 'run') == ['grunt', 'prune'],\"Test 3\"\n\t\"\"\"\n return [x for x in strings if substring in x]\n\n# Rust f6 translation\n","entry_point":"filter_by_substring","canonical_solution":" return [x for x in strings if substring in x]\n","test":"def check(candidate):\n assert candidate([], 'john') == [],\"Test 0\"\n assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx'],\"Test 1\"\n assert candidate(['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx') == ['xxx', 'aaaxxy', 'xxxAAA', 'xxx'],\"Test 2\"\n assert candidate(['grunt', 'trumpet', 'prune', 'gruesome'], 'run') == ['grunt', 'prune'],\"Test 3\"\n"} {"task_id":"HumanEval\/8","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List, Tuple\n\n\ndef f6(numbers: List[int]) -> Tuple[int, int]:\n \"\"\" For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list.\n Empty sum should be equal to 0 and empty product should be equal to 1. \tassert f6([]) == (0, 1),\"Test 0\"\n\tassert f6([1, 1, 1]) == (3, 1),\"Test 1\"\n\tassert f6([100, 0]) == (100, 0),\"Test 2\"\n\tassert f6([3, 5, 7]) == (3 + 5 + 7, 3 * 5 * 7),\"Test 3\"\n\tassert f6([10]) == (10, 10),\"Test 4\"\n\t\"\"\"\n sum_value = 0\n prod_value = 1\n\n for n in numbers:\n sum_value += n\n prod_value *= n\n return sum_value, prod_value\n\n# Rust f6 translation\n","entry_point":"sum_product","canonical_solution":" sum_value = 0\n prod_value = 1\n\n for n in numbers:\n sum_value += n\n prod_value *= n\n return sum_value, prod_value\n","test":"def check(candidate):\n assert candidate([]) == (0, 1),\"Test 0\"\n assert candidate([1, 1, 1]) == (3, 1),\"Test 1\"\n assert candidate([100, 0]) == (100, 0),\"Test 2\"\n assert candidate([3, 5, 7]) == (3 + 5 + 7, 3 * 5 * 7),\"Test 3\"\n assert candidate([10]) == (10, 10),\"Test 4\"\n"} {"task_id":"HumanEval\/9","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List, Tuple\n\n\ndef f6(numbers: List[int]) -> List[int]:\n \"\"\" From a given list of integers, generate a list of rolling maximum element found until given moment\n in the sequence. \tassert f6([]) == [],\"Test 0\"\n\tassert f6([1, 2, 3, 4]) == [1, 2, 3, 4],\"Test 1\"\n\tassert f6([4, 3, 2, 1]) == [4, 4, 4, 4],\"Test 2\"\n\tassert f6([3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100],\"Test 3\"\n\t\"\"\"\n running_max = None\n result = []\n\n for n in numbers:\n if running_max is None:\n running_max = n\n else:\n running_max = max(running_max, n)\n\n result.append(running_max)\n\n return result\n\n# Rust f6 translation\n","entry_point":"rolling_max","canonical_solution":" running_max = None\n result = []\n\n for n in numbers:\n if running_max is None:\n running_max = n\n else:\n running_max = max(running_max, n)\n\n result.append(running_max)\n\n return result\n","test":"def check(candidate):\n assert candidate([]) == [],\"Test 0\"\n assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4],\"Test 1\"\n assert candidate([4, 3, 2, 1]) == [4, 4, 4, 4],\"Test 2\"\n assert candidate([3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100],\"Test 3\"\n"} {"task_id":"HumanEval\/10","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef is_palindrome(string: str) -> bool:\n \"\"\" Test if given string is a palindrome \"\"\"\n return string == string[::-1]\n\n\ndef f6(string: str) -> str:\n \"\"\" Find the shortest palindrome that begins with a supplied string.\n Algorithm idea is simple:\n - Find the longest postfix of supplied string that is a palindrome.\n - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. \tassert f6('') == '',\"Test 0\"\n\tassert f6('x') == 'x',\"Test 1\"\n\tassert f6('xyz') == 'xyzyx',\"Test 2\"\n\tassert f6('xyx') == 'xyx',\"Test 3\"\n\tassert f6('jerry') == 'jerryrrej',\"Test 4\"\n\t\"\"\"\n if not string:\n return ''\n\n beginning_of_suffix = 0\n\n while not is_palindrome(string[beginning_of_suffix:]):\n beginning_of_suffix += 1\n\n return string + string[:beginning_of_suffix][::-1]\n\n# Rust f6 translation\n","entry_point":"make_palindrome","canonical_solution":" if not string:\n return ''\n\n beginning_of_suffix = 0\n\n while not is_palindrome(string[beginning_of_suffix:]):\n beginning_of_suffix += 1\n\n return string + string[:beginning_of_suffix][::-1]\n","test":"def check(candidate):\n assert candidate('') == '',\"Test 0\"\n assert candidate('x') == 'x',\"Test 1\"\n assert candidate('xyz') == 'xyzyx',\"Test 2\"\n assert candidate('xyx') == 'xyx',\"Test 3\"\n assert candidate('jerry') == 'jerryrrej',\"Test 4\"\n"} {"task_id":"HumanEval\/11","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(a: str, b: str) -> str:\n \"\"\" Input are two strings a and b consisting only of 1s and 0s.\n Perform binary XOR on these inputs and return result also as a string. \tassert f6('111000', '101010') == '010010',\"Test 0\"\n\tassert f6('1', '1') == '0',\"Test 1\"\n\tassert f6('0101', '0000') == '0101',\"Test 2\"\n\t\"\"\"\n def xor(i, j):\n if i == j:\n return '0'\n else:\n return '1'\n\n return ''.join(xor(x, y) for x, y in zip(a, b))\n\n# Rust f6 translation\n","entry_point":"string_xor","canonical_solution":" def xor(i, j):\n if i == j:\n return '0'\n else:\n return '1'\n\n return ''.join(xor(x, y) for x, y in zip(a, b))\n","test":"def check(candidate):\n assert candidate('111000', '101010') == '010010',\"Test 0\"\n assert candidate('1', '1') == '0',\"Test 1\"\n assert candidate('0101', '0000') == '0101',\"Test 2\"\n"} {"task_id":"HumanEval\/12","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List, Optional\n\n\ndef f6(strings: List[str]) -> Optional[str]:\n \"\"\" Out of list of strings, return the f6 one. Return the first one in case of multiple\n strings of the same length. Return None in case the input list is empty. \tassert f6([]) == None,\"Test 0\"\n\tassert f6(['x', 'y', 'z']) == 'x',\"Test 1\"\n\tassert f6(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == 'zzzz',\"Test 2\"\n\t\"\"\"\n if not strings:\n return None\n\n maxlen = max(len(x) for x in strings)\n for s in strings:\n if len(s) == maxlen:\n return s\n\n# Rust f6 translation\n","entry_point":"longest","canonical_solution":" if not strings:\n return None\n\n maxlen = max(len(x) for x in strings)\n for s in strings:\n if len(s) == maxlen:\n return s\n","test":"def check(candidate):\n assert candidate([]) == None,\"Test 0\"\n assert candidate(['x', 'y', 'z']) == 'x',\"Test 1\"\n assert candidate(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == 'zzzz',\"Test 2\"\n"} {"task_id":"HumanEval\/13","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(a: int, b: int) -> int:\n \"\"\" Return a greatest common divisor of two integers a and b \tassert f6(3, 7) == 1,\"Test 0\"\n\tassert f6(10, 15) == 5,\"Test 1\"\n\tassert f6(49, 14) == 7,\"Test 2\"\n\tassert f6(144, 60) == 12,\"Test 3\"\n\t\"\"\"\n while b:\n a, b = b, a % b\n return a\n\n# Rust f6 translation\n","entry_point":"greatest_common_divisor","canonical_solution":" while b:\n a, b = b, a % b\n return a\n","test":"def check(candidate):\n assert candidate(3, 7) == 1,\"Test 0\"\n assert candidate(10, 15) == 5,\"Test 1\"\n assert candidate(49, 14) == 7,\"Test 2\"\n assert candidate(144, 60) == 12,\"Test 3\"\n"} {"task_id":"HumanEval\/14","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(string: str) -> List[str]:\n \"\"\" Return list of all prefixes from shortest to longest of the input string \tassert f6('') == [],\"Test 0\"\n\tassert f6('asdfgh') == ['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh'],\"Test 1\"\n\tassert f6('WWW') == ['W', 'WW', 'WWW'],\"Test 2\"\n\t\"\"\"\n result = []\n\n for i in range(len(string)):\n result.append(string[:i+1])\n return result\n\n# Rust f6 translation\n","entry_point":"all_prefixes","canonical_solution":" result = []\n\n for i in range(len(string)):\n result.append(string[:i+1])\n return result\n","test":"def check(candidate):\n assert candidate('') == [],\"Test 0\"\n assert candidate('asdfgh') == ['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh'],\"Test 1\"\n assert candidate('WWW') == ['W', 'WW', 'WWW'],\"Test 2\"\n"} {"task_id":"HumanEval\/15","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(n: int) -> str:\n \"\"\" Return a string containing space-delimited numbers starting from 0 upto n inclusive. \tassert f6(0) == '0',\"Test 0\"\n\tassert f6(3) == '0 1 2 3',\"Test 1\"\n\tassert f6(10) == '0 1 2 3 4 5 6 7 8 9 10',\"Test 2\"\n\t\"\"\"\n return ' '.join([str(x) for x in range(n + 1)])\n\n# Rust f6 translation\n","entry_point":"string_sequence","canonical_solution":" return ' '.join([str(x) for x in range(n + 1)])\n","test":"def check(candidate):\n assert candidate(0) == '0',\"Test 0\"\n assert candidate(3) == '0 1 2 3',\"Test 1\"\n assert candidate(10) == '0 1 2 3 4 5 6 7 8 9 10',\"Test 2\"\n"} {"task_id":"HumanEval\/16","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(string: str) -> int:\n \"\"\" Given a string, find out how many distinct characters (regardless of case) does it consist of \tassert f6('') == 0,\"Test 0\"\n\tassert f6('abcde') == 5,\"Test 1\"\n\tassert f6('abcde' + 'cade' + 'CADE') == 5,\"Test 2\"\n\tassert f6('aaaaAAAAaaaa') == 1,\"Test 3\"\n\tassert f6('Jerry jERRY JeRRRY') == 5,\"Test 4\"\n\t\"\"\"\n return len(set(string.lower()))\n\n# Rust f6 translation\n","entry_point":"count_distinct_characters","canonical_solution":" return len(set(string.lower()))\n","test":"def check(candidate):\n assert candidate('') == 0,\"Test 0\"\n assert candidate('abcde') == 5,\"Test 1\"\n assert candidate('abcde' + 'cade' + 'CADE') == 5,\"Test 2\"\n assert candidate('aaaaAAAAaaaa') == 1,\"Test 3\"\n assert candidate('Jerry jERRY JeRRRY') == 5,\"Test 4\"\n"} {"task_id":"HumanEval\/17","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(music_string: str) -> List[int]:\n \"\"\" Input to this function is a string representing musical notes in a special ASCII format.\n Your task is to parse this string and return list of integers corresponding to how many beats does each\n not last.\n\n Here is a legend:\n 'o' - whole note, lasts four beats\n 'o|' - half note, lasts two beats\n '.|' - quater note, lasts one beat \tassert f6('') == [],\"Test 0\"\n\tassert f6('o o o o') == [4, 4, 4, 4],\"Test 1\"\n\tassert f6('.| .| .| .|') == [1, 1, 1, 1],\"Test 2\"\n\tassert f6('o| o| .| .| o o o o') == [2, 2, 1, 1, 4, 4, 4, 4],\"Test 3\"\n\tassert f6('o| .| o| .| o o| o o|') == [2, 1, 2, 1, 4, 2, 4, 2],\"Test 4\"\n\t\"\"\"\n note_map = {'o': 4, 'o|': 2, '.|': 1}\n return [note_map[x] for x in music_string.split(' ') if x]\n\n# Rust f6 translation\n","entry_point":"parse_music","canonical_solution":" note_map = {'o': 4, 'o|': 2, '.|': 1}\n return [note_map[x] for x in music_string.split(' ') if x]\n","test":"def check(candidate):\n assert candidate('') == [],\"Test 0\"\n assert candidate('o o o o') == [4, 4, 4, 4],\"Test 1\"\n assert candidate('.| .| .| .|') == [1, 1, 1, 1],\"Test 2\"\n assert candidate('o| o| .| .| o o o o') == [2, 2, 1, 1, 4, 4, 4, 4],\"Test 3\"\n assert candidate('o| .| o| .| o o| o o|') == [2, 1, 2, 1, 4, 2, 4, 2],\"Test 4\"\n"} {"task_id":"HumanEval\/18","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(string: str, substring: str) -> int:\n \"\"\" Find how many times a given substring can be found in the original string. Count overlaping cases. \tassert f6('', 'x') == 0,\"Test 0\"\n\tassert f6('xyxyxyx', 'x') == 4,\"Test 1\"\n\tassert f6('cacacacac', 'cac') == 4,\"Test 2\"\n\tassert f6('john doe', 'john') == 1,\"Test 3\"\n\t\"\"\"\n times = 0\n\n for i in range(len(string) - len(substring) + 1):\n if string[i:i+len(substring)] == substring:\n times += 1\n\n return times\n\n# Rust f6 translation\n","entry_point":"how_many_times","canonical_solution":" times = 0\n\n for i in range(len(string) - len(substring) + 1):\n if string[i:i+len(substring)] == substring:\n times += 1\n\n return times\n","test":"def check(candidate):\n assert candidate('', 'x') == 0,\"Test 0\"\n assert candidate('xyxyxyx', 'x') == 4,\"Test 1\"\n assert candidate('cacacacac', 'cac') == 4,\"Test 2\"\n assert candidate('john doe', 'john') == 1,\"Test 3\"\n"} {"task_id":"HumanEval\/19","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(numbers: str) -> str:\n \"\"\" Input is a space-delimited string of numberals from 'zero' to 'nine'.\n Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.\n Return the string with numbers sorted from smallest to largest \tassert f6('') == '',\"Test 0\"\n\tassert f6('three') == 'three',\"Test 1\"\n\tassert f6('three five nine') == 'three five nine',\"Test 2\"\n\tassert f6('five zero four seven nine eight') == 'zero four five seven eight nine',\"Test 3\"\n\tassert f6('six five four three two one zero') == 'zero one two three four five six',\"Test 4\"\n\t\"\"\"\n value_map = {\n 'zero': 0,\n 'one': 1,\n 'two': 2,\n 'three': 3,\n 'four': 4,\n 'five': 5,\n 'six': 6,\n 'seven': 7,\n 'eight': 8,\n 'nine': 9\n }\n return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x]))\n\n# Rust f6 translation\n","entry_point":"sort_numbers","canonical_solution":" value_map = {\n 'zero': 0,\n 'one': 1,\n 'two': 2,\n 'three': 3,\n 'four': 4,\n 'five': 5,\n 'six': 6,\n 'seven': 7,\n 'eight': 8,\n 'nine': 9\n }\n return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x]))\n","test":"def check(candidate):\n assert candidate('') == '',\"Test 0\"\n assert candidate('three') == 'three',\"Test 1\"\n assert candidate('three five nine') == 'three five nine',\"Test 2\"\n assert candidate('five zero four seven nine eight') == 'zero four five seven eight nine',\"Test 3\"\n assert candidate('six five four three two one zero') == 'zero one two three four five six',\"Test 4\"\n"} {"task_id":"HumanEval\/20","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List, Tuple\n\n\ndef f6(numbers: List[float]) -> Tuple[float, float]:\n \"\"\" From a supplied list of numbers (of length at least two) select and return two that are the closest to each\n other and return them in order (smaller number, larger number). \tassert f6([1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0),\"Test 0\"\n\tassert f6([1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9),\"Test 1\"\n\tassert f6([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2),\"Test 2\"\n\tassert f6([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0),\"Test 3\"\n\tassert f6([1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1),\"Test 4\"\n\t\"\"\"\n closest_pair = None\n distance = None\n\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n if distance is None:\n distance = abs(elem - elem2)\n closest_pair = tuple(sorted([elem, elem2]))\n else:\n new_distance = abs(elem - elem2)\n if new_distance < distance:\n distance = new_distance\n closest_pair = tuple(sorted([elem, elem2]))\n\n return closest_pair\n\n# Rust f6 translation\n","entry_point":"find_closest_elements","canonical_solution":" closest_pair = None\n distance = None\n\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n if distance is None:\n distance = abs(elem - elem2)\n closest_pair = tuple(sorted([elem, elem2]))\n else:\n new_distance = abs(elem - elem2)\n if new_distance < distance:\n distance = new_distance\n closest_pair = tuple(sorted([elem, elem2]))\n\n return closest_pair\n","test":"def check(candidate):\n assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0),\"Test 0\"\n assert candidate([1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9),\"Test 1\"\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2),\"Test 2\"\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0),\"Test 3\"\n assert candidate([1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1),\"Test 4\"\n"} {"task_id":"HumanEval\/21","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(numbers: List[float]) -> List[float]:\n \"\"\" Given list of numbers (of at least two elements), apply a linear transform to that list,\n such that the smallest number will become 0 and the largest will become 1 \tassert f6([2.0, 49.9]) == [0.0, 1.0],\"Test 0\"\n\tassert f6([100.0, 49.9]) == [1.0, 0.0],\"Test 1\"\n\tassert f6([1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0],\"Test 2\"\n\tassert f6([2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75],\"Test 3\"\n\tassert f6([12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75],\"Test 4\"\n\t\"\"\"\n min_number = min(numbers)\n max_number = max(numbers)\n return [(x - min_number) \/ (max_number - min_number) for x in numbers]\n\n# Rust f6 translation\n","entry_point":"rescale_to_unit","canonical_solution":" min_number = min(numbers)\n max_number = max(numbers)\n return [(x - min_number) \/ (max_number - min_number) for x in numbers]\n","test":"def check(candidate):\n assert candidate([2.0, 49.9]) == [0.0, 1.0],\"Test 0\"\n assert candidate([100.0, 49.9]) == [1.0, 0.0],\"Test 1\"\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0],\"Test 2\"\n assert candidate([2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75],\"Test 3\"\n assert candidate([12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75],\"Test 4\"\n"} {"task_id":"HumanEval\/22","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List, Any\n\n\ndef f6(values: List[Any]) -> List[int]:\n \"\"\" Filter given list of any python values only for integers \tassert f6([]) == [],\"Test 0\"\n\tassert f6([4, {}, [], 23.2, 9, 'adasd']) == [4, 9],\"Test 1\"\n\tassert f6([3, 'c', 3, 3, 'a', 'b']) == [3, 3, 3],\"Test 2\"\n\t\"\"\"\n return [x for x in values if isinstance(x, int)]\n\n# Rust f6 translation\n","entry_point":"filter_integers","canonical_solution":" return [x for x in values if isinstance(x, int)]\n","test":"def check(candidate):\n assert candidate([]) == [],\"Test 0\"\n assert candidate([4, {}, [], 23.2, 9, 'adasd']) == [4, 9],\"Test 1\"\n assert candidate([3, 'c', 3, 3, 'a', 'b']) == [3, 3, 3],\"Test 2\"\n"} {"task_id":"HumanEval\/23","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(string: str) -> int:\n \"\"\" Return length of given string \tassert f6('') == 0,\"Test 0\"\n\tassert f6('x') == 1,\"Test 1\"\n\tassert f6('asdasnakj') == 9,\"Test 2\"\n\t\"\"\"\n return len(string)\n\n# Rust f6 translation\n","entry_point":"strlen","canonical_solution":" return len(string)\n","test":"def check(candidate):\n assert candidate('') == 0,\"Test 0\"\n assert candidate('x') == 1,\"Test 1\"\n assert candidate('asdasnakj') == 9,\"Test 2\"\n"} {"task_id":"HumanEval\/24","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(n: int) -> int:\n \"\"\" For a given number n, find the largest number that divides n evenly, smaller than n \tassert f6(3) == 1,\"Test 0\"\n\tassert f6(7) == 1,\"Test 1\"\n\tassert f6(10) == 5,\"Test 2\"\n\tassert f6(100) == 50,\"Test 3\"\n\tassert f6(49) == 7,\"Test 4\"\n\t\"\"\"\n for i in reversed(range(n)):\n if n % i == 0:\n return i\n\n# Rust f6 translation\n","entry_point":"largest_divisor","canonical_solution":" for i in reversed(range(n)):\n if n % i == 0:\n return i\n","test":"def check(candidate):\n assert candidate(3) == 1,\"Test 0\"\n assert candidate(7) == 1,\"Test 1\"\n assert candidate(10) == 5,\"Test 2\"\n assert candidate(100) == 50,\"Test 3\"\n assert candidate(49) == 7,\"Test 4\"\n"} {"task_id":"HumanEval\/25","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(n: int) -> List[int]:\n \"\"\" Return list of prime factors of given integer in the order from smallest to largest.\n Each of the factors should be listed number of times corresponding to how many times it appeares in factorization.\n Input number should be equal to the product of all factors \tassert f6(2) == [2],\"Test 0\"\n\tassert f6(4) == [2, 2],\"Test 1\"\n\tassert f6(8) == [2, 2, 2],\"Test 2\"\n\tassert f6(3 * 19) == [3, 19],\"Test 3\"\n\tassert f6(3 * 19 * 3 * 19) == [3, 3, 19, 19],\"Test 4\"\n\tassert f6(3 * 19 * 3 * 19 * 3 * 19) == [3, 3, 3, 19, 19, 19],\"Test 5\"\n\tassert f6(3 * 19 * 19 * 19) == [3, 19, 19, 19],\"Test 6\"\n\tassert f6(3 * 2 * 3) == [2, 3, 3],\"Test 7\"\n\t\"\"\"\n import math\n fact = []\n i = 2\n while i <= int(math.sqrt(n) + 1):\n if n % i == 0:\n fact.append(i)\n n \/\/= i\n else:\n i += 1\n\n if n > 1:\n fact.append(n)\n return fact\n\n# Rust f6 translation\n","entry_point":"factorize","canonical_solution":" import math\n fact = []\n i = 2\n while i <= int(math.sqrt(n) + 1):\n if n % i == 0:\n fact.append(i)\n n \/\/= i\n else:\n i += 1\n\n if n > 1:\n fact.append(n)\n return fact\n","test":"def check(candidate):\n assert candidate(2) == [2],\"Test 0\"\n assert candidate(4) == [2, 2],\"Test 1\"\n assert candidate(8) == [2, 2, 2],\"Test 2\"\n assert candidate(3 * 19) == [3, 19],\"Test 3\"\n assert candidate(3 * 19 * 3 * 19) == [3, 3, 19, 19],\"Test 4\"\n assert candidate(3 * 19 * 3 * 19 * 3 * 19) == [3, 3, 3, 19, 19, 19],\"Test 5\"\n assert candidate(3 * 19 * 19 * 19) == [3, 19, 19, 19],\"Test 6\"\n assert candidate(3 * 2 * 3) == [2, 3, 3],\"Test 7\"\n"} {"task_id":"HumanEval\/26","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(numbers: List[int]) -> List[int]:\n \"\"\" From a list of integers, remove all elements that occur more than once.\n Keep order of elements left the same as in the input. \tassert f6([]) == [],\"Test 0\"\n\tassert f6([1, 2, 3, 4]) == [1, 2, 3, 4],\"Test 1\"\n\tassert f6([1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5],\"Test 2\"\n\t\"\"\"\n import collections\n c = collections.Counter(numbers)\n return [n for n in numbers if c[n] <= 1]\n\n# Rust f6 translation\n","entry_point":"remove_duplicates","canonical_solution":" import collections\n c = collections.Counter(numbers)\n return [n for n in numbers if c[n] <= 1]\n","test":"def check(candidate):\n assert candidate([]) == [],\"Test 0\"\n assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4],\"Test 1\"\n assert candidate([1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5],\"Test 2\"\n"} {"task_id":"HumanEval\/27","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(string: str) -> str:\n \"\"\" For a given string, flip lowercase characters to uppercase and uppercase to lowercase. \tassert f6('') == '',\"Test 0\"\n\tassert f6('Hello!') == 'hELLO!',\"Test 1\"\n\tassert f6('These violent delights have violent ends') == 'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS',\"Test 2\"\n\t\"\"\"\n return string.swapcase()\n\n# Rust f6 translation\n","entry_point":"flip_case","canonical_solution":" return string.swapcase()\n","test":"def check(candidate):\n assert candidate('') == '',\"Test 0\"\n assert candidate('Hello!') == 'hELLO!',\"Test 1\"\n assert candidate('These violent delights have violent ends') == 'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS',\"Test 2\"\n"} {"task_id":"HumanEval\/28","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(strings: List[str]) -> str:\n \"\"\" Concatenate list of strings into a single string \tassert f6([]) == '',\"Test 0\"\n\tassert f6(['x', 'y', 'z']) == 'xyz',\"Test 1\"\n\tassert f6(['x', 'y', 'z', 'w', 'k']) == 'xyzwk',\"Test 2\"\n\t\"\"\"\n return ''.join(strings)\n\n# Rust f6 translation\n","entry_point":"concatenate","canonical_solution":" return ''.join(strings)\n","test":"def check(candidate):\n assert candidate([]) == '',\"Test 0\"\n assert candidate(['x', 'y', 'z']) == 'xyz',\"Test 1\"\n assert candidate(['x', 'y', 'z', 'w', 'k']) == 'xyzwk',\"Test 2\"\n"} {"task_id":"HumanEval\/29","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nfrom typing import List\n\n\ndef f6(strings: List[str], prefix: str) -> List[str]:\n \"\"\" Filter an input list of strings only for ones that start with a given prefix. \tassert f6([], 'john') == [],\"Test 0\"\n\tassert f6(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx'],\"Test 1\"\n\t\"\"\"\n return [x for x in strings if x.startswith(prefix)]\n\n# Rust f6 translation\n","entry_point":"filter_by_prefix","canonical_solution":" return [x for x in strings if x.startswith(prefix)]\n","test":"def check(candidate):\n assert candidate([], 'john') == [],\"Test 0\"\n assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx'],\"Test 1\"\n"} {"task_id":"HumanEval\/30","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(l: list):\n \"\"\"Return only positive numbers in the list. \tassert f6([-1, -2, 4, 5, 6]) == [4, 5, 6],\"Test 0\"\n\tassert f6([5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1],\"Test 1\"\n\tassert f6([-1, -2]) == [],\"Test 2\"\n\tassert f6([]) == [],\"Test 3\"\n\t\"\"\"\n return [e for e in l if e > 0]\n\n# Rust f6 translation\n","entry_point":"get_positive","canonical_solution":" return [e for e in l if e > 0]\n","test":"def check(candidate):\n assert candidate([-1, -2, 4, 5, 6]) == [4, 5, 6],\"Test 0\"\n assert candidate([5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1],\"Test 1\"\n assert candidate([-1, -2]) == [],\"Test 2\"\n assert candidate([]) == [],\"Test 3\"\n"} {"task_id":"HumanEval\/31","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(n):\n \"\"\"Return true if a given number is prime, and false otherwise. \tassert f6(6) == False,\"Test 0\"\n\tassert f6(101) == True,\"Test 1\"\n\tassert f6(11) == True,\"Test 2\"\n\tassert f6(13441) == True,\"Test 3\"\n\tassert f6(61) == True,\"Test 4\"\n\tassert f6(4) == False,\"Test 5\"\n\tassert f6(1) == False,\"Test 6\"\n\tassert f6(5) == True,\"Test 7\"\n\tassert f6(11) == True,\"Test 8\"\n\tassert f6(17) == True,\"Test 9\"\n\tassert f6(5 * 17) == False,\"Test 10\"\n\tassert f6(11 * 7) == False,\"Test 11\"\n\tassert f6(13441 * 19) == False,\"Test 12\"\n\t\"\"\"\n if n < 2:\n return False\n for k in range(2, n - 1):\n if n % k == 0:\n return False\n return True\n\n# Rust f6 translation\n","entry_point":"is_prime","canonical_solution":" if n < 2:\n return False\n for k in range(2, n - 1):\n if n % k == 0:\n return False\n return True\n","test":"def check(candidate):\n assert candidate(6) == False,\"Test 0\"\n assert candidate(101) == True,\"Test 1\"\n assert candidate(11) == True,\"Test 2\"\n assert candidate(13441) == True,\"Test 3\"\n assert candidate(61) == True,\"Test 4\"\n assert candidate(4) == False,\"Test 5\"\n assert candidate(1) == False,\"Test 6\"\n assert candidate(5) == True,\"Test 7\"\n assert candidate(11) == True,\"Test 8\"\n assert candidate(17) == True,\"Test 9\"\n assert candidate(5 * 17) == False,\"Test 10\"\n assert candidate(11 * 7) == False,\"Test 11\"\n assert candidate(13441 * 19) == False,\"Test 12\"\n"} {"task_id":"HumanEval\/32","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\nimport math\n\n\ndef poly(xs: list, x: float):\n \"\"\"\n Evaluates polynomial with coefficients xs at point x.\n return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n\n \"\"\"\n return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)])\n\n\ndef f6(xs: list):\n \"\"\" xs are coefficients of a polynomial.\n f6 find x such that poly(x) = 0.\n f6 returns only only zero point, even if there are many.\n Moreover, f6 only takes list xs having even number of coefficients\n and largest non zero coefficient as it guarantees\n a solution. \tassert math.fabs(poly(coeffs, solution)) < 1e-4,\"Test 0\"\n\t\"\"\"\n begin, end = -1., 1.\n while poly(xs, begin) * poly(xs, end) > 0:\n begin *= 2.0\n end *= 2.0\n while end - begin > 1e-10:\n center = (begin + end) \/ 2.0\n if poly(xs, center) * poly(xs, begin) > 0:\n begin = center\n else:\n end = center\n return begin\n\n# Rust f6 translation\n","entry_point":"find_zero","canonical_solution":" begin, end = -1., 1.\n while poly(xs, begin) * poly(xs, end) > 0:\n begin *= 2.0\n end *= 2.0\n while end - begin > 1e-10:\n center = (begin + end) \/ 2.0\n if poly(xs, center) * poly(xs, begin) > 0:\n begin = center\n else:\n end = center\n return begin\n","test":"def check(candidate):\n assert math.fabs(poly(coeffs, solution)) < 1e-4,\"Test 0\"\n"} {"task_id":"HumanEval\/33","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(l: list):\n \"\"\"This function takes a list l and returns a list l' such that\n l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal\n to the values of the corresponding indicies of l, but sorted. \tassert tuple(f6([1, 2, 3])) == tuple(sort_third([1, 2, 3])),\"Test 0\"\n\tassert tuple(f6([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple(sort_third([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])),\"Test 1\"\n\tassert tuple(f6([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple(sort_third([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])),\"Test 2\"\n\tassert tuple(f6([5, 6, 3, 4, 8, 9, 2])) == tuple([2, 6, 3, 4, 8, 9, 5]),\"Test 3\"\n\tassert tuple(f6([5, 8, 3, 4, 6, 9, 2])) == tuple([2, 8, 3, 4, 6, 9, 5]),\"Test 4\"\n\tassert tuple(f6([5, 6, 9, 4, 8, 3, 2])) == tuple([2, 6, 9, 4, 8, 3, 5]),\"Test 5\"\n\tassert tuple(f6([5, 6, 3, 4, 8, 9, 2, 1])) == tuple([2, 6, 3, 4, 8, 9, 5, 1]),\"Test 6\"\n\t\"\"\"\n l = list(l)\n l[::3] = sorted(l[::3])\n return l\n\n# Rust f6 translation\n","entry_point":"sort_third","canonical_solution":" l = list(l)\n l[::3] = sorted(l[::3])\n return l\n","test":"def check(candidate):\n assert tuple(candidate([1, 2, 3])) == tuple(sort_third([1, 2, 3])),\"Test 0\"\n assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple(sort_third([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])),\"Test 1\"\n assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple(sort_third([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])),\"Test 2\"\n assert tuple(candidate([5, 6, 3, 4, 8, 9, 2])) == tuple([2, 6, 3, 4, 8, 9, 5]),\"Test 3\"\n assert tuple(candidate([5, 8, 3, 4, 6, 9, 2])) == tuple([2, 8, 3, 4, 6, 9, 5]),\"Test 4\"\n assert tuple(candidate([5, 6, 9, 4, 8, 3, 2])) == tuple([2, 6, 9, 4, 8, 3, 5]),\"Test 5\"\n assert tuple(candidate([5, 6, 3, 4, 8, 9, 2, 1])) == tuple([2, 6, 3, 4, 8, 9, 5, 1]),\"Test 6\"\n"} {"task_id":"HumanEval\/34","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(l: list):\n \"\"\"Return sorted f6 elements in a list. \tassert f6([5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123],\"Test 0\"\n\t\"\"\"\n return sorted(list(set(l)))\n\n# Rust f6 translation\n","entry_point":"unique","canonical_solution":" return sorted(list(set(l)))\n","test":"def check(candidate):\n assert candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123],\"Test 0\"\n"} {"task_id":"HumanEval\/35","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(l: list):\n \"\"\"Return maximum element in the list. \tassert f6([1, 2, 3]) == 3,\"Test 0\"\n\tassert f6([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124,\"Test 1\"\n\t\"\"\"\n m = l[0]\n for e in l:\n if e > m:\n m = e\n return m\n\n# Rust f6 translation\n","entry_point":"max_element","canonical_solution":" m = l[0]\n for e in l:\n if e > m:\n m = e\n return m\n","test":"def check(candidate):\n assert candidate([1, 2, 3]) == 3,\"Test 0\"\n assert candidate([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124,\"Test 1\"\n"} {"task_id":"HumanEval\/36","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(n: int):\n \"\"\"Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. \tassert f6(50) == 0,\"Test 0\"\n\tassert f6(78) == 2,\"Test 1\"\n\tassert f6(79) == 3,\"Test 2\"\n\tassert f6(100) == 3,\"Test 3\"\n\tassert f6(200) == 6,\"Test 4\"\n\tassert f6(4000) == 192,\"Test 5\"\n\tassert f6(10000) == 639,\"Test 6\"\n\tassert f6(100000) == 8026,\"Test 7\"\n\t\"\"\"\n ns = []\n for i in range(n):\n if i % 11 == 0 or i % 13 == 0:\n ns.append(i)\n s = ''.join(list(map(str, ns)))\n ans = 0\n for c in s:\n ans += (c == '7')\n return ans\n\n# Rust f6 translation\n","entry_point":"fizz_buzz","canonical_solution":" ns = []\n for i in range(n):\n if i % 11 == 0 or i % 13 == 0:\n ns.append(i)\n s = ''.join(list(map(str, ns)))\n ans = 0\n for c in s:\n ans += (c == '7')\n return ans\n","test":"def check(candidate):\n assert candidate(50) == 0,\"Test 0\"\n assert candidate(78) == 2,\"Test 1\"\n assert candidate(79) == 3,\"Test 2\"\n assert candidate(100) == 3,\"Test 3\"\n assert candidate(200) == 6,\"Test 4\"\n assert candidate(4000) == 192,\"Test 5\"\n assert candidate(10000) == 639,\"Test 6\"\n assert candidate(100000) == 8026,\"Test 7\"\n"} {"task_id":"HumanEval\/37","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(l: list):\n \"\"\"This function takes a list l and returns a list l' such that\n l' is identical to l in the odd indicies, while its values at the even indicies are equal\n to the values of the even indicies of l, but sorted. \tassert tuple(f6([1, 2, 3])) == tuple([1, 2, 3]),\"Test 0\"\n\tassert tuple(f6([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple([-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]),\"Test 1\"\n\tassert tuple(f6([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple([-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]),\"Test 2\"\n\t\"\"\"\n evens = l[::2]\n odds = l[1::2]\n evens.sort()\n ans = []\n for e, o in zip(evens, odds):\n ans.extend([e, o])\n if len(evens) > len(odds):\n ans.append(evens[-1])\n return ans\n\n# Rust f6 translation\n","entry_point":"sort_even","canonical_solution":" evens = l[::2]\n odds = l[1::2]\n evens.sort()\n ans = []\n for e, o in zip(evens, odds):\n ans.extend([e, o])\n if len(evens) > len(odds):\n ans.append(evens[-1])\n return ans\n","test":"def check(candidate):\n assert tuple(candidate([1, 2, 3])) == tuple([1, 2, 3]),\"Test 0\"\n assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple([-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]),\"Test 1\"\n assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple([-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]),\"Test 2\"\n"} {"task_id":"HumanEval\/38","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef encode_cyclic(s: str):\n \"\"\"\n returns encoded string by cycling groups of three characters.\n \"\"\"\n # split string to groups. Each of length 3.\n groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) \/\/ 3)]\n # cycle elements in each group. Unless group has fewer elements than 3.\n groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]\n return \"\".join(groups)\n\n\ndef f6(s: str):\n \"\"\"\n takes as input string encoded with encode_cyclic function. Returns decoded string.\n \tassert f6(encoded_str) == str,\"Test 0\"\n\t\"\"\"\n return encode_cyclic(encode_cyclic(s))\n\n# Rust f6 translation\n","entry_point":"decode_cyclic","canonical_solution":" return encode_cyclic(encode_cyclic(s))\n","test":"def check(candidate):\n assert candidate(encoded_str) == str,\"Test 0\"\n"} {"task_id":"HumanEval\/39","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(n: int):\n \"\"\"\n f6 returns n-th number that is a Fibonacci number and it's also prime. \tassert f6(1) == 2,\"Test 0\"\n\tassert f6(2) == 3,\"Test 1\"\n\tassert f6(3) == 5,\"Test 2\"\n\tassert f6(4) == 13,\"Test 3\"\n\tassert f6(5) == 89,\"Test 4\"\n\tassert f6(6) == 233,\"Test 5\"\n\tassert f6(7) == 1597,\"Test 6\"\n\tassert f6(8) == 28657,\"Test 7\"\n\tassert f6(9) == 514229,\"Test 8\"\n\tassert f6(10) == 433494437,\"Test 9\"\n\t\"\"\"\n import math\n\n def is_prime(p):\n if p < 2:\n return False\n for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):\n if p % k == 0:\n return False\n return True\n f = [0, 1]\n while True:\n f.append(f[-1] + f[-2])\n if is_prime(f[-1]):\n n -= 1\n if n == 0:\n return f[-1]\n\n# Rust f6 translation\n","entry_point":"prime_fib","canonical_solution":" import math\n\n def is_prime(p):\n if p < 2:\n return False\n for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):\n if p % k == 0:\n return False\n return True\n f = [0, 1]\n while True:\n f.append(f[-1] + f[-2])\n if is_prime(f[-1]):\n n -= 1\n if n == 0:\n return f[-1]\n","test":"def check(candidate):\n assert candidate(1) == 2,\"Test 0\"\n assert candidate(2) == 3,\"Test 1\"\n assert candidate(3) == 5,\"Test 2\"\n assert candidate(4) == 13,\"Test 3\"\n assert candidate(5) == 89,\"Test 4\"\n assert candidate(6) == 233,\"Test 5\"\n assert candidate(7) == 1597,\"Test 6\"\n assert candidate(8) == 28657,\"Test 7\"\n assert candidate(9) == 514229,\"Test 8\"\n assert candidate(10) == 433494437,\"Test 9\"\n"} {"task_id":"HumanEval\/40","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(l: list):\n \tassert f6([1, 3, 5, 0]) == False,\"Test 0\"\n\tassert f6([1, 3, 5, -1]) == False,\"Test 1\"\n\tassert f6([1, 3, -2, 1]) == True,\"Test 2\"\n\tassert f6([1, 2, 3, 7]) == False,\"Test 3\"\n\tassert f6([1, 2, 5, 7]) == False,\"Test 4\"\n\tassert f6([2, 4, -5, 3, 9, 7]) == True,\"Test 5\"\n\tassert f6([1]) == False,\"Test 6\"\n\tassert f6([1, 3, 5, -100]) == False,\"Test 7\"\n\tassert f6([100, 3, 5, -100]) == False,\"Test 8\"\n\t\"\"\"\n for i in range(len(l)):\n for j in range(i + 1, len(l)):\n for k in range(j + 1, len(l)):\n if l[i] + l[j] + l[k] == 0:\n return True\n return False\n\n# Rust f6 translation\n","entry_point":"triples_sum_to_zero","canonical_solution":" for i in range(len(l)):\n for j in range(i + 1, len(l)):\n for k in range(j + 1, len(l)):\n if l[i] + l[j] + l[k] == 0:\n return True\n return False\n","test":"def check(candidate):\n assert candidate([1, 3, 5, 0]) == False,\"Test 0\"\n assert candidate([1, 3, 5, -1]) == False,\"Test 1\"\n assert candidate([1, 3, -2, 1]) == True,\"Test 2\"\n assert candidate([1, 2, 3, 7]) == False,\"Test 3\"\n assert candidate([1, 2, 5, 7]) == False,\"Test 4\"\n assert candidate([2, 4, -5, 3, 9, 7]) == True,\"Test 5\"\n assert candidate([1]) == False,\"Test 6\"\n assert candidate([1, 3, 5, -100]) == False,\"Test 7\"\n assert candidate([100, 3, 5, -100]) == False,\"Test 8\"\n"} {"task_id":"HumanEval\/41","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(n: int):\n \"\"\"\n Imagine a road that's a perfectly straight infinitely long line.\n n cars are driving left to right; simultaneously, a different set of n cars\n are driving right to left. The two sets of cars start out being very far from\n each other. All cars move in the same speed. Two cars are said to collide\n when a car that's moving left to right hits a car that's moving right to left.\n However, the cars are infinitely sturdy and strong; as a result, they continue moving\n in their trajectory as if they did not collide.\n\n This function outputs the number of such collisions.\n \tassert f6(2) == 4,\"Test 0\"\n\tassert f6(3) == 9,\"Test 1\"\n\tassert f6(4) == 16,\"Test 2\"\n\tassert f6(8) == 64,\"Test 3\"\n\tassert f6(10) == 100,\"Test 4\"\n\t\"\"\"\n return n**2\n\n# Rust f6 translation\n","entry_point":"car_race_collision","canonical_solution":" return n**2\n","test":"def check(candidate):\n assert candidate(2) == 4,\"Test 0\"\n assert candidate(3) == 9,\"Test 1\"\n assert candidate(4) == 16,\"Test 2\"\n assert candidate(8) == 64,\"Test 3\"\n assert candidate(10) == 100,\"Test 4\"\n"} {"task_id":"HumanEval\/42","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(l: list):\n \"\"\"Return list with elements incremented by 1. \tassert f6([]) == [],\"Test 0\"\n\tassert f6([3, 2, 1]) == [4, 3, 2],\"Test 1\"\n\tassert f6([5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124],\"Test 2\"\n\t\"\"\"\n return [(e + 1) for e in l]\n\n# Rust f6 translation\n","entry_point":"incr_list","canonical_solution":" return [(e + 1) for e in l]\n","test":"def check(candidate):\n assert candidate([]) == [],\"Test 0\"\n assert candidate([3, 2, 1]) == [4, 3, 2],\"Test 1\"\n assert candidate([5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124],\"Test 2\"\n"} {"task_id":"HumanEval\/43","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(l):\n \tassert f6([1, 3, 5, 0]) == False,\"Test 0\"\n\tassert f6([1, 3, -2, 1]) == False,\"Test 1\"\n\tassert f6([1, 2, 3, 7]) == False,\"Test 2\"\n\tassert f6([2, 4, -5, 3, 5, 7]) == True,\"Test 3\"\n\tassert f6([1]) == False,\"Test 4\"\n\tassert f6([-3, 9, -1, 3, 2, 30]) == True,\"Test 5\"\n\tassert f6([-3, 9, -1, 3, 2, 31]) == True,\"Test 6\"\n\tassert f6([-3, 9, -1, 4, 2, 30]) == False,\"Test 7\"\n\tassert f6([-3, 9, -1, 4, 2, 31]) == False,\"Test 8\"\n\t\"\"\"\n for i, l1 in enumerate(l):\n for j in range(i + 1, len(l)):\n if l1 + l[j] == 0:\n return True\n return False\n\n# Rust f6 translation\n","entry_point":"pairs_sum_to_zero","canonical_solution":" for i, l1 in enumerate(l):\n for j in range(i + 1, len(l)):\n if l1 + l[j] == 0:\n return True\n return False\n","test":"def check(candidate):\n assert candidate([1, 3, 5, 0]) == False,\"Test 0\"\n assert candidate([1, 3, -2, 1]) == False,\"Test 1\"\n assert candidate([1, 2, 3, 7]) == False,\"Test 2\"\n assert candidate([2, 4, -5, 3, 5, 7]) == True,\"Test 3\"\n assert candidate([1]) == False,\"Test 4\"\n assert candidate([-3, 9, -1, 3, 2, 30]) == True,\"Test 5\"\n assert candidate([-3, 9, -1, 3, 2, 31]) == True,\"Test 6\"\n assert candidate([-3, 9, -1, 4, 2, 30]) == False,\"Test 7\"\n assert candidate([-3, 9, -1, 4, 2, 31]) == False,\"Test 8\"\n"} {"task_id":"HumanEval\/44","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(x: int, base: int):\n \"\"\"Change numerical base of input number x to base.\n return string representation after the conversion.\n base numbers are less than 10. \tassert f6(8, 3) == \"22\",\"Test 0\"\n\tassert f6(9, 3) == \"100\",\"Test 1\"\n\tassert f6(234, 2) == \"11101010\",\"Test 2\"\n\tassert f6(16, 2) == \"10000\",\"Test 3\"\n\tassert f6(8, 2) == \"1000\",\"Test 4\"\n\tassert f6(7, 2) == \"111\",\"Test 5\"\n\t\"\"\"\n ret = \"\"\n while x > 0:\n ret = str(x % base) + ret\n x \/\/= base\n return ret\n\n# Rust f6 translation\n","entry_point":"change_base","canonical_solution":" ret = \"\"\n while x > 0:\n ret = str(x % base) + ret\n x \/\/= base\n return ret\n","test":"def check(candidate):\n assert candidate(8, 3) == \"22\",\"Test 0\"\n assert candidate(9, 3) == \"100\",\"Test 1\"\n assert candidate(234, 2) == \"11101010\",\"Test 2\"\n assert candidate(16, 2) == \"10000\",\"Test 3\"\n assert candidate(8, 2) == \"1000\",\"Test 4\"\n assert candidate(7, 2) == \"111\",\"Test 5\"\n"} {"task_id":"HumanEval\/45","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(a, h):\n \"\"\"Given length of a side and high return area for a triangle. \tassert f6(5, 3) == 7.5,\"Test 0\"\n\tassert f6(2, 2) == 2.0,\"Test 1\"\n\tassert f6(10, 8) == 40.0,\"Test 2\"\n\t\"\"\"\n return a * h \/ 2.0\n\n# Rust f6 translation\n","entry_point":"triangle_area","canonical_solution":" return a * h \/ 2.0\n","test":"def check(candidate):\n assert candidate(5, 3) == 7.5,\"Test 0\"\n assert candidate(2, 2) == 2.0,\"Test 1\"\n assert candidate(10, 8) == 40.0,\"Test 2\"\n"} {"task_id":"HumanEval\/46","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(n: int):\n \"\"\"The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:\n f6(0) -> 0\n f6(1) -> 0\n f6(2) -> 2\n f6(3) -> 0\n f6(n) -> f6(n-1) + f6(n-2) + f6(n-3) + f6(n-4).\n Please write a function to efficiently compute the n-th element of the f6 number sequence. Do not use recursion. \tassert f6(5) == 4,\"Test 0\"\n\tassert f6(8) == 28,\"Test 1\"\n\tassert f6(10) == 104,\"Test 2\"\n\tassert f6(12) == 386,\"Test 3\"\n\t\"\"\"\n results = [0, 0, 2, 0]\n if n < 4:\n return results[n]\n\n for _ in range(4, n + 1):\n results.append(results[-1] + results[-2] + results[-3] + results[-4])\n results.pop(0)\n\n return results[-1]\n\n# Rust f6 translation\n","entry_point":"fib4","canonical_solution":" results = [0, 0, 2, 0]\n if n < 4:\n return results[n]\n\n for _ in range(4, n + 1):\n results.append(results[-1] + results[-2] + results[-3] + results[-4])\n results.pop(0)\n\n return results[-1]\n","test":"def check(candidate):\n assert candidate(5) == 4,\"Test 0\"\n assert candidate(8) == 28,\"Test 1\"\n assert candidate(10) == 104,\"Test 2\"\n assert candidate(12) == 386,\"Test 3\"\n"} {"task_id":"HumanEval\/47","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(l: list):\n \"\"\"Return f6 of elements in the list l. \tassert f6([3, 1, 2, 4, 5]) == 3,\"Test 0\"\n\tassert f6([-10, 4, 6, 1000, 10, 20]) == 8.0,\"Test 1\"\n\tassert f6([5]) == 5,\"Test 2\"\n\tassert f6([6, 5]) == 5.5,\"Test 3\"\n\tassert f6([8, 1, 3, 9, 9, 2, 7]) == 7 ,\"Test 4\"\n\t\"\"\"\n l = sorted(l)\n if len(l) % 2 == 1:\n return l[len(l) \/\/ 2]\n else:\n return (l[len(l) \/\/ 2 - 1] + l[len(l) \/\/ 2]) \/ 2.0\n\n# Rust f6 translation\n","entry_point":"median","canonical_solution":" l = sorted(l)\n if len(l) % 2 == 1:\n return l[len(l) \/\/ 2]\n else:\n return (l[len(l) \/\/ 2 - 1] + l[len(l) \/\/ 2]) \/ 2.0\n","test":"def check(candidate):\n assert candidate([3, 1, 2, 4, 5]) == 3,\"Test 0\"\n assert candidate([-10, 4, 6, 1000, 10, 20]) == 8.0,\"Test 1\"\n assert candidate([5]) == 5,\"Test 2\"\n assert candidate([6, 5]) == 5.5,\"Test 3\"\n assert candidate([8, 1, 3, 9, 9, 2, 7]) == 7 ,\"Test 4\"\n"} {"task_id":"HumanEval\/48","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(text: str):\n \"\"\"\n Checks if given string is a palindrome \tassert f6('') == True,\"Test 0\"\n\tassert f6('aba') == True,\"Test 1\"\n\tassert f6('aaaaa') == True,\"Test 2\"\n\tassert f6('zbcd') == False,\"Test 3\"\n\tassert f6('xywyx') == True,\"Test 4\"\n\tassert f6('xywyz') == False,\"Test 5\"\n\tassert f6('xywzx') == False,\"Test 6\"\n\t\"\"\"\n for i in range(len(text)):\n if text[i] != text[len(text) - 1 - i]:\n return False\n return True\n\n# Rust f6 translation\n","entry_point":"is_palindrome","canonical_solution":" for i in range(len(text)):\n if text[i] != text[len(text) - 1 - i]:\n return False\n return True\n","test":"def check(candidate):\n assert candidate('') == True,\"Test 0\"\n assert candidate('aba') == True,\"Test 1\"\n assert candidate('aaaaa') == True,\"Test 2\"\n assert candidate('zbcd') == False,\"Test 3\"\n assert candidate('xywyx') == True,\"Test 4\"\n assert candidate('xywyz') == False,\"Test 5\"\n assert candidate('xywzx') == False,\"Test 6\"\n"} {"task_id":"HumanEval\/49","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(n: int, p: int):\n \"\"\"Return 2^n modulo p (be aware of numerics). \tassert f6(3, 5) == 3,\"Test 0\"\n\tassert f6(1101, 101) == 2,\"Test 1\"\n\tassert f6(0, 101) == 1,\"Test 2\"\n\tassert f6(3, 11) == 8,\"Test 3\"\n\tassert f6(100, 101) == 1,\"Test 4\"\n\tassert f6(30, 5) == 4,\"Test 5\"\n\tassert f6(31, 5) == 3,\"Test 6\"\n\t\"\"\"\n ret = 1\n for i in range(n):\n ret = (2 * ret) % p\n return ret\n\n# Rust f6 translation\n","entry_point":"modp","canonical_solution":" ret = 1\n for i in range(n):\n ret = (2 * ret) % p\n return ret\n","test":"def check(candidate):\n assert candidate(3, 5) == 3,\"Test 0\"\n assert candidate(1101, 101) == 2,\"Test 1\"\n assert candidate(0, 101) == 1,\"Test 2\"\n assert candidate(3, 11) == 8,\"Test 3\"\n assert candidate(100, 101) == 1,\"Test 4\"\n assert candidate(30, 5) == 4,\"Test 5\"\n assert candidate(31, 5) == 3,\"Test 6\"\n"} {"task_id":"HumanEval\/50","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef encode_shift(s: str):\n \"\"\"\n returns encoded string by shifting every character by 5 in the alphabet.\n \"\"\"\n return \"\".join([chr(((ord(ch) + 5 - ord(\"a\")) % 26) + ord(\"a\")) for ch in s])\n\n\ndef f6(s: str):\n \"\"\"\n takes as input string encoded with encode_shift function. Returns decoded string.\n \tassert f6(copy.deepcopy(encoded_str)) == str,\"Test 0\"\n\t\"\"\"\n return \"\".join([chr(((ord(ch) - 5 - ord(\"a\")) % 26) + ord(\"a\")) for ch in s])\n\n# Rust f6 translation\n","entry_point":"decode_shift","canonical_solution":" return \"\".join([chr(((ord(ch) - 5 - ord(\"a\")) % 26) + ord(\"a\")) for ch in s])\n","test":"def check(candidate):\n assert candidate(copy.deepcopy(encoded_str)) == str,\"Test 0\"\n"} {"task_id":"HumanEval\/51","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(text):\n \"\"\"\n f6 is a function that takes string and returns string without vowels. \tassert f6('') == '',\"Test 0\"\n\tassert f6(\"abcdef\\nghijklm\") == 'bcdf\\nghjklm',\"Test 1\"\n\tassert f6('fedcba') == 'fdcb',\"Test 2\"\n\tassert f6('eeeee') == '',\"Test 3\"\n\tassert f6('acBAA') == 'cB',\"Test 4\"\n\tassert f6('EcBOO') == 'cB',\"Test 5\"\n\tassert f6('ybcd') == 'ybcd',\"Test 6\"\n\t\"\"\"\n return \"\".join([s for s in text if s.lower() not in [\"a\", \"e\", \"i\", \"o\", \"u\"]])\n\n# Rust f6 translation\n","entry_point":"remove_vowels","canonical_solution":" return \"\".join([s for s in text if s.lower() not in [\"a\", \"e\", \"i\", \"o\", \"u\"]])\n","test":"def check(candidate):\n assert candidate('') == '',\"Test 0\"\n assert candidate(\"abcdef\\nghijklm\") == 'bcdf\\nghjklm',\"Test 1\"\n assert candidate('fedcba') == 'fdcb',\"Test 2\"\n assert candidate('eeeee') == '',\"Test 3\"\n assert candidate('acBAA') == 'cB',\"Test 4\"\n assert candidate('EcBOO') == 'cB',\"Test 5\"\n assert candidate('ybcd') == 'ybcd',\"Test 6\"\n"} {"task_id":"HumanEval\/52","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(l: list, t: int):\n\tassert f6([1, 2, 4, 10], 100),\"Test 0\"\n\tassert not f6([1, 20, 4, 10], 5),\"Test 1\"\n\tassert f6([1, 20, 4, 10], 21),\"Test 2\"\n\tassert f6([1, 20, 4, 10], 22),\"Test 3\"\n\tassert f6([1, 8, 4, 10], 11),\"Test 4\"\n\tassert not f6([1, 8, 4, 10], 10),\"Test 5\"\n\t\"\"\"\n for e in l:\n if e >= t:\n return False\n return True\n\n# Rust f6 translation\n","entry_point":"below_threshold","canonical_solution":" for e in l:\n if e >= t:\n return False\n return True\n","test":"def check(candidate):\n assert candidate([1, 2, 4, 10], 100),\"Test 0\"\n assert not candidate([1, 20, 4, 10], 5),\"Test 1\"\n assert candidate([1, 20, 4, 10], 21),\"Test 2\"\n assert candidate([1, 20, 4, 10], 22),\"Test 3\"\n assert candidate([1, 8, 4, 10], 11),\"Test 4\"\n assert not candidate([1, 8, 4, 10], 10),\"Test 5\"\n"} {"task_id":"HumanEval\/53","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(x: int, y: int):\n \"\"\"Add two numbers x and y. \tassert f6(0, 1) == 1,\"Test 0\"\n\tassert f6(1, 0) == 1,\"Test 1\"\n\tassert f6(2, 3) == 5,\"Test 2\"\n\tassert f6(5, 7) == 12,\"Test 3\"\n\tassert f6(7, 5) == 12,\"Test 4\"\n\t\"\"\"\n return x + y\n\n# Rust f6 translation\n","entry_point":"add","canonical_solution":" return x + y\n","test":"def check(candidate):\n assert candidate(0, 1) == 1,\"Test 0\"\n assert candidate(1, 0) == 1,\"Test 1\"\n assert candidate(2, 3) == 5,\"Test 2\"\n assert candidate(5, 7) == 12,\"Test 3\"\n assert candidate(7, 5) == 12,\"Test 4\"\n"} {"task_id":"HumanEval\/54","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(s0: str, s1: str):\n \"\"\"\n Check if two words have the same characters. \tassert f6('eabcdzzzz', 'dddzzzzzzzddeddabc') == True,\"Test 0\"\n\tassert f6('abcd', 'dddddddabc') == True,\"Test 1\"\n\tassert f6('dddddddabc', 'abcd') == True,\"Test 2\"\n\tassert f6('eabcd', 'dddddddabc') == False,\"Test 3\"\n\tassert f6('abcd', 'dddddddabcf') == False,\"Test 4\"\n\tassert f6('eabcdzzzz', 'dddzzzzzzzddddabc') == False,\"Test 5\"\n\tassert f6('aabb', 'aaccc') == False,\"Test 6\"\n\t\"\"\"\n return set(s0) == set(s1)\n\n# Rust f6 translation\n","entry_point":"same_chars","canonical_solution":" return set(s0) == set(s1)\n","test":"def check(candidate):\n assert candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') == True,\"Test 0\"\n assert candidate('abcd', 'dddddddabc') == True,\"Test 1\"\n assert candidate('dddddddabc', 'abcd') == True,\"Test 2\"\n assert candidate('eabcd', 'dddddddabc') == False,\"Test 3\"\n assert candidate('abcd', 'dddddddabcf') == False,\"Test 4\"\n assert candidate('eabcdzzzz', 'dddzzzzzzzddddabc') == False,\"Test 5\"\n assert candidate('aabb', 'aaccc') == False,\"Test 6\"\n"} {"task_id":"HumanEval\/55","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(n: int):\n \"\"\"Return n-th Fibonacci number. \tassert f6(10) == 55,\"Test 0\"\n\tassert f6(1) == 1,\"Test 1\"\n\tassert f6(8) == 21,\"Test 2\"\n\tassert f6(11) == 89,\"Test 3\"\n\tassert f6(12) == 144,\"Test 4\"\n\t\"\"\"\n if n == 0:\n return 0\n if n == 1:\n return 1\n return fib(n - 1) + fib(n - 2)\n\n# Rust f6 translation\n","entry_point":"fib","canonical_solution":" if n == 0:\n return 0\n if n == 1:\n return 1\n return fib(n - 1) + fib(n - 2)\n","test":"def check(candidate):\n assert candidate(10) == 55,\"Test 0\"\n assert candidate(1) == 1,\"Test 1\"\n assert candidate(8) == 21,\"Test 2\"\n assert candidate(11) == 89,\"Test 3\"\n assert candidate(12) == 144,\"Test 4\"\n"} {"task_id":"HumanEval\/56","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(brackets: str):\n \"\"\" brackets is a string of \"<\" and \">\".\n\tassert f6(\"<>\"),\"Test 0\"\n\tassert f6(\"<<><>>\"),\"Test 1\"\n\tassert f6(\"<><><<><>><>\"),\"Test 2\"\n\tassert f6(\"<><><<<><><>><>><<><><<>>>\"),\"Test 3\"\n\tassert not f6(\"<<<><>>>>\"),\"Test 4\"\n\tassert not f6(\"><<>\"),\"Test 5\"\n\tassert not f6(\"<\"),\"Test 6\"\n\tassert not f6(\"<<<<\"),\"Test 7\"\n\tassert not f6(\">\"),\"Test 8\"\n\tassert not f6(\"<<>\"),\"Test 9\"\n\tassert not f6(\"<><><<><>><>><<>\"),\"Test 10\"\n\tassert not f6(\"<><><<><>><>>><>\"),\"Test 11\"\n\t\"\"\"\n depth = 0\n for b in brackets:\n if b == \"<\":\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n return False\n return depth == 0\n\n# Rust f6 translation\n","entry_point":"correct_bracketing","canonical_solution":" depth = 0\n for b in brackets:\n if b == \"<\":\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n return False\n return depth == 0\n","test":"def check(candidate):\n assert candidate(\"<>\"),\"Test 0\"\n assert candidate(\"<<><>>\"),\"Test 1\"\n assert candidate(\"<><><<><>><>\"),\"Test 2\"\n assert candidate(\"<><><<<><><>><>><<><><<>>>\"),\"Test 3\"\n assert not candidate(\"<<<><>>>>\"),\"Test 4\"\n assert not candidate(\"><<>\"),\"Test 5\"\n assert not candidate(\"<\"),\"Test 6\"\n assert not candidate(\"<<<<\"),\"Test 7\"\n assert not candidate(\">\"),\"Test 8\"\n assert not candidate(\"<<>\"),\"Test 9\"\n assert not candidate(\"<><><<><>><>><<>\"),\"Test 10\"\n assert not candidate(\"<><><<><>><>>><>\"),\"Test 11\"\n"} {"task_id":"HumanEval\/57","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(l: list):\n\tassert f6([1, 2, 4, 10]) == True,\"Test 0\"\n\tassert f6([1, 2, 4, 20]) == True,\"Test 1\"\n\tassert f6([1, 20, 4, 10]) == False,\"Test 2\"\n\tassert f6([4, 1, 0, -10]) == True,\"Test 3\"\n\tassert f6([4, 1, 1, 0]) == True,\"Test 4\"\n\tassert f6([1, 2, 3, 2, 5, 60]) == False,\"Test 5\"\n\tassert f6([1, 2, 3, 4, 5, 60]) == True,\"Test 6\"\n\tassert f6([9, 9, 9, 9]) == True,\"Test 7\"\n\t\"\"\"\n if l == sorted(l) or l == sorted(l, reverse=True):\n return True\n return False\n\n# Rust f6 translation\n","entry_point":"monotonic","canonical_solution":" if l == sorted(l) or l == sorted(l, reverse=True):\n return True\n return False\n","test":"def check(candidate):\n assert candidate([1, 2, 4, 10]) == True,\"Test 0\"\n assert candidate([1, 2, 4, 20]) == True,\"Test 1\"\n assert candidate([1, 20, 4, 10]) == False,\"Test 2\"\n assert candidate([4, 1, 0, -10]) == True,\"Test 3\"\n assert candidate([4, 1, 1, 0]) == True,\"Test 4\"\n assert candidate([1, 2, 3, 2, 5, 60]) == False,\"Test 5\"\n assert candidate([1, 2, 3, 4, 5, 60]) == True,\"Test 6\"\n assert candidate([9, 9, 9, 9]) == True,\"Test 7\"\n"} {"task_id":"HumanEval\/58","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(l1: list, l2: list):\n \"\"\"Return sorted unique f6 elements for two lists. \tassert f6([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653],\"Test 0\"\n\tassert f6([5, 3, 2, 8], [3, 2]) == [2, 3],\"Test 1\"\n\tassert f6([4, 3, 2, 8], [3, 2, 4]) == [2, 3, 4],\"Test 2\"\n\tassert f6([4, 3, 2, 8], []) == [],\"Test 3\"\n\t\"\"\"\n ret = set()\n for e1 in l1:\n for e2 in l2:\n if e1 == e2:\n ret.add(e1)\n return sorted(list(ret))\n\n# Rust f6 translation\n","entry_point":"common","canonical_solution":" ret = set()\n for e1 in l1:\n for e2 in l2:\n if e1 == e2:\n ret.add(e1)\n return sorted(list(ret))\n","test":"def check(candidate):\n assert candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653],\"Test 0\"\n assert candidate([5, 3, 2, 8], [3, 2]) == [2, 3],\"Test 1\"\n assert candidate([4, 3, 2, 8], [3, 2, 4]) == [2, 3, 4],\"Test 2\"\n assert candidate([4, 3, 2, 8], []) == [],\"Test 3\"\n"} {"task_id":"HumanEval\/59","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(n: int):\n \"\"\"Return the largest prime factor of n. Assume n > 1 and is not a prime. \tassert f6(15) == 5,\"Test 0\"\n\tassert f6(27) == 3,\"Test 1\"\n\tassert f6(63) == 7,\"Test 2\"\n\tassert f6(330) == 11,\"Test 3\"\n\tassert f6(13195) == 29,\"Test 4\"\n\t\"\"\"\n def is_prime(k):\n if k < 2:\n return False\n for i in range(2, k - 1):\n if k % i == 0:\n return False\n return True\n largest = 1\n for j in range(2, n + 1):\n if n % j == 0 and is_prime(j):\n largest = max(largest, j)\n return largest\n\n# Rust f6 translation\n","entry_point":"largest_prime_factor","canonical_solution":" def is_prime(k):\n if k < 2:\n return False\n for i in range(2, k - 1):\n if k % i == 0:\n return False\n return True\n largest = 1\n for j in range(2, n + 1):\n if n % j == 0 and is_prime(j):\n largest = max(largest, j)\n return largest\n","test":"def check(candidate):\n assert candidate(15) == 5,\"Test 0\"\n assert candidate(27) == 3,\"Test 1\"\n assert candidate(63) == 7,\"Test 2\"\n assert candidate(330) == 11,\"Test 3\"\n assert candidate(13195) == 29,\"Test 4\"\n"} {"task_id":"HumanEval\/60","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(n: int):\n \"\"\"f6 is a function that sums numbers from 1 to n. \tassert f6(1) == 1,\"Test 0\"\n\tassert f6(6) == 21,\"Test 1\"\n\tassert f6(11) == 66,\"Test 2\"\n\tassert f6(30) == 465,\"Test 3\"\n\tassert f6(100) == 5050,\"Test 4\"\n\t\"\"\"\n return sum(range(n + 1))\n\n# Rust f6 translation\n","entry_point":"sum_to_n","canonical_solution":" return sum(range(n + 1))\n","test":"def check(candidate):\n assert candidate(1) == 1,\"Test 0\"\n assert candidate(6) == 21,\"Test 1\"\n assert candidate(11) == 66,\"Test 2\"\n assert candidate(30) == 465,\"Test 3\"\n assert candidate(100) == 5050,\"Test 4\"\n"} {"task_id":"HumanEval\/61","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef correct_bracketing(brackets: str):\n \"\"\" brackets is a string of \"(\" and \")\".\n\tassert f6(\"()\"),\"Test 0\"\n\tassert f6(\"(()())\"),\"Test 1\"\n\tassert f6(\"()()(()())()\"),\"Test 2\"\n\tassert f6(\"()()((()()())())(()()(()))\"),\"Test 3\"\n\tassert not f6(\"((()())))\"),\"Test 4\"\n\tassert not f6(\")(()\"),\"Test 5\"\n\tassert not f6(\"(\"),\"Test 6\"\n\tassert not f6(\"((((\"),\"Test 7\"\n\tassert not f6(\")\"),\"Test 8\"\n\tassert not f6(\"(()\"),\"Test 9\"\n\tassert not f6(\"()()(()())())(()\"),\"Test 10\"\n\tassert not f6(\"()()(()())()))()\"),\"Test 11\"\n\t\"\"\"\n depth = 0\n for b in brackets:\n if b == \"(\":\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n return False\n return depth == 0\n\n# Rust f6 translation\n","entry_point":"correct_bracketing_2","canonical_solution":" depth = 0\n for b in brackets:\n if b == \"(\":\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n return False\n return depth == 0\n","test":"def check(candidate):\n assert candidate(\"()\"),\"Test 0\"\n assert candidate(\"(()())\"),\"Test 1\"\n assert candidate(\"()()(()())()\"),\"Test 2\"\n assert candidate(\"()()((()()())())(()()(()))\"),\"Test 3\"\n assert not candidate(\"((()())))\"),\"Test 4\"\n assert not candidate(\")(()\"),\"Test 5\"\n assert not candidate(\"(\"),\"Test 6\"\n assert not candidate(\"((((\"),\"Test 7\"\n assert not candidate(\")\"),\"Test 8\"\n assert not candidate(\"(()\"),\"Test 9\"\n assert not candidate(\"()()(()())())(()\"),\"Test 10\"\n assert not candidate(\"()()(()())()))()\"),\"Test 11\"\n"} {"task_id":"HumanEval\/62","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(xs: list):\n \"\"\" xs represent coefficients of a polynomial.\n xs[0] + xs[1] * x + xs[2] * x^2 + ....\n Return f6 of this polynomial in the same form. \tassert f6([3, 1, 2, 4, 5]) == [1, 4, 12, 20],\"Test 0\"\n\tassert f6([1, 2, 3]) == [2, 6],\"Test 1\"\n\tassert f6([3, 2, 1]) == [2, 2],\"Test 2\"\n\tassert f6([3, 2, 1, 0, 4]) == [2, 2, 0, 16],\"Test 3\"\n\tassert f6([1]) == [],\"Test 4\"\n\t\"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f6 translation\n","entry_point":"derivative","canonical_solution":" return [(i * x) for i, x in enumerate(xs)][1:]\n","test":"def check(candidate):\n assert candidate([3, 1, 2, 4, 5]) == [1, 4, 12, 20],\"Test 0\"\n assert candidate([1, 2, 3]) == [2, 6],\"Test 1\"\n assert candidate([3, 2, 1]) == [2, 2],\"Test 2\"\n assert candidate([3, 2, 1, 0, 4]) == [2, 2, 0, 16],\"Test 3\"\n assert candidate([1]) == [],\"Test 4\"\n"} {"task_id":"HumanEval\/63","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(n: int):\n \"\"\"The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:\n f6(0) == 0\n f6(1) == 0\n f6(2) == 1\n f6(n) == f6(n-1) + f6(n-2) + f6(n-3).\n Please write a function to efficiently compute the n-th element of the f6 number sequence. \tassert f6(2) == 1,\"Test 0\"\n\tassert f6(1) == 0,\"Test 1\"\n\tassert f6(5) == 4,\"Test 2\"\n\tassert f6(8) == 24,\"Test 3\"\n\tassert f6(10) == 81,\"Test 4\"\n\tassert f6(12) == 274,\"Test 5\"\n\tassert f6(14) == 927,\"Test 6\"\n\t\"\"\"\n if n == 0:\n return 0\n if n == 1:\n return 0\n if n == 2:\n return 1\n return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)\n\n# Rust f6 translation\n","entry_point":"fibfib","canonical_solution":" if n == 0:\n return 0\n if n == 1:\n return 0\n if n == 2:\n return 1\n return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)\n","test":"def check(candidate):\n assert candidate(2) == 1,\"Test 0\"\n assert candidate(1) == 0,\"Test 1\"\n assert candidate(5) == 4,\"Test 2\"\n assert candidate(8) == 24,\"Test 3\"\n assert candidate(10) == 81,\"Test 4\"\n assert candidate(12) == 274,\"Test 5\"\n assert candidate(14) == 927,\"Test 6\"\n"} {"task_id":"HumanEval\/64","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\nFIX = \"\"\"\nAdd more test cases.\n\"\"\"\n\ndef f6(s):\n \"\"\"Write a function f6 which takes a string representing\n a word as input and returns the number of vowels in the string.\n Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a\n vowel, but only when it is at the end of the given word. \tassert f6(\"abcde\") == 2, \"Test 1\"\n\tassert f6(\"Alone\") == 3, \"Test 2\"\n\tassert f6(\"key\") == 2, \"Test 3\"\n\tassert f6(\"bye\") == 1, \"Test 4\"\n\tassert f6(\"keY\") == 2, \"Test 5\"\n\tassert f6(\"bYe\") == 1, \"Test 6\"\n\tassert f6(\"ACEDY\") == 3, \"Test 7\"\n\tassert True,\"Test 7\"\n\t\"\"\"\n vowels = \"aeiouAEIOU\"\n n_vowels = sum(c in vowels for c in s)\n if s[-1] == 'y' or s[-1] == 'Y':\n n_vowels += 1\n return n_vowels\n\n# Rust f6 translation\n","entry_point":"vowels_count","canonical_solution":" vowels = \"aeiouAEIOU\"\n n_vowels = sum(c in vowels for c in s)\n if s[-1] == 'y' or s[-1] == 'Y':\n n_vowels += 1\n return n_vowels\n","test":"def check(candidate):\n assert candidate(\"abcde\") == 2, \"Test 1\"\n assert candidate(\"Alone\") == 3, \"Test 2\"\n assert candidate(\"key\") == 2, \"Test 3\"\n assert candidate(\"bye\") == 1, \"Test 4\"\n assert candidate(\"keY\") == 2, \"Test 5\"\n assert candidate(\"bYe\") == 1, \"Test 6\"\n assert candidate(\"ACEDY\") == 3, \"Test 7\"\n assert True,\"Test 7\"\n"} {"task_id":"HumanEval\/65","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(x, shift):\n \"\"\"Circular shift the digits of the integer x, shift the digits right by shift\n and return the result as a string.\n If shift > number of digits, return digits reversed. \tassert f6(100, 2) == \"001\",\"Test 0\"\n\tassert f6(12, 2) == \"12\",\"Test 1\"\n\tassert f6(97, 8) == \"79\",\"Test 2\"\n\tassert f6(12, 1) == \"21\",\"Test 3\"\n\tassert f6(11, 101) == \"11\",\"Test 4\"\n\t\"\"\"\n s = str(x)\n if shift > len(s):\n return s[::-1]\n else:\n return s[len(s) - shift:] + s[:len(s) - shift]\n\n# Rust f6 translation\n","entry_point":"circular_shift","canonical_solution":" s = str(x)\n if shift > len(s):\n return s[::-1]\n else:\n return s[len(s) - shift:] + s[:len(s) - shift]\n","test":"def check(candidate):\n assert candidate(100, 2) == \"001\",\"Test 0\"\n assert candidate(12, 2) == \"12\",\"Test 1\"\n assert candidate(97, 8) == \"79\",\"Test 2\"\n assert candidate(12, 1) == \"21\",\"Test 3\"\n assert candidate(11, 101) == \"11\",\"Test 4\"\n"} {"task_id":"HumanEval\/66","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(s):\n \"\"\"Task\n Write a function that takes a string as input and returns the sum of the upper characters only'\n ASCII codes. \tassert True,\"Test 0\"\n\tassert f6(\"\") == 0,\"Test 1\"\n\tassert f6(\"abAB\") == 131,\"Test 2\"\n\tassert f6(\"abcCd\") == 67,\"Test 3\"\n\tassert f6(\"helloE\") == 69,\"Test 4\"\n\tassert f6(\"woArBld\") == 131,\"Test 5\"\n\tassert f6(\"aAaaaXa\") == 153,\"Test 6\"\n\tassert True,\"Test 7\"\n\tassert f6(\" How are yOu?\") == 151,\"Test 8\"\n\tassert f6(\"You arE Very Smart\") == 327,\"Test 9\"\n\t\"\"\"\n if s == \"\": return 0\n return sum(ord(char) if char.isupper() else 0 for char in s)\n\n# Rust f6 translation\n","entry_point":"digitSum","canonical_solution":" if s == \"\": return 0\n return sum(ord(char) if char.isupper() else 0 for char in s)\n","test":"def check(candidate):\n assert True,\"Test 0\"\n assert candidate(\"\") == 0,\"Test 1\"\n assert candidate(\"abAB\") == 131,\"Test 2\"\n assert candidate(\"abcCd\") == 67,\"Test 3\"\n assert candidate(\"helloE\") == 69,\"Test 4\"\n assert candidate(\"woArBld\") == 131,\"Test 5\"\n assert candidate(\"aAaaaXa\") == 153,\"Test 6\"\n assert True,\"Test 7\"\n assert candidate(\" How are yOu?\") == 151,\"Test 8\"\n assert candidate(\"You arE Very Smart\") == 327,\"Test 9\"\n"} {"task_id":"HumanEval\/67","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(s,n):\n \"\"\"\n In this task, you will be given a string that represents a number of apples and oranges \n that are distributed in a basket of fruit this basket contains \n apples, oranges, and mango fruits. Given the string that represents the total number of \n the oranges and apples and an integer that represent the total number of the fruits \n in the basket return the number of the mango fruits in the basket.\n for examble:\n f6(\"5 apples and 6 oranges\", 19) ->19 - 5 - 6 = 8\n f6(\"0 apples and 1 oranges\",3) -> 3 - 0 - 1 = 2\n f6(\"2 apples and 3 oranges\", 100) -> 100 - 2 - 3 = 95\n f6(\"100 apples and 1 oranges\",120) -> 120 - 100 - 1 = 19\n \tassert f6(\"5 apples and 6 oranges\",19) == 8,\"Test 0\"\n\tassert f6(\"5 apples and 6 oranges\",21) == 10,\"Test 1\"\n\tassert f6(\"0 apples and 1 oranges\",3) == 2,\"Test 2\"\n\tassert f6(\"1 apples and 0 oranges\",3) == 2,\"Test 3\"\n\tassert f6(\"2 apples and 3 oranges\",100) == 95,\"Test 4\"\n\tassert f6(\"2 apples and 3 oranges\",5) == 0,\"Test 5\"\n\tassert f6(\"1 apples and 100 oranges\",120) == 19,\"Test 6\"\n\t\"\"\"\n lis = list()\n for i in s.split(' '):\n if i.isdigit():\n lis.append(int(i))\n return n - sum(lis)\n\n# Rust f6 translation\n","entry_point":"fruit_distribution","canonical_solution":" lis = list()\n for i in s.split(' '):\n if i.isdigit():\n lis.append(int(i))\n return n - sum(lis)\n","test":"def check(candidate):\n assert candidate(\"5 apples and 6 oranges\",19) == 8,\"Test 0\"\n assert candidate(\"5 apples and 6 oranges\",21) == 10,\"Test 1\"\n assert candidate(\"0 apples and 1 oranges\",3) == 2,\"Test 2\"\n assert candidate(\"1 apples and 0 oranges\",3) == 2,\"Test 3\"\n assert candidate(\"2 apples and 3 oranges\",100) == 95,\"Test 4\"\n assert candidate(\"2 apples and 3 oranges\",5) == 0,\"Test 5\"\n assert candidate(\"1 apples and 100 oranges\",120) == 19,\"Test 6\"\n"} {"task_id":"HumanEval\/68","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(arr):\n \"\"\"\n \"Given an array representing a branch of a tree that has non-negative integer nodes\n your task is to f6 one of the nodes and return it.\n The f6ed node should be the node with the smallest even value.\n If multiple nodes with the same smallest even value are found return the node that has smallest index.\n\n The f6ed node should be returned in a list, [ smalest_value, its index ],\n If there are no even values or the given array is empty, return []. \tassert True,\"Test 0\"\n\tassert f6([4,2,3]) == [2, 1],\"Test 1\"\n\tassert f6([1,2,3]) == [2, 1],\"Test 2\"\n\tassert f6([]) == [],\"Test 3\"\n\tassert f6([5, 0, 3, 0, 4, 2]) == [0, 1],\"Test 4\"\n\tassert True,\"Test 5\"\n\tassert f6([1, 2, 3, 0, 5, 3]) == [0, 3],\"Test 6\"\n\tassert f6([5, 4, 8, 4 ,8]) == [4, 1],\"Test 7\"\n\tassert f6([7, 6, 7, 1]) == [6, 1],\"Test 8\"\n\tassert f6([7, 9, 7, 1]) == [],\"Test 9\"\n\t\"\"\"\n if(len(arr) == 0): return []\n evens = list(filter(lambda x: x%2 == 0, arr))\n if(evens == []): return []\n return [min(evens), arr.index(min(evens))]\n\n# Rust f6 translation\n","entry_point":"pluck","canonical_solution":" if(len(arr) == 0): return []\n evens = list(filter(lambda x: x%2 == 0, arr))\n if(evens == []): return []\n return [min(evens), arr.index(min(evens))]\n","test":"def check(candidate):\n assert True,\"Test 0\"\n assert candidate([4,2,3]) == [2, 1],\"Test 1\"\n assert candidate([1,2,3]) == [2, 1],\"Test 2\"\n assert candidate([]) == [],\"Test 3\"\n assert candidate([5, 0, 3, 0, 4, 2]) == [0, 1],\"Test 4\"\n assert True,\"Test 5\"\n assert candidate([1, 2, 3, 0, 5, 3]) == [0, 3],\"Test 6\"\n assert candidate([5, 4, 8, 4 ,8]) == [4, 1],\"Test 7\"\n assert candidate([7, 6, 7, 1]) == [6, 1],\"Test 8\"\n assert candidate([7, 9, 7, 1]) == [],\"Test 9\"\n"} {"task_id":"HumanEval\/69","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(lst):\n '''\n You are given a non-empty list of positive integers. Return the greatest integer that is greater than \n zero, and has a frequency greater than or equal to the value of the integer itself. \n The frequency of an integer is the number of times it appears in the list.\n If no such a value exist, return -1. \tassert f6([5, 5, 5, 5, 1]) == 1,\"Test 0\"\n\tassert f6([4, 1, 4, 1, 4, 4]) == 4,\"Test 1\"\n\tassert f6([3, 3]) == -1,\"Test 2\"\n\tassert f6([8, 8, 8, 8, 8, 8, 8, 8]) == 8,\"Test 3\"\n\tassert f6([2, 3, 3, 2, 2]) == 2,\"Test 4\"\n\tassert f6([2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1,\"Test 5\"\n\tassert f6([3, 2, 8, 2]) == 2,\"Test 6\"\n\tassert f6([6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1,\"Test 7\"\n\tassert f6([8, 8, 3, 6, 5, 6, 4]) == -1,\"Test 8\"\n\tassert f6([6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1,\"Test 9\"\n\tassert f6([1, 9, 10, 1, 3]) == 1,\"Test 10\"\n\tassert f6([6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5,\"Test 11\"\n\tassert f6([1]) == 1,\"Test 12\"\n\tassert f6([8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4,\"Test 13\"\n\tassert f6([2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2,\"Test 14\"\n\tassert f6([1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1,\"Test 15\"\n\tassert f6([9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4,\"Test 16\"\n\tassert f6([2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4,\"Test 17\"\n\tassert f6([9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2,\"Test 18\"\n\tassert f6([5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1,\"Test 19\"\n\tassert f6([10]) == -1,\"Test 20\"\n\tassert f6([9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2,\"Test 21\"\n\tassert f6([5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1,\"Test 22\"\n\tassert f6([7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1,\"Test 23\"\n\tassert f6([3, 10, 10, 9, 2]) == -1,\"Test 24\"\n\t\"\"\"\n frq = [0] * (max(lst) + 1)\n for i in lst:\n frq[i] += 1;\n\n ans = -1\n for i in range(1, len(frq)):\n if frq[i] >= i:\n ans = i\n \n return ans\n\n# Rust f6 translation\n","entry_point":"search","canonical_solution":" frq = [0] * (max(lst) + 1)\n for i in lst:\n frq[i] += 1;\n\n ans = -1\n for i in range(1, len(frq)):\n if frq[i] >= i:\n ans = i\n \n return ans\n","test":"def check(candidate):\n assert candidate([5, 5, 5, 5, 1]) == 1,\"Test 0\"\n assert candidate([4, 1, 4, 1, 4, 4]) == 4,\"Test 1\"\n assert candidate([3, 3]) == -1,\"Test 2\"\n assert candidate([8, 8, 8, 8, 8, 8, 8, 8]) == 8,\"Test 3\"\n assert candidate([2, 3, 3, 2, 2]) == 2,\"Test 4\"\n assert candidate([2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1,\"Test 5\"\n assert candidate([3, 2, 8, 2]) == 2,\"Test 6\"\n assert candidate([6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1,\"Test 7\"\n assert candidate([8, 8, 3, 6, 5, 6, 4]) == -1,\"Test 8\"\n assert candidate([6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1,\"Test 9\"\n assert candidate([1, 9, 10, 1, 3]) == 1,\"Test 10\"\n assert candidate([6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5,\"Test 11\"\n assert candidate([1]) == 1,\"Test 12\"\n assert candidate([8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4,\"Test 13\"\n assert candidate([2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2,\"Test 14\"\n assert candidate([1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1,\"Test 15\"\n assert candidate([9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4,\"Test 16\"\n assert candidate([2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4,\"Test 17\"\n assert candidate([9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2,\"Test 18\"\n assert candidate([5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1,\"Test 19\"\n assert candidate([10]) == -1,\"Test 20\"\n assert candidate([9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2,\"Test 21\"\n assert candidate([5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1,\"Test 22\"\n assert candidate([7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1,\"Test 23\"\n assert candidate([3, 10, 10, 9, 2]) == -1,\"Test 24\"\n"} {"task_id":"HumanEval\/70","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(lst):\n '''\n Given list of integers, return list in strange order.\n Strange sorting, is when you start with the minimum value,\n then maximum of the remaining integers, then minimum and so on. \tassert f6([1, 2, 3, 4]) == [1, 4, 2, 3],\"Test 0\"\n\tassert f6([5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7],\"Test 1\"\n\tassert f6([1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3],\"Test 2\"\n\tassert f6([5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7],\"Test 3\"\n\tassert f6([5, 5, 5, 5]) == [5, 5, 5, 5],\"Test 4\"\n\tassert f6([]) == [],\"Test 5\"\n\tassert f6([1,2,3,4,5,6,7,8]) == [1, 8, 2, 7, 3, 6, 4, 5],\"Test 6\"\n\tassert f6([0,2,2,2,5,5,-5,-5]) == [-5, 5, -5, 5, 0, 2, 2, 2],\"Test 7\"\n\tassert f6([111111]) == [111111],\"Test 8\"\n\tassert True,\"Test 9\"\n\t\"\"\"\n res, switch = [], True\n while lst:\n res.append(min(lst) if switch else max(lst))\n lst.remove(res[-1])\n switch = not switch\n return res\n\n# Rust f6 translation\n","entry_point":"strange_sort_list","canonical_solution":" res, switch = [], True\n while lst:\n res.append(min(lst) if switch else max(lst))\n lst.remove(res[-1])\n switch = not switch\n return res\n","test":"def check(candidate):\n assert candidate([1, 2, 3, 4]) == [1, 4, 2, 3],\"Test 0\"\n assert candidate([5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7],\"Test 1\"\n assert candidate([1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3],\"Test 2\"\n assert candidate([5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7],\"Test 3\"\n assert candidate([5, 5, 5, 5]) == [5, 5, 5, 5],\"Test 4\"\n assert candidate([]) == [],\"Test 5\"\n assert candidate([1,2,3,4,5,6,7,8]) == [1, 8, 2, 7, 3, 6, 4, 5],\"Test 6\"\n assert candidate([0,2,2,2,5,5,-5,-5]) == [-5, 5, -5, 5, 0, 2, 2, 2],\"Test 7\"\n assert candidate([111111]) == [111111],\"Test 8\"\n assert True,\"Test 9\"\n"} {"task_id":"HumanEval\/71","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(a, b, c):\n '''\n Given the lengths of the three sides of a triangle. Return the area of\n the triangle rounded to 2 decimal points if the three sides form a valid triangle. \n Otherwise return -1\n Three sides make a valid triangle when the sum of any two sides is greater \n than the third side. \tassert f6(3, 4, 5) == 6.00,\"Test 0\"\n\tassert f6(1, 2, 10) == -1,\"Test 1\"\n\tassert f6(4, 8, 5) == 8.18,\"Test 2\"\n\tassert f6(2, 2, 2) == 1.73,\"Test 3\"\n\tassert f6(1, 2, 3) == -1,\"Test 4\"\n\tassert f6(10, 5, 7) == 16.25,\"Test 5\"\n\tassert f6(2, 6, 3) == -1,\"Test 6\"\n\tassert f6(1, 1, 1) == 0.43,\"Test 7\"\n\tassert f6(2, 2, 10) == -1,\"Test 8\"\n\t\"\"\"\n if a + b <= c or a + c <= b or b + c <= a:\n return -1 \n s = (a + b + c)\/2 \n area = (s * (s - a) * (s - b) * (s - c)) ** 0.5\n area = round(area, 2)\n return area\n\n# Rust f6 translation\n","entry_point":"triangle_area","canonical_solution":" if a + b <= c or a + c <= b or b + c <= a:\n return -1 \n s = (a + b + c)\/2 \n area = (s * (s - a) * (s - b) * (s - c)) ** 0.5\n area = round(area, 2)\n return area\n","test":"def check(candidate):\n assert candidate(3, 4, 5) == 6.00,\"Test 0\"\n assert candidate(1, 2, 10) == -1,\"Test 1\"\n assert candidate(4, 8, 5) == 8.18,\"Test 2\"\n assert candidate(2, 2, 2) == 1.73,\"Test 3\"\n assert candidate(1, 2, 3) == -1,\"Test 4\"\n assert candidate(10, 5, 7) == 16.25,\"Test 5\"\n assert candidate(2, 6, 3) == -1,\"Test 6\"\n assert candidate(1, 1, 1) == 0.43,\"Test 7\"\n assert candidate(2, 2, 10) == -1,\"Test 8\"\n"} {"task_id":"HumanEval\/72","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(q,w):\n '''\tassert f6([3, 2, 3], 9) is True,\"Test 0\"\n\tassert f6([1, 2], 5) is False,\"Test 1\"\n\tassert f6([3], 5) is True,\"Test 2\"\n\tassert f6([3, 2, 3], 1) is False,\"Test 3\"\n\tassert f6([1, 2, 3], 6) is False,\"Test 4\"\n\tassert f6([5], 5) is True,\"Test 5\"\n\t\"\"\"\n if sum(q) > w:\n return False\n\n i, j = 0, len(q)-1\n while i w:\n return False\n\n i, j = 0, len(q)-1\n while i bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(arr):\n \"\"\"\n Given an array arr of integers, find the minimum number of elements that\n need to be changed to make the array palindromic. A palindromic array is an array that\n is read the same backwards and forwards. In one change, you can change one element to any other element. \tassert f6([1,2,3,5,4,7,9,6]) == 4,\"Test 0\"\n\tassert f6([1, 2, 3, 4, 3, 2, 2]) == 1,\"Test 1\"\n\tassert f6([1, 4, 2]) == 1,\"Test 2\"\n\tassert f6([1, 4, 4, 2]) == 1,\"Test 3\"\n\tassert f6([1, 2, 3, 2, 1]) == 0,\"Test 4\"\n\tassert f6([3, 1, 1, 3]) == 0,\"Test 5\"\n\tassert f6([1]) == 0,\"Test 6\"\n\tassert f6([0, 1]) == 1,\"Test 7\"\n\t\"\"\"\n ans = 0\n for i in range(len(arr) \/\/ 2):\n if arr[i] != arr[len(arr) - i - 1]:\n ans += 1\n return ans\n\n# Rust f6 translation\n","entry_point":"smallest_change","canonical_solution":" ans = 0\n for i in range(len(arr) \/\/ 2):\n if arr[i] != arr[len(arr) - i - 1]:\n ans += 1\n return ans\n","test":"def check(candidate):\n assert candidate([1,2,3,5,4,7,9,6]) == 4,\"Test 0\"\n assert candidate([1, 2, 3, 4, 3, 2, 2]) == 1,\"Test 1\"\n assert candidate([1, 4, 2]) == 1,\"Test 2\"\n assert candidate([1, 4, 4, 2]) == 1,\"Test 3\"\n assert candidate([1, 2, 3, 2, 1]) == 0,\"Test 4\"\n assert candidate([3, 1, 1, 3]) == 0,\"Test 5\"\n assert candidate([1]) == 0,\"Test 6\"\n assert candidate([0, 1]) == 1,\"Test 7\"\n"} {"task_id":"HumanEval\/74","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(lst1, lst2):\n '''\n Write a function that accepts two lists of strings and returns the list that has \n total number of chars in the all strings of the list less than the other list.\n\n if the two lists have the same number of chars, return the first list. \tassert True,\"Test 0\"\n\tassert f6([], []) == [],\"Test 1\"\n\tassert f6(['hi', 'admin'], ['hi', 'hi']) == ['hi', 'hi'],\"Test 2\"\n\tassert f6(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) == ['hi', 'admin'],\"Test 3\"\n\tassert f6(['4'], ['1', '2', '3', '4', '5']) == ['4'],\"Test 4\"\n\tassert f6(['hi', 'admin'], ['hI', 'Hi']) == ['hI', 'Hi'],\"Test 5\"\n\tassert f6(['hi', 'admin'], ['hI', 'hi', 'hi']) == ['hI', 'hi', 'hi'],\"Test 6\"\n\tassert f6(['hi', 'admin'], ['hI', 'hi', 'hii']) == ['hi', 'admin'],\"Test 7\"\n\tassert True,\"Test 8\"\n\tassert f6([], ['this']) == [],\"Test 9\"\n\tassert f6(['this'], []) == [],\"Test 10\"\n\t\"\"\"\n l1 = 0\n for st in lst1:\n l1 += len(st)\n \n l2 = 0\n for st in lst2:\n l2 += len(st)\n \n if l1 <= l2:\n return lst1\n else:\n return lst2\n\n# Rust f6 translation\n","entry_point":"total_match","canonical_solution":" l1 = 0\n for st in lst1:\n l1 += len(st)\n \n l2 = 0\n for st in lst2:\n l2 += len(st)\n \n if l1 <= l2:\n return lst1\n else:\n return lst2\n","test":"def check(candidate):\n assert True,\"Test 0\"\n assert candidate([], []) == [],\"Test 1\"\n assert candidate(['hi', 'admin'], ['hi', 'hi']) == ['hi', 'hi'],\"Test 2\"\n assert candidate(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) == ['hi', 'admin'],\"Test 3\"\n assert candidate(['4'], ['1', '2', '3', '4', '5']) == ['4'],\"Test 4\"\n assert candidate(['hi', 'admin'], ['hI', 'Hi']) == ['hI', 'Hi'],\"Test 5\"\n assert candidate(['hi', 'admin'], ['hI', 'hi', 'hi']) == ['hI', 'hi', 'hi'],\"Test 6\"\n assert candidate(['hi', 'admin'], ['hI', 'hi', 'hii']) == ['hi', 'admin'],\"Test 7\"\n assert True,\"Test 8\"\n assert candidate([], ['this']) == [],\"Test 9\"\n assert candidate(['this'], []) == [],\"Test 10\"\n"} {"task_id":"HumanEval\/75","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(a):\n \"\"\"Write a function that returns true if the given number is the multiplication of 3 prime numbers\n and false otherwise.\n Knowing that (a) is less then 100. \tassert f6(5) == False,\"Test 0\"\n\tassert f6(30) == True,\"Test 1\"\n\tassert f6(8) == True,\"Test 2\"\n\tassert f6(10) == False,\"Test 3\"\n\tassert f6(125) == True,\"Test 4\"\n\tassert f6(3 * 5 * 7) == True,\"Test 5\"\n\tassert f6(3 * 6 * 7) == False,\"Test 6\"\n\tassert f6(9 * 9 * 9) == False,\"Test 7\"\n\tassert f6(11 * 9 * 9) == False,\"Test 8\"\n\tassert f6(11 * 13 * 7) == True,\"Test 9\"\n\t\"\"\"\n def is_prime(n):\n for j in range(2,n):\n if n%j == 0:\n return False\n return True\n\n for i in range(2,101):\n if not is_prime(i): continue\n for j in range(2,101):\n if not is_prime(j): continue\n for k in range(2,101):\n if not is_prime(k): continue\n if i*j*k == a: return True\n return False\n\n# Rust f6 translation\n","entry_point":"is_multiply_prime","canonical_solution":" def is_prime(n):\n for j in range(2,n):\n if n%j == 0:\n return False\n return True\n\n for i in range(2,101):\n if not is_prime(i): continue\n for j in range(2,101):\n if not is_prime(j): continue\n for k in range(2,101):\n if not is_prime(k): continue\n if i*j*k == a: return True\n return False\n","test":"def check(candidate):\n assert candidate(5) == False,\"Test 0\"\n assert candidate(30) == True,\"Test 1\"\n assert candidate(8) == True,\"Test 2\"\n assert candidate(10) == False,\"Test 3\"\n assert candidate(125) == True,\"Test 4\"\n assert candidate(3 * 5 * 7) == True,\"Test 5\"\n assert candidate(3 * 6 * 7) == False,\"Test 6\"\n assert candidate(9 * 9 * 9) == False,\"Test 7\"\n assert candidate(11 * 9 * 9) == False,\"Test 8\"\n assert candidate(11 * 13 * 7) == True,\"Test 9\"\n"} {"task_id":"HumanEval\/76","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(x, n):\n \"\"\"Your task is to write a function that returns true if a number x is a simple\n power of n and false in other cases.\n x is a simple power of n if n**int=x. \tassert f6(16, 2)== True,\"Test 0\"\n\tassert f6(143214, 16)== False,\"Test 1\"\n\tassert f6(4, 2)==True,\"Test 2\"\n\tassert f6(9, 3)==True,\"Test 3\"\n\tassert f6(16, 4)==True,\"Test 4\"\n\tassert f6(24, 2)==False,\"Test 5\"\n\tassert f6(128, 4)==False,\"Test 6\"\n\tassert f6(12, 6)==False,\"Test 7\"\n\tassert f6(1, 1)==True,\"Test 8\"\n\tassert f6(1, 12)==True,\"Test 9\"\n\t\"\"\"\n if (n == 1): \n return (x == 1) \n power = 1\n while (power < x): \n power = power * n \n return (power == x) \n\n# Rust f6 translation\n","entry_point":"is_simple_power","canonical_solution":" if (n == 1): \n return (x == 1) \n power = 1\n while (power < x): \n power = power * n \n return (power == x) \n","test":"def check(candidate):\n assert candidate(16, 2)== True,\"Test 0\"\n assert candidate(143214, 16)== False,\"Test 1\"\n assert candidate(4, 2)==True,\"Test 2\"\n assert candidate(9, 3)==True,\"Test 3\"\n assert candidate(16, 4)==True,\"Test 4\"\n assert candidate(24, 2)==False,\"Test 5\"\n assert candidate(128, 4)==False,\"Test 6\"\n assert candidate(12, 6)==False,\"Test 7\"\n assert candidate(1, 1)==True,\"Test 8\"\n assert candidate(1, 12)==True,\"Test 9\"\n"} {"task_id":"HumanEval\/77","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(a):\n '''\n if this ingeger is a cube of some integer number.\n Note: you may assume the input is always valid. \tassert f6(1) == True,\"Test 0\"\n\tassert f6(2) == False,\"Test 1\"\n\tassert f6(-1) == True,\"Test 2\"\n\tassert f6(64) == True,\"Test 3\"\n\tassert f6(180) == False,\"Test 4\"\n\tassert f6(1000) == True,\"Test 5\"\n\tassert f6(0) == True,\"Test 6\"\n\tassert f6(1729) == False,\"Test 7\"\n\t\"\"\"\n a = abs(a)\n return int(round(a ** (1. \/ 3))) ** 3 == a\n\n# Rust f6 translation\n","entry_point":"iscube","canonical_solution":" a = abs(a)\n return int(round(a ** (1. \/ 3))) ** 3 == a\n","test":"def check(candidate):\n assert candidate(1) == True,\"Test 0\"\n assert candidate(2) == False,\"Test 1\"\n assert candidate(-1) == True,\"Test 2\"\n assert candidate(64) == True,\"Test 3\"\n assert candidate(180) == False,\"Test 4\"\n assert candidate(1000) == True,\"Test 5\"\n assert candidate(0) == True,\"Test 6\"\n assert candidate(1729) == False,\"Test 7\"\n"} {"task_id":"HumanEval\/78","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(num):\n \"\"\"You have been tasked to write a function that receives \n a hexadecimal number as a string and counts the number of hexadecimal \n digits that are primes (prime number, or a prime, is a natural number \n greater than 1 that is not a product of two smaller natural numbers).\n Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.\n Prime numbers are 2, 3, 5, 7, 11, 13, 17,...\n So you have to determine a number of the following digits: 2, 3, 5, 7, \n B (=decimal 11), D (=decimal 13).\n Note: you may assume the input is always correct or empty string, \n and symbols A,B,C,D,E,F are always uppercase. \tassert f6(\"AB\") == 1,\"Test 0\"\n\tassert f6(\"1077E\") == 2,\"Test 1\"\n\tassert f6(\"ABED1A33\") == 4,\"Test 2\"\n\tassert f6(\"2020\") == 2,\"Test 3\"\n\tassert f6(\"123456789ABCDEF0\") == 6,\"Test 4\"\n\tassert f6(\"112233445566778899AABBCCDDEEFF00\") == 12,\"Test 5\"\n\tassert f6([]) == 0,\"Test 6\"\n\t\"\"\"\n primes = ('2', '3', '5', '7', 'B', 'D')\n total = 0\n for i in range(0, len(num)):\n if num[i] in primes:\n total += 1\n return total\n\n# Rust f6 translation\n","entry_point":"hex_key","canonical_solution":" primes = ('2', '3', '5', '7', 'B', 'D')\n total = 0\n for i in range(0, len(num)):\n if num[i] in primes:\n total += 1\n return total\n","test":"def check(candidate):\n assert candidate(\"AB\") == 1,\"Test 0\"\n assert candidate(\"1077E\") == 2,\"Test 1\"\n assert candidate(\"ABED1A33\") == 4,\"Test 2\"\n assert candidate(\"2020\") == 2,\"Test 3\"\n assert candidate(\"123456789ABCDEF0\") == 6,\"Test 4\"\n assert candidate(\"112233445566778899AABBCCDDEEFF00\") == 12,\"Test 5\"\n assert candidate([]) == 0,\"Test 6\"\n"} {"task_id":"HumanEval\/79","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(decimal):\n \"\"\"You will be given a number in decimal form and your task is to convert it to\n binary format. The function should return a string, with each character representing a binary\n number. Each character in the string will be '0' or '1'.\n\n There will be an extra couple of characters 'db' at the beginning and at the end of the string.\n The extra characters are there to help with the format. \tassert f6(0) == \"db0db\",\"Test 0\"\n\tassert f6(32) == \"db100000db\",\"Test 1\"\n\tassert f6(103) == \"db1100111db\",\"Test 2\"\n\tassert f6(15) == \"db1111db\",\"Test 3\"\n\tassert True,\"Test 4\"\n\t\"\"\"\n return \"db\" + bin(decimal)[2:] + \"db\"\n\n# Rust f6 translation\n","entry_point":"decimal_to_binary","canonical_solution":" return \"db\" + bin(decimal)[2:] + \"db\"\n","test":"def check(candidate):\n assert candidate(0) == \"db0db\",\"Test 0\"\n assert candidate(32) == \"db100000db\",\"Test 1\"\n assert candidate(103) == \"db1100111db\",\"Test 2\"\n assert candidate(15) == \"db1111db\",\"Test 3\"\n assert True,\"Test 4\"\n"} {"task_id":"HumanEval\/80","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(s):\n \"\"\"You are given a string s.\n Your task is to check if the string is happy or not.\n A string is happy if its length is at least 3 and every 3 consecutive letters are distinct. \tassert f6(\"a\") == False ,\"Test 0\"\n\tassert f6(\"aa\") == False ,\"Test 1\"\n\tassert f6(\"abcd\") == True ,\"Test 2\"\n\tassert f6(\"aabb\") == False ,\"Test 3\"\n\tassert f6(\"adb\") == True ,\"Test 4\"\n\tassert f6(\"xyy\") == False ,\"Test 5\"\n\tassert f6(\"iopaxpoi\") == True ,\"Test 6\"\n\tassert f6(\"iopaxioi\") == False ,\"Test 7\"\n\t\"\"\"\n if len(s) < 3:\n return False\n\n for i in range(len(s) - 2):\n \n if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]:\n return False\n return True\n\n# Rust f6 translation\n","entry_point":"is_happy","canonical_solution":" if len(s) < 3:\n return False\n\n for i in range(len(s) - 2):\n \n if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]:\n return False\n return True\n","test":"def check(candidate):\n assert candidate(\"a\") == False ,\"Test 0\"\n assert candidate(\"aa\") == False ,\"Test 1\"\n assert candidate(\"abcd\") == True ,\"Test 2\"\n assert candidate(\"aabb\") == False ,\"Test 3\"\n assert candidate(\"adb\") == True ,\"Test 4\"\n assert candidate(\"xyy\") == False ,\"Test 5\"\n assert candidate(\"iopaxpoi\") == True ,\"Test 6\"\n assert candidate(\"iopaxioi\") == False ,\"Test 7\"\n"} {"task_id":"HumanEval\/81","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(grades):\n \"\"\"It is the last week of the semester and the teacher has to give the grades\n to students. The teacher has been making her own algorithm for grading.\n The only problem is, she has lost the code she used for grading.\n She has given you a list of GPAs for some students and you have to write \n a function that can output a list of letter grades using the following table:\n GPA | Letter grade\n 4.0 A+\n > 3.7 A \n > 3.3 A- \n > 3.0 B+\n > 2.7 B \n > 2.3 B-\n > 2.0 C+\n > 1.7 C\n > 1.3 C-\n > 1.0 D+ \n > 0.7 D \n > 0.0 D-\n 0.0 E. \tassert f6([4.0, 3, 1.7, 2, 3.5]) == ['A+', 'B', 'C-', 'C', 'A-'],\"Test 0\"\n\tassert f6([1.2]) == ['D+'],\"Test 1\"\n\tassert f6([0.5]) == ['D-'],\"Test 2\"\n\tassert f6([0.0]) == ['E'],\"Test 3\"\n\tassert f6([1, 0.3, 1.5, 2.8, 3.3]) == ['D', 'D-', 'C-', 'B', 'B+'],\"Test 4\"\n\tassert f6([0, 0.7]) == ['E', 'D-'],\"Test 5\"\n\tassert True,\"Test 6\"\n\t\"\"\"\n\n \n letter_grade = []\n for gpa in grades:\n if gpa == 4.0:\n letter_grade.append(\"A+\")\n elif gpa > 3.7:\n letter_grade.append(\"A\")\n elif gpa > 3.3:\n letter_grade.append(\"A-\")\n elif gpa > 3.0:\n letter_grade.append(\"B+\")\n elif gpa > 2.7:\n letter_grade.append(\"B\")\n elif gpa > 2.3:\n letter_grade.append(\"B-\")\n elif gpa > 2.0:\n letter_grade.append(\"C+\")\n elif gpa > 1.7:\n letter_grade.append(\"C\")\n elif gpa > 1.3:\n letter_grade.append(\"C-\")\n elif gpa > 1.0:\n letter_grade.append(\"D+\")\n elif gpa > 0.7:\n letter_grade.append(\"D\")\n elif gpa > 0.0:\n letter_grade.append(\"D-\")\n else:\n letter_grade.append(\"E\")\n return letter_grade\n\n# Rust f6 translation\n","entry_point":"numerical_letter_grade","canonical_solution":"\n \n letter_grade = []\n for gpa in grades:\n if gpa == 4.0:\n letter_grade.append(\"A+\")\n elif gpa > 3.7:\n letter_grade.append(\"A\")\n elif gpa > 3.3:\n letter_grade.append(\"A-\")\n elif gpa > 3.0:\n letter_grade.append(\"B+\")\n elif gpa > 2.7:\n letter_grade.append(\"B\")\n elif gpa > 2.3:\n letter_grade.append(\"B-\")\n elif gpa > 2.0:\n letter_grade.append(\"C+\")\n elif gpa > 1.7:\n letter_grade.append(\"C\")\n elif gpa > 1.3:\n letter_grade.append(\"C-\")\n elif gpa > 1.0:\n letter_grade.append(\"D+\")\n elif gpa > 0.7:\n letter_grade.append(\"D\")\n elif gpa > 0.0:\n letter_grade.append(\"D-\")\n else:\n letter_grade.append(\"E\")\n return letter_grade\n","test":"def check(candidate):\n assert candidate([4.0, 3, 1.7, 2, 3.5]) == ['A+', 'B', 'C-', 'C', 'A-'],\"Test 0\"\n assert candidate([1.2]) == ['D+'],\"Test 1\"\n assert candidate([0.5]) == ['D-'],\"Test 2\"\n assert candidate([0.0]) == ['E'],\"Test 3\"\n assert candidate([1, 0.3, 1.5, 2.8, 3.3]) == ['D', 'D-', 'C-', 'B', 'B+'],\"Test 4\"\n assert candidate([0, 0.7]) == ['E', 'D-'],\"Test 5\"\n assert True,\"Test 6\"\n"} {"task_id":"HumanEval\/82","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(string):\n\tassert f6('Hello') == True,\"Test 0\"\n\tassert f6('abcdcba') == True,\"Test 1\"\n\tassert f6('kittens') == True,\"Test 2\"\n\tassert f6('orange') == False,\"Test 3\"\n\tassert f6('wow') == True,\"Test 4\"\n\tassert f6('world') == True,\"Test 5\"\n\tassert f6('MadaM') == True,\"Test 6\"\n\tassert f6('Wow') == True,\"Test 7\"\n\tassert f6('') == False,\"Test 8\"\n\tassert f6('HI') == True,\"Test 9\"\n\tassert f6('go') == True,\"Test 10\"\n\tassert f6('gogo') == False,\"Test 11\"\n\tassert f6('aaaaaaaaaaaaaaa') == False,\"Test 12\"\n\tassert f6('Madam') == True,\"Test 13\"\n\tassert f6('M') == False,\"Test 14\"\n\tassert f6('0') == False,\"Test 15\"\n\t\"\"\"\n l = len(string)\n if l == 0 or l == 1:\n return False\n for i in range(2, l):\n if l % i == 0:\n return False\n return True\n\n# Rust f6 translation\n","entry_point":"prime_length","canonical_solution":" l = len(string)\n if l == 0 or l == 1:\n return False\n for i in range(2, l):\n if l % i == 0:\n return False\n return True\n","test":"def check(candidate):\n assert candidate('Hello') == True,\"Test 0\"\n assert candidate('abcdcba') == True,\"Test 1\"\n assert candidate('kittens') == True,\"Test 2\"\n assert candidate('orange') == False,\"Test 3\"\n assert candidate('wow') == True,\"Test 4\"\n assert candidate('world') == True,\"Test 5\"\n assert candidate('MadaM') == True,\"Test 6\"\n assert candidate('Wow') == True,\"Test 7\"\n assert candidate('') == False,\"Test 8\"\n assert candidate('HI') == True,\"Test 9\"\n assert candidate('go') == True,\"Test 10\"\n assert candidate('gogo') == False,\"Test 11\"\n assert candidate('aaaaaaaaaaaaaaa') == False,\"Test 12\"\n assert candidate('Madam') == True,\"Test 13\"\n assert candidate('M') == False,\"Test 14\"\n assert candidate('0') == False,\"Test 15\"\n"} {"task_id":"HumanEval\/83","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(n):\n \"\"\"\n Given a positive integer n, return the count of the numbers of n-digit\n positive integers that start or end with 1.\n \tassert True,\"Test 0\"\n\tassert f6(1) == 1,\"Test 1\"\n\tassert f6(2) == 18,\"Test 2\"\n\tassert f6(3) == 180,\"Test 3\"\n\tassert f6(4) == 1800,\"Test 4\"\n\tassert f6(5) == 18000,\"Test 5\"\n\tassert True,\"Test 6\"\n\t\"\"\"\n if n == 1: return 1\n return 18 * (10 ** (n - 2))\n\n# Rust f6 translation\n","entry_point":"starts_one_ends","canonical_solution":" if n == 1: return 1\n return 18 * (10 ** (n - 2))\n","test":"def check(candidate):\n assert True,\"Test 0\"\n assert candidate(1) == 1,\"Test 1\"\n assert candidate(2) == 18,\"Test 2\"\n assert candidate(3) == 180,\"Test 3\"\n assert candidate(4) == 1800,\"Test 4\"\n assert candidate(5) == 18000,\"Test 5\"\n assert True,\"Test 6\"\n"} {"task_id":"HumanEval\/84","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(N):\n \"\"\"Given a positive integer N, return the total sum of its digits in binary. \tassert True,\"Test 0\"\n\tassert f6(1000) == \"1\",\"Test 1\"\n\tassert f6(150) == \"110\",\"Test 2\"\n\tassert f6(147) == \"1100\",\"Test 3\"\n\tassert True,\"Test 4\"\n\tassert f6(333) == \"1001\",\"Test 5\"\n\tassert f6(963) == \"10010\",\"Test 6\"\n\t\"\"\"\n return bin(sum(int(i) for i in str(N)))[2:]\n\n# Rust f6 translation\n","entry_point":"solve","canonical_solution":" return bin(sum(int(i) for i in str(N)))[2:]\n","test":"def check(candidate):\n assert True,\"Test 0\"\n assert candidate(1000) == \"1\",\"Test 1\"\n assert candidate(150) == \"110\",\"Test 2\"\n assert candidate(147) == \"1100\",\"Test 3\"\n assert True,\"Test 4\"\n assert candidate(333) == \"1001\",\"Test 5\"\n assert candidate(963) == \"10010\",\"Test 6\"\n"} {"task_id":"HumanEval\/85","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(lst):\n \"\"\"Given a non-empty list of integers lst. f6 the even elements that are at odd indices. \tassert f6([4, 88]) == 88,\"Test 0\"\n\tassert f6([4, 5, 6, 7, 2, 122]) == 122,\"Test 1\"\n\tassert f6([4, 0, 6, 7]) == 0,\"Test 2\"\n\tassert f6([4, 4, 6, 8]) == 12,\"Test 3\"\n\t\"\"\"\n return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0])\n\n# Rust f6 translation\n","entry_point":"add","canonical_solution":" return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0])\n","test":"def check(candidate):\n assert candidate([4, 88]) == 88,\"Test 0\"\n assert candidate([4, 5, 6, 7, 2, 122]) == 122,\"Test 1\"\n assert candidate([4, 0, 6, 7]) == 0,\"Test 2\"\n assert candidate([4, 4, 6, 8]) == 12,\"Test 3\"\n"} {"task_id":"HumanEval\/86","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(s):\n \"\"\"\n Write a function that takes a string and returns an ordered version of it.\n Ordered version of string, is a string where all words (separated by space)\n are replaced by a new word where all the characters arranged in\n ascending order based on ascii value.\n Note: You should keep the order of words and blank spaces in the sentence. \tassert f6('Hi') == 'Hi',\"Test 0\"\n\tassert f6('hello') == 'ehllo',\"Test 1\"\n\tassert f6('number') == 'bemnru',\"Test 2\"\n\tassert f6('abcd') == 'abcd',\"Test 3\"\n\tassert f6('Hello World!!!') == 'Hello !!!Wdlor',\"Test 4\"\n\tassert f6('') == '',\"Test 5\"\n\tassert f6('Hi. My name is Mister Robot. How are you?') == '.Hi My aemn is Meirst .Rboot How aer ?ouy',\"Test 6\"\n\tassert True,\"Test 7\"\n\t\"\"\"\n return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])\n\n# Rust f6 translation\n","entry_point":"anti_shuffle","canonical_solution":" return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])\n","test":"def check(candidate):\n assert candidate('Hi') == 'Hi',\"Test 0\"\n assert candidate('hello') == 'ehllo',\"Test 1\"\n assert candidate('number') == 'bemnru',\"Test 2\"\n assert candidate('abcd') == 'abcd',\"Test 3\"\n assert candidate('Hello World!!!') == 'Hello !!!Wdlor',\"Test 4\"\n assert candidate('') == '',\"Test 5\"\n assert candidate('Hi. My name is Mister Robot. How are you?') == '.Hi My aemn is Meirst .Rboot How aer ?ouy',\"Test 6\"\n assert True,\"Test 7\"\n"} {"task_id":"HumanEval\/87","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(lst, x):\n \"\"\"\n You are given a 2 dimensional data, as a nested lists,\n which is similar to matrix, however, unlike matrices,\n each row may contain a different number of columns.\n Given lst, and integer x, find integers x in the list,\n and return list of tuples, [(x1, y1), (x2, y2) ...] such that\n each tuple is a coordinate - (row, columns), starting with 0.\n Sort coordinates initially by rows in ascending order.\n Also, sort coordinates of the row by columns in descending order. \tassert f6([[1,2,3,4,5,6],[1,2,3,4,1,6],[1,2,3,4,5,1]], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)], \"Test 0\"\n\tassert f6([[1,2,3,4,5,6],[1,2,3,4,5,6],[1,2,3,4,5,6],[1,2,3,4,5,6],[1,2,3,4,5,6],[1,2,3,4,5,6]], 2) == [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)], \"Test 1\"\n\tassert f6([[1,2,3,4,5,6],[1,2,3,4,5,6],[1,1,3,4,5,6],[1,2,1,4,5,6],[1,2,3,1,5,6],[1,2,3,4,1,6],[1,2,3,4,5,1]], 1) == [(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)], \"Test 2\"\n\tassert f6([], 1) == [], \"Test 3\"\n\tassert f6([[1]], 2) == [], \"Test 4\"\n\tassert f6([[], [1], [1, 2, 3]], 3) == [(2, 2)], \"Test 5\"\n\t\"\"\"\n coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x]\n return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])\n\n# Rust f6 translation\n","entry_point":"get_row","canonical_solution":" coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x]\n return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])\n","test":"def check(candidate):\n assert candidate([[1,2,3,4,5,6],[1,2,3,4,1,6],[1,2,3,4,5,1]], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)], \"Test 0\"\n assert candidate([[1,2,3,4,5,6],[1,2,3,4,5,6],[1,2,3,4,5,6],[1,2,3,4,5,6],[1,2,3,4,5,6],[1,2,3,4,5,6]], 2) == [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)], \"Test 1\"\n assert candidate([[1,2,3,4,5,6],[1,2,3,4,5,6],[1,1,3,4,5,6],[1,2,1,4,5,6],[1,2,3,1,5,6],[1,2,3,4,1,6],[1,2,3,4,5,1]], 1) == [(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)], \"Test 2\"\n assert candidate([], 1) == [], \"Test 3\"\n assert candidate([[1]], 2) == [], \"Test 4\"\n assert candidate([[], [1], [1, 2, 3]], 3) == [(2, 2)], \"Test 5\"\n"} {"task_id":"HumanEval\/88","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(array):\n \"\"\"\n Given an array of non-negative integers, return a copy of the given array after sorting,\n you will sort the given array in ascending order if the sum( first index value, last index value) is odd,\n or sort it in descending order if the sum( first index value, last index value) is even.\n\n Note:\n * don't change the given array. \tassert True,\"Test 0\"\n\tassert f6([]) == [],\"Test 1\"\n\tassert f6([5]) == [5],\"Test 2\"\n\tassert f6([2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5],\"Test 3\"\n\tassert f6([2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0],\"Test 4\"\n\tassert True,\"Test 5\"\n\tassert f6([2, 1]) == [1, 2],\"Test 6\"\n\tassert f6([15, 42, 87, 32 ,11, 0]) == [0, 11, 15, 32, 42, 87],\"Test 7\"\n\tassert f6([21, 14, 23, 11]) == [23, 21, 14, 11],\"Test 8\"\n\t\"\"\"\n return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0) \n\n# Rust f6 translation\n","entry_point":"sort_array","canonical_solution":" return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0) \n","test":"def check(candidate):\n assert True,\"Test 0\"\n assert candidate([]) == [],\"Test 1\"\n assert candidate([5]) == [5],\"Test 2\"\n assert candidate([2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5],\"Test 3\"\n assert candidate([2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0],\"Test 4\"\n assert True,\"Test 5\"\n assert candidate([2, 1]) == [1, 2],\"Test 6\"\n assert candidate([15, 42, 87, 32 ,11, 0]) == [0, 11, 15, 32, 42, 87],\"Test 7\"\n assert candidate([21, 14, 23, 11]) == [23, 21, 14, 11],\"Test 8\"\n"} {"task_id":"HumanEval\/89","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(s):\n \"\"\"Create a function f6 that takes a string as an argument and\n returns a string f6ed with the alphabet being rotated. \n The alphabet should be rotated in a manner such that the letters \n shift down by two multiplied to two places. \tassert f6('hi') == 'lm',\"Test 0\"\n\tassert f6('asdfghjkl') == 'ewhjklnop',\"Test 1\"\n\tassert f6('gf') == 'kj',\"Test 2\"\n\tassert f6('et') == 'ix',\"Test 3\"\n\tassert f6('faewfawefaewg')=='jeiajeaijeiak',\"Test 4\"\n\tassert f6('hellomyfriend')=='lippsqcjvmirh',\"Test 5\"\n\tassert f6('dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh')=='hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl',\"Test 6\"\n\tassert f6('a')=='e',\"Test 7\"\n\t\"\"\"\n d = 'abcdefghijklmnopqrstuvwxyz'\n out = ''\n for c in s:\n if c in d:\n out += d[(d.index(c)+2*2) % 26]\n else:\n out += c\n return out\n\n# Rust f6 translation\n","entry_point":"encrypt","canonical_solution":" d = 'abcdefghijklmnopqrstuvwxyz'\n out = ''\n for c in s:\n if c in d:\n out += d[(d.index(c)+2*2) % 26]\n else:\n out += c\n return out\n","test":"def check(candidate):\n assert candidate('hi') == 'lm',\"Test 0\"\n assert candidate('asdfghjkl') == 'ewhjklnop',\"Test 1\"\n assert candidate('gf') == 'kj',\"Test 2\"\n assert candidate('et') == 'ix',\"Test 3\"\n assert candidate('faewfawefaewg')=='jeiajeaijeiak',\"Test 4\"\n assert candidate('hellomyfriend')=='lippsqcjvmirh',\"Test 5\"\n assert candidate('dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh')=='hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl',\"Test 6\"\n assert candidate('a')=='e',\"Test 7\"\n"} {"task_id":"HumanEval\/90","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(lst):\n \"\"\"\n You are given a list of integers.\n Write a function f6() that returns the 2nd smallest element of the list.\n Return None if there is no such element.\n \n f6([1, 2, 3, 4, 5]) == 2\n f6([5, 1, 4, 3, 2]) == 2\n f6([]) == None\n f6([1, 1]) == None\n \tassert f6([1, 2, 3, 4, 5]) == 2,\"Test 0\"\n\tassert f6([5, 1, 4, 3, 2]) == 2,\"Test 1\"\n\tassert f6([]) == None,\"Test 2\"\n\tassert f6([1, 1]) == None,\"Test 3\"\n\tassert f6([1,1,1,1,0]) == 1,\"Test 4\"\n\tassert f6([1, 0**0]) == None,\"Test 5\"\n\tassert f6([-35, 34, 12, -45]) == -35,\"Test 6\"\n\tassert True,\"Test 7\"\n\t\"\"\"\n lst = sorted(set(lst))\n return None if len(lst) < 2 else lst[1]\n\n# Rust f6 translation\n","entry_point":"next_smallest","canonical_solution":" lst = sorted(set(lst))\n return None if len(lst) < 2 else lst[1]\n","test":"def check(candidate):\n assert candidate([1, 2, 3, 4, 5]) == 2,\"Test 0\"\n assert candidate([5, 1, 4, 3, 2]) == 2,\"Test 1\"\n assert candidate([]) == None,\"Test 2\"\n assert candidate([1, 1]) == None,\"Test 3\"\n assert candidate([1,1,1,1,0]) == 1,\"Test 4\"\n assert candidate([1, 0**0]) == None,\"Test 5\"\n assert candidate([-35, 34, 12, -45]) == -35,\"Test 6\"\n assert True,\"Test 7\"\n"} {"task_id":"HumanEval\/91","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(S):\n \"\"\"\n You'll be given a string of words, and your task is to count the number\n of boredoms. A boredom is a sentence that starts with the word \"I\".\n Sentences are delimited by '.', '?' or '!'. \tassert f6(\"Hello world\") == 0, \"Test 1\"\n\tassert f6(\"Is the sky blue?\") == 0, \"Test 2\"\n\tassert f6(\"I love It !\") == 1, \"Test 3\"\n\tassert f6(\"bIt\") == 0, \"Test 4\"\n\tassert f6(\"I feel good today. I will be productive. will kill It\") == 2, \"Test 5\"\n\tassert f6(\"You and I are going for a walk\") == 0, \"Test 6\"\n\tassert True,\"Test 6\"\n\t\"\"\"\n import re\n sentences = re.split(r'[.?!]\\s*', S)\n return sum(sentence[0:2] == 'I ' for sentence in sentences)\n\n# Rust f6 translation\n","entry_point":"is_bored","canonical_solution":" import re\n sentences = re.split(r'[.?!]\\s*', S)\n return sum(sentence[0:2] == 'I ' for sentence in sentences)\n","test":"def check(candidate):\n assert candidate(\"Hello world\") == 0, \"Test 1\"\n assert candidate(\"Is the sky blue?\") == 0, \"Test 2\"\n assert candidate(\"I love It !\") == 1, \"Test 3\"\n assert candidate(\"bIt\") == 0, \"Test 4\"\n assert candidate(\"I feel good today. I will be productive. will kill It\") == 2, \"Test 5\"\n assert candidate(\"You and I are going for a walk\") == 0, \"Test 6\"\n assert True,\"Test 6\"\n"} {"task_id":"HumanEval\/92","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(x, y, z):\n '''\n Create a function that takes 3 numbers.\n Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.\n Returns false in any other cases. \tassert f6(2, 3, 1)==True,\"Test 0\"\n\tassert f6(2.5, 2, 3)==False,\"Test 1\"\n\tassert f6(1.5, 5, 3.5)==False,\"Test 2\"\n\tassert f6(2, 6, 2)==False,\"Test 3\"\n\tassert f6(4, 2, 2)==True,\"Test 4\"\n\tassert f6(2.2, 2.2, 2.2)==False,\"Test 5\"\n\tassert f6(-4, 6, 2)==True,\"Test 6\"\n\tassert f6(2,1,1)==True,\"Test 7\"\n\tassert f6(3,4,7)==True,\"Test 8\"\n\tassert f6(3.0,4,7)==False,\"Test 9\"\n\t\"\"\"\n \n if isinstance(x,int) and isinstance(y,int) and isinstance(z,int):\n if (x+y==z) or (x+z==y) or (y+z==x):\n return True\n return False\n return False\n\n# Rust f6 translation\n","entry_point":"any_int","canonical_solution":" \n if isinstance(x,int) and isinstance(y,int) and isinstance(z,int):\n if (x+y==z) or (x+z==y) or (y+z==x):\n return True\n return False\n return False\n","test":"def check(candidate):\n assert candidate(2, 3, 1)==True,\"Test 0\"\n assert candidate(2.5, 2, 3)==False,\"Test 1\"\n assert candidate(1.5, 5, 3.5)==False,\"Test 2\"\n assert candidate(2, 6, 2)==False,\"Test 3\"\n assert candidate(4, 2, 2)==True,\"Test 4\"\n assert candidate(2.2, 2.2, 2.2)==False,\"Test 5\"\n assert candidate(-4, 6, 2)==True,\"Test 6\"\n assert candidate(2,1,1)==True,\"Test 7\"\n assert candidate(3,4,7)==True,\"Test 8\"\n assert candidate(3.0,4,7)==False,\"Test 9\"\n"} {"task_id":"HumanEval\/93","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(message):\n \"\"\"\n Write a function that takes a message, and f6s in such a \n way that it swaps case of all letters, replaces all vowels in \n the message with the letter that appears 2 places ahead of that \n vowel in the english alphabet. \n Assume only letters. \tassert f6('TEST') == 'tgst',\"Test 0\"\n\tassert f6('Mudasir') == 'mWDCSKR',\"Test 1\"\n\tassert f6('YES') == 'ygs',\"Test 2\"\n\tassert f6('This is a message') == 'tHKS KS C MGSSCGG',\"Test 3\"\n\tassert f6(\"I DoNt KnOw WhAt tO WrItE\") == 'k dQnT kNqW wHcT Tq wRkTg',\"Test 4\"\n\t\"\"\"\n vowels = \"aeiouAEIOU\"\n vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels])\n message = message.swapcase()\n return ''.join([vowels_replace[i] if i in vowels else i for i in message])\n\n# Rust f6 translation\n","entry_point":"encode","canonical_solution":" vowels = \"aeiouAEIOU\"\n vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels])\n message = message.swapcase()\n return ''.join([vowels_replace[i] if i in vowels else i for i in message])\n","test":"def check(candidate):\n assert candidate('TEST') == 'tgst',\"Test 0\"\n assert candidate('Mudasir') == 'mWDCSKR',\"Test 1\"\n assert candidate('YES') == 'ygs',\"Test 2\"\n assert candidate('This is a message') == 'tHKS KS C MGSSCGG',\"Test 3\"\n assert candidate(\"I DoNt KnOw WhAt tO WrItE\") == 'k dQnT kNqW wHcT Tq wRkTg',\"Test 4\"\n"} {"task_id":"HumanEval\/94","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(lst):\n \"\"\"You are given a list of integers.\n You need to find the largest prime value and return the sum of its digits. \tassert f6([0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]) == 10,\"Test 0\"\n\tassert f6([1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]) == 25,\"Test 1\"\n\tassert f6([1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]) == 13,\"Test 2\"\n\tassert f6([0,724,32,71,99,32,6,0,5,91,83,0,5,6]) == 11,\"Test 3\"\n\tassert f6([0,81,12,3,1,21]) == 3,\"Test 4\"\n\tassert f6([0,8,1,2,1,7]) == 7,\"Test 5\"\n\tassert f6([8191]) == 19,\"Test 6\"\n\tassert f6([8191, 123456, 127, 7]) == 19,\"Test 7\"\n\tassert f6([127, 97, 8192]) == 10,\"Test 8\"\n\t\"\"\"\n def isPrime(n):\n for i in range(2,int(n**0.5)+1):\n if n%i==0:\n return False\n\n return True\n maxx = 0\n i = 0\n while i < len(lst):\n if(lst[i] > maxx and isPrime(lst[i])):\n maxx = lst[i]\n i+=1\n result = sum(int(digit) for digit in str(maxx))\n return result\n\n\n# Rust f6 translation\n","entry_point":"skjkasdkd","canonical_solution":" def isPrime(n):\n for i in range(2,int(n**0.5)+1):\n if n%i==0:\n return False\n\n return True\n maxx = 0\n i = 0\n while i < len(lst):\n if(lst[i] > maxx and isPrime(lst[i])):\n maxx = lst[i]\n i+=1\n result = sum(int(digit) for digit in str(maxx))\n return result\n\n","test":"def check(candidate):\n assert candidate([0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]) == 10,\"Test 0\"\n assert candidate([1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]) == 25,\"Test 1\"\n assert candidate([1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]) == 13,\"Test 2\"\n assert candidate([0,724,32,71,99,32,6,0,5,91,83,0,5,6]) == 11,\"Test 3\"\n assert candidate([0,81,12,3,1,21]) == 3,\"Test 4\"\n assert candidate([0,8,1,2,1,7]) == 7,\"Test 5\"\n assert candidate([8191]) == 19,\"Test 6\"\n assert candidate([8191, 123456, 127, 7]) == 19,\"Test 7\"\n assert candidate([127, 97, 8192]) == 10,\"Test 8\"\n"} {"task_id":"HumanEval\/95","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(dict):\n \tassert f6({\"p\":\"pineapple\",\"Test 0\"\n\tassert f6({\"p\":\"pineapple\",\"Test 1\"\n\tassert f6({\"p\":\"pineapple\", 5:\"banana\",\"Test 2\"\n\tassert f6({\"Name\":\"John\",\"Test 3\"\n\tassert f6({\"STATE\":\"NC\",\"Test 4\"\n\tassert f6({\"fruit\":\"Orange\",\"Test 5\"\n\tassert f6({}) == False,\"Test 6\"\n\t\"\"\"\n if len(dict.keys()) == 0:\n return False\n else:\n state = \"start\"\n for key in dict.keys():\n\n if isinstance(key, str) == False:\n state = \"mixed\"\n break\n if state == \"start\":\n if key.isupper():\n state = \"upper\"\n elif key.islower():\n state = \"lower\"\n else:\n break\n elif (state == \"upper\" and not key.isupper()) or (state == \"lower\" and not key.islower()):\n state = \"mixed\"\n break\n else:\n break\n return state == \"upper\" or state == \"lower\" \n\n# Rust f6 translation\n","entry_point":"check_dict_case","canonical_solution":" if len(dict.keys()) == 0:\n return False\n else:\n state = \"start\"\n for key in dict.keys():\n\n if isinstance(key, str) == False:\n state = \"mixed\"\n break\n if state == \"start\":\n if key.isupper():\n state = \"upper\"\n elif key.islower():\n state = \"lower\"\n else:\n break\n elif (state == \"upper\" and not key.isupper()) or (state == \"lower\" and not key.islower()):\n state = \"mixed\"\n break\n else:\n break\n return state == \"upper\" or state == \"lower\" \n","test":"def check(candidate):\n assert candidate({\"p\":\"pineapple\",\"Test 0\"\n assert candidate({\"p\":\"pineapple\",\"Test 1\"\n assert candidate({\"p\":\"pineapple\", 5:\"banana\",\"Test 2\"\n assert candidate({\"Name\":\"John\",\"Test 3\"\n assert candidate({\"STATE\":\"NC\",\"Test 4\"\n assert candidate({\"fruit\":\"Orange\",\"Test 5\"\n assert candidate({}) == False,\"Test 6\"\n"} {"task_id":"HumanEval\/96","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(n):\n \"\"\"Implement a function that takes an non-negative integer and returns an array of the first n\n integers that are prime numbers and less than n. \tassert f6(5) == [2,3],\"Test 0\"\n\tassert f6(6) == [2,3,5],\"Test 1\"\n\tassert f6(7) == [2,3,5],\"Test 2\"\n\tassert f6(10) == [2,3,5,7],\"Test 3\"\n\tassert f6(0) == [],\"Test 4\"\n\tassert f6(22) == [2,3,5,7,11,13,17,19],\"Test 5\"\n\tassert f6(1) == [],\"Test 6\"\n\tassert f6(18) == [2,3,5,7,11,13,17],\"Test 7\"\n\tassert f6(47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43],\"Test 8\"\n\tassert f6(101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97],\"Test 9\"\n\t\"\"\"\n primes = []\n for i in range(2, n):\n is_prime = True\n for j in range(2, i):\n if i % j == 0:\n is_prime = False\n break\n if is_prime:\n primes.append(i)\n return primes\n\n\n# Rust f6 translation\n","entry_point":"count_up_to","canonical_solution":" primes = []\n for i in range(2, n):\n is_prime = True\n for j in range(2, i):\n if i % j == 0:\n is_prime = False\n break\n if is_prime:\n primes.append(i)\n return primes\n\n","test":"def check(candidate):\n assert candidate(5) == [2,3],\"Test 0\"\n assert candidate(6) == [2,3,5],\"Test 1\"\n assert candidate(7) == [2,3,5],\"Test 2\"\n assert candidate(10) == [2,3,5,7],\"Test 3\"\n assert candidate(0) == [],\"Test 4\"\n assert candidate(22) == [2,3,5,7,11,13,17,19],\"Test 5\"\n assert candidate(1) == [],\"Test 6\"\n assert candidate(18) == [2,3,5,7,11,13,17],\"Test 7\"\n assert candidate(47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43],\"Test 8\"\n assert candidate(101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97],\"Test 9\"\n"} {"task_id":"HumanEval\/97","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(a, b):\n \"\"\"Complete the function that takes two integers and returns \n the product of their unit digits.\n Assume the input is always valid. \tassert f6(148, 412) == 16,\"Test 0\"\n\tassert f6(19, 28) == 72,\"Test 1\"\n\tassert f6(2020, 1851) == 0,\"Test 2\"\n\tassert f6(14,-15) == 20,\"Test 3\"\n\tassert f6(76, 67) == 42,\"Test 4\"\n\tassert f6(17, 27) == 49,\"Test 5\"\n\tassert f6(0, 1) == 0,\"Test 6\"\n\tassert f6(0, 0) == 0,\"Test 7\"\n\t\"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f6 translation\n","entry_point":"multiply","canonical_solution":" return abs(a % 10) * abs(b % 10)\n","test":"def check(candidate):\n assert candidate(148, 412) == 16,\"Test 0\"\n assert candidate(19, 28) == 72,\"Test 1\"\n assert candidate(2020, 1851) == 0,\"Test 2\"\n assert candidate(14,-15) == 20,\"Test 3\"\n assert candidate(76, 67) == 42,\"Test 4\"\n assert candidate(17, 27) == 49,\"Test 5\"\n assert candidate(0, 1) == 0,\"Test 6\"\n assert candidate(0, 0) == 0,\"Test 7\"\n"} {"task_id":"HumanEval\/98","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(s):\n \"\"\"\n Given a string s, count the number of uppercase vowels in even indices. \tassert f6('aBCdEf') == 1,\"Test 0\"\n\tassert f6('abcdefg') == 0,\"Test 1\"\n\tassert f6('dBBE') == 0,\"Test 2\"\n\tassert f6('B') == 0,\"Test 3\"\n\tassert f6('U') == 1,\"Test 4\"\n\tassert f6('') == 0,\"Test 5\"\n\tassert f6('EEEE') == 2,\"Test 6\"\n\tassert True,\"Test 7\"\n\t\"\"\"\n count = 0\n for i in range(0,len(s),2):\n if s[i] in \"AEIOU\":\n count += 1\n return count\n\n# Rust f6 translation\n","entry_point":"count_upper","canonical_solution":" count = 0\n for i in range(0,len(s),2):\n if s[i] in \"AEIOU\":\n count += 1\n return count\n","test":"def check(candidate):\n assert candidate('aBCdEf') == 1,\"Test 0\"\n assert candidate('abcdefg') == 0,\"Test 1\"\n assert candidate('dBBE') == 0,\"Test 2\"\n assert candidate('B') == 0,\"Test 3\"\n assert candidate('U') == 1,\"Test 4\"\n assert candidate('') == 0,\"Test 5\"\n assert candidate('EEEE') == 2,\"Test 6\"\n assert True,\"Test 7\"\n"} {"task_id":"HumanEval\/99","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(value):\n '''\n Create a function that takes a value (string) representing a number\n and returns the closest integer to it. If the number is equidistant\n from two integers, round it away from zero. \tassert f6(\"10\") == 10, \"Test 1\"\n\tassert f6(\"14.5\") == 15, \"Test 2\"\n\tassert f6(\"-15.5\") == -16, \"Test 3\"\n\tassert f6(\"15.3\") == 15, \"Test 3\"\n\tassert f6(\"0\") == 0, \"Test 0\"\n\t\"\"\"\n from math import floor, ceil\n\n if value.count('.') == 1:\n # remove trailing zeros\n while (value[-1] == '0'):\n value = value[:-1]\n\n num = float(value)\n if value[-2:] == '.5':\n if num > 0:\n res = ceil(num)\n else:\n res = floor(num)\n elif len(value) > 0:\n res = int(round(num))\n else:\n res = 0\n\n return res\n\n\n# Rust f6 translation\n","entry_point":"closest_integer","canonical_solution":" from math import floor, ceil\n\n if value.count('.') == 1:\n # remove trailing zeros\n while (value[-1] == '0'):\n value = value[:-1]\n\n num = float(value)\n if value[-2:] == '.5':\n if num > 0:\n res = ceil(num)\n else:\n res = floor(num)\n elif len(value) > 0:\n res = int(round(num))\n else:\n res = 0\n\n return res\n\n","test":"def check(candidate):\n assert candidate(\"10\") == 10, \"Test 1\"\n assert candidate(\"14.5\") == 15, \"Test 2\"\n assert candidate(\"-15.5\") == -16, \"Test 3\"\n assert candidate(\"15.3\") == 15, \"Test 3\"\n assert candidate(\"0\") == 0, \"Test 0\"\n"} {"task_id":"HumanEval\/100","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(n):\n \"\"\"\n Given a positive integer n, you have to make a pile of n levels of stones.\n The first level has n stones.\n The number of stones in the next level is:\n - the next odd number if n is odd.\n - the next even number if n is even.\n Return the number of stones in each level in a list, where element at index\n i represents the number of stones in the level (i+1). \tassert f6(3) == [3, 5, 7], \"Test 3\"\n\tassert f6(4) == [4,6,8,10], \"Test 4\"\n\tassert f6(5) == [5, 7, 9, 11, 13],\"Test 2\"\n\tassert f6(6) == [6, 8, 10, 12, 14, 16],\"Test 3\"\n\tassert f6(8) == [8, 10, 12, 14, 16, 18, 20, 22],\"Test 4\"\n\tassert True,\"Test 5\"\n\t\"\"\"\n return [n + 2*i for i in range(n)]\n\n# Rust f6 translation\n","entry_point":"make_a_pile","canonical_solution":" return [n + 2*i for i in range(n)]\n","test":"def check(candidate):\n assert candidate(3) == [3, 5, 7], \"Test 3\"\n assert candidate(4) == [4,6,8,10], \"Test 4\"\n assert candidate(5) == [5, 7, 9, 11, 13],\"Test 2\"\n assert candidate(6) == [6, 8, 10, 12, 14, 16],\"Test 3\"\n assert candidate(8) == [8, 10, 12, 14, 16, 18, 20, 22],\"Test 4\"\n assert True,\"Test 5\"\n"} {"task_id":"HumanEval\/101","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(s):\n \"\"\"\n You will be given a string of words separated by commas or spaces. Your task is\n to split the string into words and return an array of the words. \tassert f6(\"Hi, my name is John\") == [\"Hi\", \"my\", \"name\", \"is\", \"John\"], \"Test 0\"\n\tassert f6(\"One, two, three, four, five, six\") == [\"One\", \"two\", \"three\", \"four\", \"five\", \"six\"], \"Test 1\"\n\tassert f6(\"Hi, my name\") == [\"Hi\", \"my\", \"name\"], \"Test 2\"\n\tassert f6(\"One,, two, three, four, five, six,\") == [\"One\", \"two\", \"three\", \"four\", \"five\", \"six\"], \"Test 3\"\n\tassert f6(\"\") == [], \"Test 4\"\n\tassert f6(\"ahmed , gamal\") == [\"ahmed\", \"gamal\"], \"Test 5\"\n\t\"\"\"\n if not s:\n return []\n\n s_list = []\n\n for letter in s:\n if letter == ',':\n s_list.append(' ')\n else:\n s_list.append(letter)\n\n s_list = \"\".join(s_list)\n return s_list.split()\n\n# Rust f6 translation\n","entry_point":"words_string","canonical_solution":" if not s:\n return []\n\n s_list = []\n\n for letter in s:\n if letter == ',':\n s_list.append(' ')\n else:\n s_list.append(letter)\n\n s_list = \"\".join(s_list)\n return s_list.split()\n","test":"def check(candidate):\n assert candidate(\"Hi, my name is John\") == [\"Hi\", \"my\", \"name\", \"is\", \"John\"], \"Test 0\"\n assert candidate(\"One, two, three, four, five, six\") == [\"One\", \"two\", \"three\", \"four\", \"five\", \"six\"], \"Test 1\"\n assert candidate(\"Hi, my name\") == [\"Hi\", \"my\", \"name\"], \"Test 2\"\n assert candidate(\"One,, two, three, four, five, six,\") == [\"One\", \"two\", \"three\", \"four\", \"five\", \"six\"], \"Test 3\"\n assert candidate(\"\") == [], \"Test 4\"\n assert candidate(\"ahmed , gamal\") == [\"ahmed\", \"gamal\"], \"Test 5\"\n"} {"task_id":"HumanEval\/102","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(x, y):\n \"\"\"This function takes two positive numbers x and y and returns the\n biggest even integer number that is in the range [x, y] inclusive. If \n there's no such number, then the function should return -1. \tassert f6(12, 15) == 14,\"Test 0\"\n\tassert f6(13, 12) == -1,\"Test 1\"\n\tassert f6(33, 12354) == 12354,\"Test 2\"\n\tassert f6(5234, 5233) == -1,\"Test 3\"\n\tassert f6(6, 29) == 28,\"Test 4\"\n\tassert f6(27, 10) == -1,\"Test 5\"\n\tassert f6(7, 7) == -1,\"Test 6\"\n\tassert f6(546, 546) == 546,\"Test 7\"\n\t\"\"\"\n if x > y:\n return -1\n if y % 2 == 0:\n return y\n if x == y:\n return -1\n return y - 1\n\n# Rust f6 translation\n","entry_point":"choose_num","canonical_solution":" if x > y:\n return -1\n if y % 2 == 0:\n return y\n if x == y:\n return -1\n return y - 1\n","test":"def check(candidate):\n assert candidate(12, 15) == 14,\"Test 0\"\n assert candidate(13, 12) == -1,\"Test 1\"\n assert candidate(33, 12354) == 12354,\"Test 2\"\n assert candidate(5234, 5233) == -1,\"Test 3\"\n assert candidate(6, 29) == 28,\"Test 4\"\n assert candidate(27, 10) == -1,\"Test 5\"\n assert candidate(7, 7) == -1,\"Test 6\"\n assert candidate(546, 546) == 546,\"Test 7\"\n"} {"task_id":"HumanEval\/103","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(n, m):\n \"\"\"You are given two positive integers n and m, and your task is to compute the\n average of the integers from n through m (including n and m). \n Round the answer to the nearest integer and convert that to binary.\n If n is greater than m, return -1. \tassert f6(1, 5) == \"0b11\",\"Test 0\"\n\tassert f6(7, 13) == \"0b1010\",\"Test 1\"\n\tassert f6(964,977) == \"0b1111001010\",\"Test 2\"\n\tassert f6(996,997) == \"0b1111100100\",\"Test 3\"\n\tassert f6(560,851) == \"0b1011000010\",\"Test 4\"\n\tassert f6(185,546) == \"0b101101110\",\"Test 5\"\n\tassert f6(362,496) == \"0b110101101\",\"Test 6\"\n\tassert f6(350,902) == \"0b1001110010\",\"Test 7\"\n\tassert f6(197,233) == \"0b11010111\",\"Test 8\"\n\tassert f6(7, 5) == -1,\"Test 9\"\n\tassert f6(5, 1) == -1,\"Test 10\"\n\tassert f6(5, 5) == \"0b101\",\"Test 11\"\n\t\"\"\"\n if m < n:\n return -1\n summation = 0\n for i in range(n, m+1):\n summation += i\n return bin(round(summation\/(m - n + 1)))\n\n# Rust f6 translation\n","entry_point":"rounded_avg","canonical_solution":" if m < n:\n return -1\n summation = 0\n for i in range(n, m+1):\n summation += i\n return bin(round(summation\/(m - n + 1)))\n","test":"def check(candidate):\n assert candidate(1, 5) == \"0b11\",\"Test 0\"\n assert candidate(7, 13) == \"0b1010\",\"Test 1\"\n assert candidate(964,977) == \"0b1111001010\",\"Test 2\"\n assert candidate(996,997) == \"0b1111100100\",\"Test 3\"\n assert candidate(560,851) == \"0b1011000010\",\"Test 4\"\n assert candidate(185,546) == \"0b101101110\",\"Test 5\"\n assert candidate(362,496) == \"0b110101101\",\"Test 6\"\n assert candidate(350,902) == \"0b1001110010\",\"Test 7\"\n assert candidate(197,233) == \"0b11010111\",\"Test 8\"\n assert candidate(7, 5) == -1,\"Test 9\"\n assert candidate(5, 1) == -1,\"Test 10\"\n assert candidate(5, 5) == \"0b101\",\"Test 11\"\n"} {"task_id":"HumanEval\/104","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(x):\n \"\"\"Given a list of positive integers x. return a sorted list of all \n elements that hasn't any even digit.\n\n Note: Returned list should be sorted in increasing order. \tassert f6([15, 33, 1422, 1]) == [1, 15, 33],\"Test 0\"\n\tassert f6([152, 323, 1422, 10]) == [],\"Test 1\"\n\tassert f6([12345, 2033, 111, 151]) == [111, 151],\"Test 2\"\n\tassert f6([135, 103, 31]) == [31, 135],\"Test 3\"\n\tassert True,\"Test 4\"\n\t\"\"\"\n odd_digit_elements = []\n for i in x:\n if all (int(c) % 2 == 1 for c in str(i)):\n odd_digit_elements.append(i)\n return sorted(odd_digit_elements)\n\n# Rust f6 translation\n","entry_point":"unique_digits","canonical_solution":" odd_digit_elements = []\n for i in x:\n if all (int(c) % 2 == 1 for c in str(i)):\n odd_digit_elements.append(i)\n return sorted(odd_digit_elements)\n","test":"def check(candidate):\n assert candidate([15, 33, 1422, 1]) == [1, 15, 33],\"Test 0\"\n assert candidate([152, 323, 1422, 10]) == [],\"Test 1\"\n assert candidate([12345, 2033, 111, 151]) == [111, 151],\"Test 2\"\n assert candidate([135, 103, 31]) == [31, 135],\"Test 3\"\n assert True,\"Test 4\"\n"} {"task_id":"HumanEval\/105","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(arr):\n \"\"\"\n Given an array of integers, sort the integers that are between 1 and 9 inclusive,\n reverse the resulting array, and then replace each digit by its corresponding name from\n \"One\", \"Two\", \"Three\", \"Four\", \"Five\", \"Six\", \"Seven\", \"Eight\", \"Nine\". \tassert f6([2, 1, 1, 4, 5, 8, 2, 3]) == [\"Eight\", \"Five\", \"Four\", \"Three\", \"Two\", \"Two\", \"One\", \"One\"], \"Test 0\"\n\tassert f6([]) == [], \"Test 1\"\n\tassert f6([1, -1 , 55]) == ['One'], \"Test 2\"\n\tassert f6([1, -1, 3, 2]) == [\"Three\", \"Two\", \"One\"], \"Test 3\"\n\tassert f6([9, 4, 8]) == [\"Nine\", \"Eight\", \"Four\"], \"Test 4\"\n\t\"\"\"\n dic = {\n 1: \"One\",\n 2: \"Two\",\n 3: \"Three\",\n 4: \"Four\",\n 5: \"Five\",\n 6: \"Six\",\n 7: \"Seven\",\n 8: \"Eight\",\n 9: \"Nine\",\n }\n sorted_arr = sorted(arr, reverse=True)\n new_arr = []\n for var in sorted_arr:\n try:\n new_arr.append(dic[var])\n except:\n pass\n return new_arr\n\n# Rust f6 translation\n","entry_point":"by_length","canonical_solution":" dic = {\n 1: \"One\",\n 2: \"Two\",\n 3: \"Three\",\n 4: \"Four\",\n 5: \"Five\",\n 6: \"Six\",\n 7: \"Seven\",\n 8: \"Eight\",\n 9: \"Nine\",\n }\n sorted_arr = sorted(arr, reverse=True)\n new_arr = []\n for var in sorted_arr:\n try:\n new_arr.append(dic[var])\n except:\n pass\n return new_arr\n","test":"def check(candidate):\n assert candidate([2, 1, 1, 4, 5, 8, 2, 3]) == [\"Eight\", \"Five\", \"Four\", \"Three\", \"Two\", \"Two\", \"One\", \"One\"], \"Test 0\"\n assert candidate([]) == [], \"Test 1\"\n assert candidate([1, -1 , 55]) == ['One'], \"Test 2\"\n assert candidate([1, -1, 3, 2]) == [\"Three\", \"Two\", \"One\"], \"Test 3\"\n assert candidate([9, 4, 8]) == [\"Nine\", \"Eight\", \"Four\"], \"Test 4\"\n"} {"task_id":"HumanEval\/106","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef6 f6(n):\n \"\"\" Implement the f6unction f6 that takes n as a parameter,\n and returns a list of6 size n, such that the value of6 the element at index i is the f6actorial of6 i if6 i is even\n or the sum of6 numbers f6rom 1 to i otherwise.\n i starts f6rom 1.\n the f6actorial of6 i is the multiplication of6 the numbers f6rom 1 to i (1 * 2 * ... * i). \tassert f6(5) == [1, 2, 6, 24, 15],\"Test 0\"\n\tassert f6(7) == [1, 2, 6, 24, 15, 720, 28],\"Test 1\"\n\tassert f6(1) == [1],\"Test 2\"\n\tassert f6(3) == [1, 2, 6],\"Test 3\"\n\t\"\"\"\n ret = []\n for i in range(1,n+1):\n if i%2 == 0:\n x = 1\n for j in range(1,i+1): x *= j\n ret += [x]\n else:\n x = 0\n for j in range(1,i+1): x += j\n ret += [x]\n return ret\n\n# Rust f6 translation\n","entry_point":"f","canonical_solution":" ret = []\n for i in range(1,n+1):\n if i%2 == 0:\n x = 1\n for j in range(1,i+1): x *= j\n ret += [x]\n else:\n x = 0\n for j in range(1,i+1): x += j\n ret += [x]\n return ret\n","test":"def check(candidate):\n assert candidate(5) == [1, 2, 6, 24, 15],\"Test 0\"\n assert candidate(7) == [1, 2, 6, 24, 15, 720, 28],\"Test 1\"\n assert candidate(1) == [1],\"Test 2\"\n assert candidate(3) == [1, 2, 6],\"Test 3\"\n"} {"task_id":"HumanEval\/107","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(n):\n \"\"\"\n Given a positive integer n, return a tuple that has the number of even and odd\n integer palindromes that fall within the range(1, n), inclusive. \tassert f6(123) == (8, 13),\"Test 0\"\n\tassert f6(12) == (4, 6),\"Test 1\"\n\tassert f6(3) == (1, 2),\"Test 2\"\n\tassert f6(63) == (6, 8),\"Test 3\"\n\tassert f6(25) == (5, 6),\"Test 4\"\n\tassert f6(19) == (4, 6),\"Test 5\"\n\tassert f6(9) == (4, 5),\"Test 6\"\n\tassert f6(1) == (0, 1),\"Test 7\"\n\t\"\"\"\n def is_palindrome(n):\n return str(n) == str(n)[::-1]\n\n even_palindrome_count = 0\n odd_palindrome_count = 0\n\n for i in range(1, n+1):\n if i%2 == 1 and is_palindrome(i):\n odd_palindrome_count += 1\n elif i%2 == 0 and is_palindrome(i):\n even_palindrome_count += 1\n return (even_palindrome_count, odd_palindrome_count)\n\n# Rust f6 translation\n","entry_point":"even_odd_palindrome","canonical_solution":" def is_palindrome(n):\n return str(n) == str(n)[::-1]\n\n even_palindrome_count = 0\n odd_palindrome_count = 0\n\n for i in range(1, n+1):\n if i%2 == 1 and is_palindrome(i):\n odd_palindrome_count += 1\n elif i%2 == 0 and is_palindrome(i):\n even_palindrome_count += 1\n return (even_palindrome_count, odd_palindrome_count)\n","test":"def check(candidate):\n assert candidate(123) == (8, 13),\"Test 0\"\n assert candidate(12) == (4, 6),\"Test 1\"\n assert candidate(3) == (1, 2),\"Test 2\"\n assert candidate(63) == (6, 8),\"Test 3\"\n assert candidate(25) == (5, 6),\"Test 4\"\n assert candidate(19) == (4, 6),\"Test 5\"\n assert candidate(9) == (4, 5),\"Test 6\"\n assert candidate(1) == (0, 1),\"Test 7\"\n"} {"task_id":"HumanEval\/108","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(arr):\n \"\"\"\n Write a function f6 which takes an array of integers and returns\n the number of elements which has a sum of digits > 0.\n If a number is negative, then its first signed digit will be negative. \tassert f6([]) == 0,\"Test 0\"\n\tassert f6([-1, -2, 0]) == 0,\"Test 1\"\n\tassert f6([1, 1, 2, -2, 3, 4, 5]) == 6,\"Test 2\"\n\tassert f6([1, 6, 9, -6, 0, 1, 5]) == 5,\"Test 3\"\n\tassert f6([1, 100, 98, -7, 1, -1]) == 4,\"Test 4\"\n\tassert f6([12, 23, 34, -45, -56, 0]) == 5,\"Test 5\"\n\tassert f6([-0, 1**0]) == 1,\"Test 6\"\n\tassert f6([1]) == 1,\"Test 7\"\n\tassert True,\"Test 8\"\n\t\"\"\"\n def digits_sum(n):\n neg = 1\n if n < 0: n, neg = -1 * n, -1 \n n = [int(i) for i in str(n)]\n n[0] = n[0] * neg\n return sum(n)\n return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))\n\n# Rust f6 translation\n","entry_point":"count_nums","canonical_solution":" def digits_sum(n):\n neg = 1\n if n < 0: n, neg = -1 * n, -1 \n n = [int(i) for i in str(n)]\n n[0] = n[0] * neg\n return sum(n)\n return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))\n","test":"def check(candidate):\n assert candidate([]) == 0,\"Test 0\"\n assert candidate([-1, -2, 0]) == 0,\"Test 1\"\n assert candidate([1, 1, 2, -2, 3, 4, 5]) == 6,\"Test 2\"\n assert candidate([1, 6, 9, -6, 0, 1, 5]) == 5,\"Test 3\"\n assert candidate([1, 100, 98, -7, 1, -1]) == 4,\"Test 4\"\n assert candidate([12, 23, 34, -45, -56, 0]) == 5,\"Test 5\"\n assert candidate([-0, 1**0]) == 1,\"Test 6\"\n assert candidate([1]) == 1,\"Test 7\"\n assert True,\"Test 8\"\n"} {"task_id":"HumanEval\/109","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(arr):\n \"\"\"We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The\n numbers in the array will be randomly ordered. Your task is to determine if\n it is possible to get an array sorted in non-decreasing order by performing \n the following operation on the given array:\n You are allowed to perform right shift operation any number of times.\n \n One right shift operation means shifting all elements of the array by one\n position in the right direction. The last element of the array will be moved to\n the starting position in the array i.e. 0th index. \n\n If it is possible to obtain the sorted array by performing the above operation\n\n Note: The given list is guaranteed to have unique elements. \tassert f6([3, 4, 5, 1, 2])==True,\"Test 0\"\n\tassert f6([3, 5, 10, 1, 2])==True,\"Test 1\"\n\tassert f6([4, 3, 1, 2])==False,\"Test 2\"\n\tassert f6([3, 5, 4, 1, 2])==False,\"Test 3\"\n\tassert f6([])==True,\"Test 4\"\n\t\"\"\"\n if len(arr)==0:\n return True\n sorted_array=sorted(arr)\n my_arr=[]\n \n min_value=min(arr)\n min_index=arr.index(min_value)\n my_arr=arr[min_index:]+arr[0:min_index]\n for i in range(len(arr)):\n if my_arr[i]!=sorted_array[i]:\n return False\n return True\n\n# Rust f6 translation\n","entry_point":"move_one_ball","canonical_solution":" if len(arr)==0:\n return True\n sorted_array=sorted(arr)\n my_arr=[]\n \n min_value=min(arr)\n min_index=arr.index(min_value)\n my_arr=arr[min_index:]+arr[0:min_index]\n for i in range(len(arr)):\n if my_arr[i]!=sorted_array[i]:\n return False\n return True\n","test":"def check(candidate):\n assert candidate([3, 4, 5, 1, 2])==True,\"Test 0\"\n assert candidate([3, 5, 10, 1, 2])==True,\"Test 1\"\n assert candidate([4, 3, 1, 2])==False,\"Test 2\"\n assert candidate([3, 5, 4, 1, 2])==False,\"Test 3\"\n assert candidate([])==True,\"Test 4\"\n"} {"task_id":"HumanEval\/110","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(lst1, lst2):\n \"\"\"In this problem, you will implement a function that takes two lists of numbers,\n and determines whether it is possible to perform an f6 of elements\n between them to make lst1 a list of only even numbers.\n There is no limit on the number of f6d elements between lst1 and lst2.\n If it is possible to f6 elements between the lst1 and lst2 to make\n all the elements of lst1 to be even, return \"YES\".\n Otherwise, return \"NO\". \tassert f6([1, 2, 3, 4], [1, 2, 3, 4]) == \"YES\",\"Test 0\"\n\tassert f6([1, 2, 3, 4], [1, 5, 3, 4]) == \"NO\",\"Test 1\"\n\tassert f6([1, 2, 3, 4], [2, 1, 4, 3]) == \"YES\" ,\"Test 2\"\n\tassert f6([5, 7, 3], [2, 6, 4]) == \"YES\",\"Test 3\"\n\tassert f6([5, 7, 3], [2, 6, 3]) == \"NO\" ,\"Test 4\"\n\tassert f6([3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]) == \"NO\",\"Test 5\"\n\tassert f6([100, 200], [200, 200]) == \"YES\",\"Test 6\"\n\t\"\"\"\n odd = 0\n even = 0\n for i in lst1:\n if i%2 == 1:\n odd += 1\n for i in lst2:\n if i%2 == 0:\n even += 1\n if even >= odd:\n return \"YES\"\n return \"NO\"\n \n\n# Rust f6 translation\n","entry_point":"exchange","canonical_solution":" odd = 0\n even = 0\n for i in lst1:\n if i%2 == 1:\n odd += 1\n for i in lst2:\n if i%2 == 0:\n even += 1\n if even >= odd:\n return \"YES\"\n return \"NO\"\n \n","test":"def check(candidate):\n assert candidate([1, 2, 3, 4], [1, 2, 3, 4]) == \"YES\",\"Test 0\"\n assert candidate([1, 2, 3, 4], [1, 5, 3, 4]) == \"NO\",\"Test 1\"\n assert candidate([1, 2, 3, 4], [2, 1, 4, 3]) == \"YES\" ,\"Test 2\"\n assert candidate([5, 7, 3], [2, 6, 4]) == \"YES\",\"Test 3\"\n assert candidate([5, 7, 3], [2, 6, 3]) == \"NO\" ,\"Test 4\"\n assert candidate([3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]) == \"NO\",\"Test 5\"\n assert candidate([100, 200], [200, 200]) == \"YES\",\"Test 6\"\n"} {"task_id":"HumanEval\/111","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(test):\n \"\"\"Given a string representing a space separated lowercase letters, return a dictionary\n of the letter with the most repetition and containing the corresponding count.\n If several letters have the same occurrence, return all of them. \tassert f6('a b b a') == {'a':2,'b': 2},\"Test 0\"\n\tassert f6('a b c a b') == {'a': 2, 'b': 2},\"Test 1\"\n\tassert f6('a b c d g') == {'a': 1, 'b': 1, 'c': 1, 'd': 1, 'g': 1},\"Test 2\"\n\tassert f6('r t g') == {'r': 1,'t': 1,'g': 1},\"Test 3\"\n\tassert f6('b b b b a') == {'b': 4},\"Test 4\"\n\tassert f6('r t g') == {'r': 1,'t': 1,'g': 1},\"Test 5\"\n\tassert f6('') == {},\"Test 6\"\n\tassert f6('a') == {'a': 1},\"Test 7\"\n\t\"\"\"\n dict1={}\n list1=test.split(\" \")\n t=0\n\n for i in list1:\n if(list1.count(i)>t) and i!='':\n t=list1.count(i)\n if t>0:\n for i in list1:\n if(list1.count(i)==t):\n \n dict1[i]=t\n return dict1\n\n# Rust f6 translation\n","entry_point":"histogram","canonical_solution":" dict1={}\n list1=test.split(\" \")\n t=0\n\n for i in list1:\n if(list1.count(i)>t) and i!='':\n t=list1.count(i)\n if t>0:\n for i in list1:\n if(list1.count(i)==t):\n \n dict1[i]=t\n return dict1\n","test":"def check(candidate):\n assert candidate('a b b a') == {'a':2,'b': 2},\"Test 0\"\n assert candidate('a b c a b') == {'a': 2, 'b': 2},\"Test 1\"\n assert candidate('a b c d g') == {'a': 1, 'b': 1, 'c': 1, 'd': 1, 'g': 1},\"Test 2\"\n assert candidate('r t g') == {'r': 1,'t': 1,'g': 1},\"Test 3\"\n assert candidate('b b b b a') == {'b': 4},\"Test 4\"\n assert candidate('r t g') == {'r': 1,'t': 1,'g': 1},\"Test 5\"\n assert candidate('') == {},\"Test 6\"\n assert candidate('a') == {'a': 1},\"Test 7\"\n"} {"task_id":"HumanEval\/112","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(s,c):\n \"\"\"Task\n We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c\n then check if the result string is palindrome.\n A string is called palindrome if it reads the same backward as forward.\n\tassert f6(\"abcde\",\"Test 0\"\n\tassert f6(\"abcdef\",\"Test 1\"\n\tassert f6(\"abcdedcba\",\"Test 2\"\n\tassert f6(\"dwik\",\"Test 3\"\n\tassert f6(\"a\",\"Test 4\"\n\tassert f6(\"abcdedcba\",\"Test 5\"\n\tassert f6(\"abcdedcba\",\"Test 6\"\n\tassert f6(\"vabba\",\"Test 7\"\n\tassert f6(\"mamma\",\"Test 8\"\n\t\"\"\"\n s = ''.join([char for char in s if char not in c])\n return (s,s[::-1] == s)\n\n# Rust f6 translation\n","entry_point":"reverse_delete","canonical_solution":" s = ''.join([char for char in s if char not in c])\n return (s,s[::-1] == s)\n","test":"def check(candidate):\n assert candidate(\"abcde\",\"Test 0\"\n assert candidate(\"abcdef\",\"Test 1\"\n assert candidate(\"abcdedcba\",\"Test 2\"\n assert candidate(\"dwik\",\"Test 3\"\n assert candidate(\"a\",\"Test 4\"\n assert candidate(\"abcdedcba\",\"Test 5\"\n assert candidate(\"abcdedcba\",\"Test 6\"\n assert candidate(\"vabba\",\"Test 7\"\n assert candidate(\"mamma\",\"Test 8\"\n"} {"task_id":"HumanEval\/113","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(lst):\n \"\"\"Given a list of strings, where each string consists of only digits, return a list.\n Each element i of the output should be \"the number of odd elements in the\n string i of the input.\" where all the i's should be replaced by the number\n of odd digits in the i'th string of the input. \tassert f6(['1234567']) == [\"the number of odd elements 4n the str4ng 4 of the 4nput.\"], \"Test 0\"\n\tassert f6(['3',\"11111111\"]) == [\"the number of odd elements 1n the str1ng 1 of the 1nput.\", \"the number of odd elements 8n the str8ng 8 of the 8nput.\"], \"Test 1\"\n\tassert f6(['271', '137', '314']) == ['the number of odd elements 2n the str2ng 2 of the 2nput.','the number of odd elements 3n the str3ng 3 of the 3nput.','the number of odd elements 2n the str2ng 2 of the 2nput.'], \"Test 3\"\n\t\"\"\"\n res = []\n for arr in lst:\n n = sum(int(d)%2==1 for d in arr)\n res.append(\"the number of odd elements \" + str(n) + \"n the str\"+ str(n) +\"ng \"+ str(n) +\" of the \"+ str(n) +\"nput.\")\n return res\n\n# Rust f6 translation\n","entry_point":"odd_count","canonical_solution":" res = []\n for arr in lst:\n n = sum(int(d)%2==1 for d in arr)\n res.append(\"the number of odd elements \" + str(n) + \"n the str\"+ str(n) +\"ng \"+ str(n) +\" of the \"+ str(n) +\"nput.\")\n return res\n","test":"def check(candidate):\n assert candidate(['1234567']) == [\"the number of odd elements 4n the str4ng 4 of the 4nput.\"], \"Test 0\"\n assert candidate(['3',\"11111111\"]) == [\"the number of odd elements 1n the str1ng 1 of the 1nput.\", \"the number of odd elements 8n the str8ng 8 of the 8nput.\"], \"Test 1\"\n assert candidate(['271', '137', '314']) == ['the number of odd elements 2n the str2ng 2 of the 2nput.','the number of odd elements 3n the str3ng 3 of the 3nput.','the number of odd elements 2n the str2ng 2 of the 2nput.'], \"Test 3\"\n"} {"task_id":"HumanEval\/114","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(nums):\n \"\"\"\n Given an array of integers nums, find the minimum sum of any non-empty sub-array\n of nums. \tassert f6([2, 3, 4, 1, 2, 4]) == 1,\"Test 0\"\n\tassert f6([-1, -2, -3]) == -6,\"Test 1\"\n\tassert f6([-1, -2, -3, 2, -10]) == -14,\"Test 2\"\n\tassert f6([-9999999999999999]) == -9999999999999999,\"Test 3\"\n\tassert f6([0, 10, 20, 1000000]) == 0,\"Test 4\"\n\tassert f6([-1, -2, -3, 10, -5]) == -6,\"Test 5\"\n\tassert f6([100, -1, -2, -3, 10, -5]) == -6,\"Test 6\"\n\tassert f6([10, 11, 13, 8, 3, 4]) == 3,\"Test 7\"\n\tassert f6([100, -33, 32, -1, 0, -2]) == -33,\"Test 8\"\n\tassert f6([-10]) == -10,\"Test 9\"\n\tassert f6([7]) == 7,\"Test 10\"\n\tassert f6([1, -1]) == -1,\"Test 11\"\n\t\"\"\"\n max_sum = 0\n s = 0\n for num in nums:\n s += -num\n if (s < 0):\n s = 0\n max_sum = max(s, max_sum)\n if max_sum == 0:\n max_sum = max(-i for i in nums)\n min_sum = -max_sum\n return min_sum\n\n# Rust f6 translation\n","entry_point":"minSubArraySum","canonical_solution":" max_sum = 0\n s = 0\n for num in nums:\n s += -num\n if (s < 0):\n s = 0\n max_sum = max(s, max_sum)\n if max_sum == 0:\n max_sum = max(-i for i in nums)\n min_sum = -max_sum\n return min_sum\n","test":"def check(candidate):\n assert candidate([2, 3, 4, 1, 2, 4]) == 1,\"Test 0\"\n assert candidate([-1, -2, -3]) == -6,\"Test 1\"\n assert candidate([-1, -2, -3, 2, -10]) == -14,\"Test 2\"\n assert candidate([-9999999999999999]) == -9999999999999999,\"Test 3\"\n assert candidate([0, 10, 20, 1000000]) == 0,\"Test 4\"\n assert candidate([-1, -2, -3, 10, -5]) == -6,\"Test 5\"\n assert candidate([100, -1, -2, -3, 10, -5]) == -6,\"Test 6\"\n assert candidate([10, 11, 13, 8, 3, 4]) == 3,\"Test 7\"\n assert candidate([100, -33, 32, -1, 0, -2]) == -33,\"Test 8\"\n assert candidate([-10]) == -10,\"Test 9\"\n assert candidate([7]) == 7,\"Test 10\"\n assert candidate([1, -1]) == -1,\"Test 11\"\n"} {"task_id":"HumanEval\/115","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(grid, capacity):\n import math\n \"\"\"\n You are given a rectangular grid of wells. Each row represents a single well,\n and each 1 in a row represents a single unit of water.\n Each well has a corresponding bucket that can be used to extract water from it, \n and all buckets have the same capacity.\n Your task is to use the buckets to empty the wells.\n Output the number of times you need to lower the buckets. \tassert True,\"Test 0\"\n\tassert f6([[0,0,1,0], [0,1,0,0], [1,1,1,1]], 1) == 6,\"Test 1\"\n\tassert f6([[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]], 2) == 5,\"Test 2\"\n\tassert f6([[0,0,0], [0,0,0]], 5) == 0,\"Test 3\"\n\tassert True,\"Test 4\"\n\tassert f6([[1,1,1,1], [1,1,1,1]], 2) == 4,\"Test 5\"\n\tassert f6([[1,1,1,1], [1,1,1,1]], 9) == 2,\"Test 6\"\n\t\"\"\"\n return sum([math.ceil(sum(arr)\/capacity) for arr in grid])\n\n# Rust f6 translation\n","entry_point":"max_fill","canonical_solution":" return sum([math.ceil(sum(arr)\/capacity) for arr in grid])\n","test":"def check(candidate):\n assert True,\"Test 0\"\n assert candidate([[0,0,1,0], [0,1,0,0], [1,1,1,1]], 1) == 6,\"Test 1\"\n assert candidate([[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]], 2) == 5,\"Test 2\"\n assert candidate([[0,0,0], [0,0,0]], 5) == 0,\"Test 3\"\n assert True,\"Test 4\"\n assert candidate([[1,1,1,1], [1,1,1,1]], 2) == 4,\"Test 5\"\n assert candidate([[1,1,1,1], [1,1,1,1]], 9) == 2,\"Test 6\"\n"} {"task_id":"HumanEval\/116","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(arr):\n \"\"\"\n In this Kata, you have to sort an array of non-negative integers according to\n number of ones in their binary representation in ascending order.\n For similar number of ones, sort based on decimal value.\n\n It must be implemented like this. \tassert True,\"Test 0\"\n\tassert f6([1,5,2,3,4]) == [1, 2, 4, 3, 5],\"Test 1\"\n\tassert f6([-2,-3,-4,-5,-6]) == [-4, -2, -6, -5, -3],\"Test 2\"\n\tassert f6([1,0,2,3,4]) == [0, 1, 2, 4, 3],\"Test 3\"\n\tassert f6([]) == [],\"Test 4\"\n\tassert f6([2,5,77,4,5,3,5,7,2,3,4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77],\"Test 5\"\n\tassert f6([3,6,44,12,32,5]) == [32, 3, 5, 6, 12, 44],\"Test 6\"\n\tassert f6([2,4,8,16,32]) == [2, 4, 8, 16, 32],\"Test 7\"\n\tassert f6([2,4,8,16,32]) == [2, 4, 8, 16, 32],\"Test 8\"\n\tassert True,\"Test 9\"\n\t\"\"\"\n return sorted(sorted(arr), key=lambda x: bin(x)[2:].count('1'))\n\n# Rust f6 translation\n","entry_point":"sort_array","canonical_solution":" return sorted(sorted(arr), key=lambda x: bin(x)[2:].count('1'))\n","test":"def check(candidate):\n assert True,\"Test 0\"\n assert candidate([1,5,2,3,4]) == [1, 2, 4, 3, 5],\"Test 1\"\n assert candidate([-2,-3,-4,-5,-6]) == [-4, -2, -6, -5, -3],\"Test 2\"\n assert candidate([1,0,2,3,4]) == [0, 1, 2, 4, 3],\"Test 3\"\n assert candidate([]) == [],\"Test 4\"\n assert candidate([2,5,77,4,5,3,5,7,2,3,4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77],\"Test 5\"\n assert candidate([3,6,44,12,32,5]) == [32, 3, 5, 6, 12, 44],\"Test 6\"\n assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32],\"Test 7\"\n assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32],\"Test 8\"\n assert True,\"Test 9\"\n"} {"task_id":"HumanEval\/117","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(s, n):\n \"\"\"Given a string s and a natural number n, you have been tasked to implement \n a function that returns a list of all words from string s that contain exactly \n n consonants, in order these words appear in the string s.\n If the string s is empty then the function should return an empty list.\n Note: you may assume the input string contains only letters and spaces. \tassert f6(\"Mary had a little lamb\", 4) == [\"little\"], \"Test 0\"\n\tassert f6(\"Mary had a little lamb\", 3) == [\"Mary\", \"lamb\"], \"Test 1\"\n\tassert f6(\"simple white space\", 2) == [], \"Test 2\"\n\tassert f6(\"Hello world\", 4) == [\"world\"], \"Test 3\"\n\tassert f6(\"Uncle sam\", 3) == [\"Uncle\"], \"Test 4\"\n\tassert f6(\"\", 4) == [], \"Test 5\"\n\tassert f6(\"a b c d e f\", 1) == [\"b\", \"c\", \"d\", \"f\"], \"Test 6\"\n\t\"\"\"\n result = []\n for word in s.split():\n n_consonants = 0\n for i in range(0, len(word)):\n if word[i].lower() not in [\"a\",\"e\",\"i\",\"o\",\"u\"]:\n n_consonants += 1 \n if n_consonants == n:\n result.append(word)\n return result\n\n\n# Rust f6 translation\n","entry_point":"select_words","canonical_solution":" result = []\n for word in s.split():\n n_consonants = 0\n for i in range(0, len(word)):\n if word[i].lower() not in [\"a\",\"e\",\"i\",\"o\",\"u\"]:\n n_consonants += 1 \n if n_consonants == n:\n result.append(word)\n return result\n\n","test":"def check(candidate):\n assert candidate(\"Mary had a little lamb\", 4) == [\"little\"], \"Test 0\"\n assert candidate(\"Mary had a little lamb\", 3) == [\"Mary\", \"lamb\"], \"Test 1\"\n assert candidate(\"simple white space\", 2) == [], \"Test 2\"\n assert candidate(\"Hello world\", 4) == [\"world\"], \"Test 3\"\n assert candidate(\"Uncle sam\", 3) == [\"Uncle\"], \"Test 4\"\n assert candidate(\"\", 4) == [], \"Test 5\"\n assert candidate(\"a b c d e f\", 1) == [\"b\", \"c\", \"d\", \"f\"], \"Test 6\"\n"} {"task_id":"HumanEval\/118","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(word):\n \"\"\"You are given a word. Your task is to find the closest vowel that stands between \n two consonants from the right side of the word (case sensitive).\n \n Vowels in the beginning and ending doesn't count. Return empty string if you didn't\n find any vowel met the above condition. \n\n You may assume that the given string contains English letter only. \tassert f6(\"yogurt\") == \"u\",\"Test 0\"\n\tassert f6(\"full\") == \"u\",\"Test 1\"\n\tassert f6(\"easy\") == \"\",\"Test 2\"\n\tassert f6(\"eAsy\") == \"\",\"Test 3\"\n\tassert f6(\"ali\") == \"\",\"Test 4\"\n\tassert f6(\"bad\") == \"a\",\"Test 5\"\n\tassert f6(\"most\") == \"o\",\"Test 6\"\n\tassert f6(\"ab\") == \"\",\"Test 7\"\n\tassert f6(\"ba\") == \"\",\"Test 8\"\n\tassert f6(\"quick\") == \"\",\"Test 9\"\n\tassert f6(\"anime\") == \"i\",\"Test 10\"\n\tassert f6(\"Asia\") == \"\",\"Test 11\"\n\tassert f6(\"Above\") == \"o\",\"Test 12\"\n\tassert True,\"Test 13\"\n\t\"\"\"\n if len(word) < 3:\n return \"\"\n\n vowels = {\"a\", \"e\", \"i\", \"o\", \"u\", \"A\", \"E\", 'O', 'U', 'I'}\n for i in range(len(word)-2, 0, -1):\n if word[i] in vowels:\n if (word[i+1] not in vowels) and (word[i-1] not in vowels):\n return word[i]\n return \"\"\n\n# Rust f6 translation\n","entry_point":"get_closest_vowel","canonical_solution":" if len(word) < 3:\n return \"\"\n\n vowels = {\"a\", \"e\", \"i\", \"o\", \"u\", \"A\", \"E\", 'O', 'U', 'I'}\n for i in range(len(word)-2, 0, -1):\n if word[i] in vowels:\n if (word[i+1] not in vowels) and (word[i-1] not in vowels):\n return word[i]\n return \"\"\n","test":"def check(candidate):\n assert candidate(\"yogurt\") == \"u\",\"Test 0\"\n assert candidate(\"full\") == \"u\",\"Test 1\"\n assert candidate(\"easy\") == \"\",\"Test 2\"\n assert candidate(\"eAsy\") == \"\",\"Test 3\"\n assert candidate(\"ali\") == \"\",\"Test 4\"\n assert candidate(\"bad\") == \"a\",\"Test 5\"\n assert candidate(\"most\") == \"o\",\"Test 6\"\n assert candidate(\"ab\") == \"\",\"Test 7\"\n assert candidate(\"ba\") == \"\",\"Test 8\"\n assert candidate(\"quick\") == \"\",\"Test 9\"\n assert candidate(\"anime\") == \"i\",\"Test 10\"\n assert candidate(\"Asia\") == \"\",\"Test 11\"\n assert candidate(\"Above\") == \"o\",\"Test 12\"\n assert True,\"Test 13\"\n"} {"task_id":"HumanEval\/119","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(lst):\n '''\n You are given a list of two strings, both strings consist of open\n parentheses '(' or close parentheses ')' only.\n Your job is to check if it is possible to concatenate the two strings in\n some order, that the resulting string will be good.\n A string S is considered to be good if and only if all parentheses in S\n are balanced. \tassert f6(['()(', ')']) == 'Yes',\"Test 0\"\n\tassert f6([')', ')']) == 'No',\"Test 1\"\n\tassert f6(['(()(())', '())())']) == 'No',\"Test 2\"\n\tassert f6([')())', '(()()(']) == 'Yes',\"Test 3\"\n\tassert f6(['(())))', '(()())((']) == 'Yes',\"Test 4\"\n\tassert f6(['()', '())']) == 'No',\"Test 5\"\n\tassert f6(['(()(', '()))()']) == 'Yes',\"Test 6\"\n\tassert f6(['((((', '((())']) == 'No',\"Test 7\"\n\tassert f6([')(()', '(()(']) == 'No',\"Test 8\"\n\tassert f6([')(', ')(']) == 'No',\"Test 9\"\n\tassert f6(['(', ')']) == 'Yes',\"Test 10\"\n\tassert f6([')', '(']) == 'Yes' ,\"Test 11\"\n\t\"\"\"\n def check(s):\n val = 0\n for i in s:\n if i == '(':\n val = val + 1\n else:\n val = val - 1\n if val < 0:\n return False\n return True if val == 0 else False\n\n S1 = lst[0] + lst[1]\n S2 = lst[1] + lst[0]\n return 'Yes' if check(S1) or check(S2) else 'No'\n\n# Rust f6 translation\n","entry_point":"match_parens","canonical_solution":" def check(s):\n val = 0\n for i in s:\n if i == '(':\n val = val + 1\n else:\n val = val - 1\n if val < 0:\n return False\n return True if val == 0 else False\n\n S1 = lst[0] + lst[1]\n S2 = lst[1] + lst[0]\n return 'Yes' if check(S1) or check(S2) else 'No'\n","test":"def check(candidate):\n assert candidate(['()(', ')']) == 'Yes',\"Test 0\"\n assert candidate([')', ')']) == 'No',\"Test 1\"\n assert candidate(['(()(())', '())())']) == 'No',\"Test 2\"\n assert candidate([')())', '(()()(']) == 'Yes',\"Test 3\"\n assert candidate(['(())))', '(()())((']) == 'Yes',\"Test 4\"\n assert candidate(['()', '())']) == 'No',\"Test 5\"\n assert candidate(['(()(', '()))()']) == 'Yes',\"Test 6\"\n assert candidate(['((((', '((())']) == 'No',\"Test 7\"\n assert candidate([')(()', '(()(']) == 'No',\"Test 8\"\n assert candidate([')(', ')(']) == 'No',\"Test 9\"\n assert candidate(['(', ')']) == 'Yes',\"Test 10\"\n assert candidate([')', '(']) == 'Yes' ,\"Test 11\"\n"} {"task_id":"HumanEval\/120","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(arr, k):\n \"\"\"\n Given an array arr of integers and a positive integer k, return a sorted list \n of length k with the f6 k numbers in arr. \tassert f6([-3, -4, 5], 3) == [-4, -3, 5],\"Test 0\"\n\tassert f6([4, -4, 4], 2) == [4, 4],\"Test 1\"\n\tassert f6([-3, 2, 1, 2, -1, -2, 1], 1) == [2],\"Test 2\"\n\tassert f6([123, -123, 20, 0 , 1, 2, -3], 3) == [2, 20, 123],\"Test 3\"\n\tassert f6([-123, 20, 0 , 1, 2, -3], 4) == [0, 1, 2, 20],\"Test 4\"\n\tassert f6([5, 15, 0, 3, -13, -8, 0], 7) == [-13, -8, 0, 0, 3, 5, 15],\"Test 5\"\n\tassert f6([-1, 0, 2, 5, 3, -10], 2) == [3, 5],\"Test 6\"\n\tassert f6([1, 0, 5, -7], 1) == [5],\"Test 7\"\n\tassert f6([4, -4], 2) == [-4, 4],\"Test 8\"\n\tassert f6([-10, 10], 2) == [-10, 10],\"Test 9\"\n\tassert f6([1, 2, 3, -23, 243, -400, 0], 0) == [],\"Test 10\"\n\t\"\"\"\n if k == 0:\n return []\n arr.sort()\n ans = arr[-k:]\n return ans\n\n# Rust f6 translation\n","entry_point":"maximum","canonical_solution":" if k == 0:\n return []\n arr.sort()\n ans = arr[-k:]\n return ans\n","test":"def check(candidate):\n assert candidate([-3, -4, 5], 3) == [-4, -3, 5],\"Test 0\"\n assert candidate([4, -4, 4], 2) == [4, 4],\"Test 1\"\n assert candidate([-3, 2, 1, 2, -1, -2, 1], 1) == [2],\"Test 2\"\n assert candidate([123, -123, 20, 0 , 1, 2, -3], 3) == [2, 20, 123],\"Test 3\"\n assert candidate([-123, 20, 0 , 1, 2, -3], 4) == [0, 1, 2, 20],\"Test 4\"\n assert candidate([5, 15, 0, 3, -13, -8, 0], 7) == [-13, -8, 0, 0, 3, 5, 15],\"Test 5\"\n assert candidate([-1, 0, 2, 5, 3, -10], 2) == [3, 5],\"Test 6\"\n assert candidate([1, 0, 5, -7], 1) == [5],\"Test 7\"\n assert candidate([4, -4], 2) == [-4, 4],\"Test 8\"\n assert candidate([-10, 10], 2) == [-10, 10],\"Test 9\"\n assert candidate([1, 2, 3, -23, 243, -400, 0], 0) == [],\"Test 10\"\n"} {"task_id":"HumanEval\/121","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(lst):\n \"\"\"Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions. \tassert f6([5, 8, 7, 1]) == 12,\"Test 0\"\n\tassert f6([3, 3, 3, 3, 3]) == 9,\"Test 1\"\n\tassert f6([30, 13, 24, 321]) == 0,\"Test 2\"\n\tassert f6([5, 9]) == 5,\"Test 3\"\n\tassert f6([2, 4, 8]) == 0,\"Test 4\"\n\tassert f6([30, 13, 23, 32]) == 23,\"Test 5\"\n\tassert f6([3, 13, 2, 9]) == 3,\"Test 6\"\n\t\"\"\"\n return sum([x for idx, x in enumerate(lst) if idx%2==0 and x%2==1])\n\n# Rust f6 translation\n","entry_point":"solution","canonical_solution":" return sum([x for idx, x in enumerate(lst) if idx%2==0 and x%2==1])\n","test":"def check(candidate):\n assert candidate([5, 8, 7, 1]) == 12,\"Test 0\"\n assert candidate([3, 3, 3, 3, 3]) == 9,\"Test 1\"\n assert candidate([30, 13, 24, 321]) == 0,\"Test 2\"\n assert candidate([5, 9]) == 5,\"Test 3\"\n assert candidate([2, 4, 8]) == 0,\"Test 4\"\n assert candidate([30, 13, 23, 32]) == 23,\"Test 5\"\n assert candidate([3, 13, 2, 9]) == 3,\"Test 6\"\n"} {"task_id":"HumanEval\/122","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(arr, k):\n \"\"\"\n Given a non-empty array of integers arr and an integer k, return\n the sum of the elements with at most two digits from the first k elements of arr. \tassert f6([1,-2,-3,41,57,76,87,88,99], 3) == -4,\"Test 0\"\n\tassert f6([111,121,3,4000,5,6], 2) == 0,\"Test 1\"\n\tassert f6([11,21,3,90,5,6,7,8,9], 4) == 125,\"Test 2\"\n\tassert f6([111,21,3,4000,5,6,7,8,9], 4) == 24,\"Test 3\"\n\tassert f6([1], 1) == 1,\"Test 4\"\n\t\"\"\"\n return sum(elem for elem in arr[:k] if len(str(elem)) <= 2)\n\n# Rust f6 translation\n","entry_point":"add_elements","canonical_solution":" return sum(elem for elem in arr[:k] if len(str(elem)) <= 2)\n","test":"def check(candidate):\n assert candidate([1,-2,-3,41,57,76,87,88,99], 3) == -4,\"Test 0\"\n assert candidate([111,121,3,4000,5,6], 2) == 0,\"Test 1\"\n assert candidate([11,21,3,90,5,6,7,8,9], 4) == 125,\"Test 2\"\n assert candidate([111,21,3,4000,5,6,7,8,9], 4) == 24,\"Test 3\"\n assert candidate([1], 1) == 1,\"Test 4\"\n"} {"task_id":"HumanEval\/123","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(n):\n \"\"\"\n Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence.\n\n The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined\n as follows: start with any positive integer n. Then each term is obtained from the \n previous term as follows: if the previous term is even, the next term is one half of \n the previous term. If the previous term is odd, the next term is 3 times the previous\n term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.\n\n Note: \n 1. Collatz(1) is [1].\n 2. returned list sorted in increasing order. \tassert f6(14) == [1, 5, 7, 11, 13, 17],\"Test 0\"\n\tassert f6(5) == [1, 5],\"Test 1\"\n\tassert f6(12) == [1, 3, 5],\"Test 2\"\n\tassert f6(1) == [1],\"Test 3\"\n\t\"\"\"\n if n%2==0:\n odd_collatz = [] \n else:\n odd_collatz = [n]\n while n > 1:\n if n % 2 == 0:\n n = n\/2\n else:\n n = n*3 + 1\n \n if n%2 == 1:\n odd_collatz.append(int(n))\n\n return sorted(odd_collatz)\n\n# Rust f6 translation\n","entry_point":"get_odd_collatz","canonical_solution":" if n%2==0:\n odd_collatz = [] \n else:\n odd_collatz = [n]\n while n > 1:\n if n % 2 == 0:\n n = n\/2\n else:\n n = n*3 + 1\n \n if n%2 == 1:\n odd_collatz.append(int(n))\n\n return sorted(odd_collatz)\n","test":"def check(candidate):\n assert candidate(14) == [1, 5, 7, 11, 13, 17],\"Test 0\"\n assert candidate(5) == [1, 5],\"Test 1\"\n assert candidate(12) == [1, 3, 5],\"Test 2\"\n assert candidate(1) == [1],\"Test 3\"\n"} {"task_id":"HumanEval\/124","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(date):\n \"\"\"You have to write a function which validates a given date string and\n The date is valid if all of the following rules are satisfied:\n 1. The date string is not empty.\n 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.\n 3. The months should not be less than 1 or higher than 12.\n 4. The date should be in the format: mm-dd-yyyy. \tassert f6('03-11-2000') == True,\"Test 0\"\n\tassert f6('15-01-2012') == False,\"Test 1\"\n\tassert f6('04-0-2040') == False,\"Test 2\"\n\tassert f6('06-04-2020') == True,\"Test 3\"\n\tassert f6('01-01-2007') == True,\"Test 4\"\n\tassert f6('03-32-2011') == False,\"Test 5\"\n\tassert f6('') == False,\"Test 6\"\n\tassert f6('04-31-3000') == False,\"Test 7\"\n\tassert f6('06-06-2005') == True,\"Test 8\"\n\tassert f6('21-31-2000') == False,\"Test 9\"\n\tassert f6('04-12-2003') == True,\"Test 10\"\n\tassert f6('04122003') == False,\"Test 11\"\n\tassert f6('20030412') == False,\"Test 12\"\n\tassert f6('2003-04') == False,\"Test 13\"\n\tassert f6('2003-04-12') == False,\"Test 14\"\n\tassert f6('04-2003') == False,\"Test 15\"\n\t\"\"\"\n try:\n date = date.strip()\n month, day, year = date.split('-')\n month, day, year = int(month), int(day), int(year)\n if month < 1 or month > 12:\n return False\n if month in [1,3,5,7,8,10,12] and day < 1 or day > 31:\n return False\n if month in [4,6,9,11] and day < 1 or day > 30:\n return False\n if month == 2 and day < 1 or day > 29:\n return False\n except:\n return False\n\n return True\n\n# Rust f6 translation\n","entry_point":"valid_date","canonical_solution":" try:\n date = date.strip()\n month, day, year = date.split('-')\n month, day, year = int(month), int(day), int(year)\n if month < 1 or month > 12:\n return False\n if month in [1,3,5,7,8,10,12] and day < 1 or day > 31:\n return False\n if month in [4,6,9,11] and day < 1 or day > 30:\n return False\n if month == 2 and day < 1 or day > 29:\n return False\n except:\n return False\n\n return True\n","test":"def check(candidate):\n assert candidate('03-11-2000') == True,\"Test 0\"\n assert candidate('15-01-2012') == False,\"Test 1\"\n assert candidate('04-0-2040') == False,\"Test 2\"\n assert candidate('06-04-2020') == True,\"Test 3\"\n assert candidate('01-01-2007') == True,\"Test 4\"\n assert candidate('03-32-2011') == False,\"Test 5\"\n assert candidate('') == False,\"Test 6\"\n assert candidate('04-31-3000') == False,\"Test 7\"\n assert candidate('06-06-2005') == True,\"Test 8\"\n assert candidate('21-31-2000') == False,\"Test 9\"\n assert candidate('04-12-2003') == True,\"Test 10\"\n assert candidate('04122003') == False,\"Test 11\"\n assert candidate('20030412') == False,\"Test 12\"\n assert candidate('2003-04') == False,\"Test 13\"\n assert candidate('2003-04-12') == False,\"Test 14\"\n assert candidate('04-2003') == False,\"Test 15\"\n"} {"task_id":"HumanEval\/125","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(txt):\n '''\n Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you\n should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the\n alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25. \tassert f6(\"Hello world!\") == [\"Hello\",\"Test 0\"\n\tassert f6(\"Hello,world!\") == [\"Hello\",\"Test 1\"\n\tassert f6(\"Hello world,!\") == [\"Hello\",\"Test 2\"\n\tassert f6(\"Hello,Hello,world !\") == [\"Hello,Hello,world\",\"Test 3\"\n\tassert f6(\"abcdef\") == 3,\"Test 4\"\n\tassert f6(\"aaabb\") == 2,\"Test 5\"\n\tassert f6(\"aaaBb\") == 1,\"Test 6\"\n\tassert f6(\"\") == 0,\"Test 7\"\n\t\"\"\"\n if \" \" in txt:\n return txt.split()\n elif \",\" in txt:\n return txt.replace(',',' ').split()\n else:\n return len([i for i in txt if i.islower() and ord(i)%2 == 0])\n\n# Rust f6 translation\n","entry_point":"split_words","canonical_solution":" if \" \" in txt:\n return txt.split()\n elif \",\" in txt:\n return txt.replace(',',' ').split()\n else:\n return len([i for i in txt if i.islower() and ord(i)%2 == 0])\n","test":"def check(candidate):\n assert candidate(\"Hello world!\") == [\"Hello\",\"Test 0\"\n assert candidate(\"Hello,world!\") == [\"Hello\",\"Test 1\"\n assert candidate(\"Hello world,!\") == [\"Hello\",\"Test 2\"\n assert candidate(\"Hello,Hello,world !\") == [\"Hello,Hello,world\",\"Test 3\"\n assert candidate(\"abcdef\") == 3,\"Test 4\"\n assert candidate(\"aaabb\") == 2,\"Test 5\"\n assert candidate(\"aaaBb\") == 1,\"Test 6\"\n assert candidate(\"\") == 0,\"Test 7\"\n"} {"task_id":"HumanEval\/126","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(lst):\n '''\n Given a list of numbers, return whether or not they are sorted\n in ascending order. If list has more than 1 duplicate of the same\tassert f6([5]) == True,\"Test 0\"\n\tassert f6([1, 2, 3, 4, 5]) == True,\"Test 1\"\n\tassert f6([1, 3, 2, 4, 5]) == False,\"Test 2\"\n\tassert f6([1, 2, 3, 4, 5, 6]) == True,\"Test 3\"\n\tassert f6([1, 2, 3, 4, 5, 6, 7]) == True,\"Test 4\"\n\tassert f6([1, 3, 2, 4, 5, 6, 7]) == False,\"Test 5\"\n\tassert f6([]) == True,\"Test 6\"\n\tassert f6([1]) == True,\"Test 7\"\n\tassert f6([3, 2, 1]) == False,\"Test 8\"\n\tassert f6([1, 2, 2, 2, 3, 4]) == False,\"Test 9\"\n\tassert f6([1, 2, 3, 3, 3, 4]) == False,\"Test 10\"\n\tassert f6([1, 2, 2, 3, 3, 4]) == True,\"Test 11\"\n\tassert f6([1, 2, 3, 4]) == True,\"Test 12\"\n\t\"\"\"\n count_digit = dict([(i, 0) for i in lst])\n for i in lst:\n count_digit[i]+=1 \n if any(count_digit[i] > 2 for i in lst):\n return False\n if all(lst[i-1] <= lst[i] for i in range(1, len(lst))):\n return True\n else:\n return False\n \n \n\n# Rust f6 translation\n","entry_point":"is_sorted","canonical_solution":" count_digit = dict([(i, 0) for i in lst])\n for i in lst:\n count_digit[i]+=1 \n if any(count_digit[i] > 2 for i in lst):\n return False\n if all(lst[i-1] <= lst[i] for i in range(1, len(lst))):\n return True\n else:\n return False\n \n \n","test":"def check(candidate):\n assert candidate([5]) == True,\"Test 0\"\n assert candidate([1, 2, 3, 4, 5]) == True,\"Test 1\"\n assert candidate([1, 3, 2, 4, 5]) == False,\"Test 2\"\n assert candidate([1, 2, 3, 4, 5, 6]) == True,\"Test 3\"\n assert candidate([1, 2, 3, 4, 5, 6, 7]) == True,\"Test 4\"\n assert candidate([1, 3, 2, 4, 5, 6, 7]) == False,\"Test 5\"\n assert candidate([]) == True,\"Test 6\"\n assert candidate([1]) == True,\"Test 7\"\n assert candidate([3, 2, 1]) == False,\"Test 8\"\n assert candidate([1, 2, 2, 2, 3, 4]) == False,\"Test 9\"\n assert candidate([1, 2, 3, 3, 3, 4]) == False,\"Test 10\"\n assert candidate([1, 2, 2, 3, 3, 4]) == True,\"Test 11\"\n assert candidate([1, 2, 3, 4]) == True,\"Test 12\"\n"} {"task_id":"HumanEval\/127","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(interval1, interval2):\n \"\"\"You are given two intervals,\n where each interval is a pair of integers. \tassert f6((1, 2), (2, 3)) == \"NO\",\"Test 0\"\n\tassert f6((-1, 1), (0, 4)) == \"NO\",\"Test 1\"\n\tassert f6((-3, -1), (-5, 5)) == \"YES\",\"Test 2\"\n\tassert f6((-2, 2), (-4, 0)) == \"YES\",\"Test 3\"\n\tassert f6((-11, 2), (-1, -1)) == \"NO\",\"Test 4\"\n\tassert f6((1, 2), (3, 5)) == \"NO\",\"Test 5\"\n\tassert f6((1, 2), (1, 2)) == \"NO\",\"Test 6\"\n\tassert f6((-2, -2), (-3, -2)) == \"NO\",\"Test 7\"\n\t\"\"\"\n def is_prime(num):\n if num == 1 or num == 0:\n return False\n if num == 2:\n return True\n for i in range(2, num):\n if num%i == 0:\n return False\n return True\n\n l = max(interval1[0], interval2[0])\n r = min(interval1[1], interval2[1])\n length = r - l\n if length > 0 and is_prime(length):\n return \"YES\"\n return \"NO\"\n\n# Rust f6 translation\n","entry_point":"intersection","canonical_solution":" def is_prime(num):\n if num == 1 or num == 0:\n return False\n if num == 2:\n return True\n for i in range(2, num):\n if num%i == 0:\n return False\n return True\n\n l = max(interval1[0], interval2[0])\n r = min(interval1[1], interval2[1])\n length = r - l\n if length > 0 and is_prime(length):\n return \"YES\"\n return \"NO\"\n","test":"def check(candidate):\n assert candidate((1, 2), (2, 3)) == \"NO\",\"Test 0\"\n assert candidate((-1, 1), (0, 4)) == \"NO\",\"Test 1\"\n assert candidate((-3, -1), (-5, 5)) == \"YES\",\"Test 2\"\n assert candidate((-2, 2), (-4, 0)) == \"YES\",\"Test 3\"\n assert candidate((-11, 2), (-1, -1)) == \"NO\",\"Test 4\"\n assert candidate((1, 2), (3, 5)) == \"NO\",\"Test 5\"\n assert candidate((1, 2), (1, 2)) == \"NO\",\"Test 6\"\n assert candidate((-2, -2), (-3, -2)) == \"NO\",\"Test 7\"\n"} {"task_id":"HumanEval\/128","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(arr):\n \"\"\"\n You are given an array arr of integers and you need to return\n sum of magnitudes of integers multiplied by product of all signs\n of each number in the array, represented by 1, -1 or 0.\n Note: return None for empty arr. \tassert True,\"Test 0\"\n\tassert f6([1, 2, 2, -4]) == -9,\"Test 1\"\n\tassert f6([0, 1]) == 0,\"Test 2\"\n\tassert f6([1, 1, 1, 2, 3, -1, 1]) == -10,\"Test 3\"\n\tassert f6([]) == None,\"Test 4\"\n\tassert f6([2, 4,1, 2, -1, -1, 9]) == 20,\"Test 5\"\n\tassert f6([-1, 1, -1, 1]) == 4,\"Test 6\"\n\tassert f6([-1, 1, 1, 1]) == -4,\"Test 7\"\n\tassert f6([-1, 1, 1, 0]) == 0,\"Test 8\"\n\tassert True,\"Test 9\"\n\t\"\"\"\n if not arr: return None\n prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr)))\n return prod * sum([abs(i) for i in arr])\n\n# Rust f6 translation\n","entry_point":"prod_signs","canonical_solution":" if not arr: return None\n prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr)))\n return prod * sum([abs(i) for i in arr])\n","test":"def check(candidate):\n assert True,\"Test 0\"\n assert candidate([1, 2, 2, -4]) == -9,\"Test 1\"\n assert candidate([0, 1]) == 0,\"Test 2\"\n assert candidate([1, 1, 1, 2, 3, -1, 1]) == -10,\"Test 3\"\n assert candidate([]) == None,\"Test 4\"\n assert candidate([2, 4,1, 2, -1, -1, 9]) == 20,\"Test 5\"\n assert candidate([-1, 1, -1, 1]) == 4,\"Test 6\"\n assert candidate([-1, 1, 1, 1]) == -4,\"Test 7\"\n assert candidate([-1, 1, 1, 0]) == 0,\"Test 8\"\n assert True,\"Test 9\"\n"} {"task_id":"HumanEval\/129","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(grid, k):\n \"\"\"\n Given a grid with N rows and N columns (N >= 2) and a positive integer k, \n each cell of the grid contains a value. Every integer in the range [1, N * N]\n inclusive appears exactly once on the cells of the grid.\n\n You have to find the minimum path of length k in the grid. You can start\n from any cell, and in each step you can move to any of the neighbor cells,\n in other words, you can go to cells which share an edge with you current\n cell.\n Please note that a path of length k means visiting exactly k cells (not\n necessarily distinct).\n You CANNOT go off the grid.\n A path A (of length k) is considered less than a path B (of length k) if\n after making the ordered lists of the values on the cells that A and B go\n through (let's call them lst_A and lst_B), lst_A is lexicographically less\n than lst_B, in other words, there exist an integer index i (1 <= i <= k)\n such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have\n lst_A[j] = lst_B[j].\n It is guaranteed that the answer is unique.\n Return an ordered list of the values on the cells that the minimum path go through. \tassert f6([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) == [1, 2, 1],\"Test 0\"\n\tassert f6([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) == [1],\"Test 1\"\n\tassert f6([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4) == [1, 2, 1, 2],\"Test 2\"\n\tassert f6([[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7) == [1, 10, 1, 10, 1, 10, 1],\"Test 3\"\n\tassert f6([[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5) == [1, 7, 1, 7, 1],\"Test 4\"\n\tassert f6([[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9) == [1, 6, 1, 6, 1, 6, 1, 6, 1],\"Test 5\"\n\tassert f6([[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12) == [1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6],\"Test 6\"\n\tassert f6([[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8) == [1, 3, 1, 3, 1, 3, 1, 3],\"Test 7\"\n\tassert f6([[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8) == [1, 5, 1, 5, 1, 5, 1, 5],\"Test 8\"\n\tassert f6([[1, 2], [3, 4]], 10) == [1, 2, 1, 2, 1, 2, 1, 2, 1, 2],\"Test 9\"\n\tassert f6([[1, 3], [3, 2]], 10) == [1, 3, 1, 3, 1, 3, 1, 3, 1, 3],\"Test 10\"\n\t\"\"\"\n n = len(grid)\n val = n * n + 1\n for i in range(n):\n for j in range(n):\n if grid[i][j] == 1:\n temp = []\n if i != 0:\n temp.append(grid[i - 1][j])\n\n if j != 0:\n temp.append(grid[i][j - 1])\n\n if i != n - 1:\n temp.append(grid[i + 1][j])\n\n if j != n - 1:\n temp.append(grid[i][j + 1])\n\n val = min(temp)\n\n ans = []\n for i in range(k):\n if i % 2 == 0:\n ans.append(1)\n else:\n ans.append(val)\n return ans\n\n# Rust f6 translation\n","entry_point":"minPath","canonical_solution":" n = len(grid)\n val = n * n + 1\n for i in range(n):\n for j in range(n):\n if grid[i][j] == 1:\n temp = []\n if i != 0:\n temp.append(grid[i - 1][j])\n\n if j != 0:\n temp.append(grid[i][j - 1])\n\n if i != n - 1:\n temp.append(grid[i + 1][j])\n\n if j != n - 1:\n temp.append(grid[i][j + 1])\n\n val = min(temp)\n\n ans = []\n for i in range(k):\n if i % 2 == 0:\n ans.append(1)\n else:\n ans.append(val)\n return ans\n","test":"def check(candidate):\n assert candidate([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) == [1, 2, 1],\"Test 0\"\n assert candidate([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) == [1],\"Test 1\"\n assert candidate([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4) == [1, 2, 1, 2],\"Test 2\"\n assert candidate([[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7) == [1, 10, 1, 10, 1, 10, 1],\"Test 3\"\n assert candidate([[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5) == [1, 7, 1, 7, 1],\"Test 4\"\n assert candidate([[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9) == [1, 6, 1, 6, 1, 6, 1, 6, 1],\"Test 5\"\n assert candidate([[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12) == [1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6],\"Test 6\"\n assert candidate([[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8) == [1, 3, 1, 3, 1, 3, 1, 3],\"Test 7\"\n assert candidate([[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8) == [1, 5, 1, 5, 1, 5, 1, 5],\"Test 8\"\n assert candidate([[1, 2], [3, 4]], 10) == [1, 2, 1, 2, 1, 2, 1, 2, 1, 2],\"Test 9\"\n assert candidate([[1, 3], [3, 2]], 10) == [1, 3, 1, 3, 1, 3, 1, 3, 1, 3],\"Test 10\"\n"} {"task_id":"HumanEval\/130","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(n):\n \"\"\"Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in \n the last couple centuries. However, what people don't know is Tribonacci sequence.\n Tribonacci sequence is defined by the recurrence:\n f6(1) = 3\n f6(n) = 1 + n \/ 2, if n is even.\n f6(n) = f6(n - 1) + f6(n - 2) + f6(n + 1), if n is odd. \tassert f6(3) == [1, 3, 2.0, 8.0],\"Test 0\"\n\tassert f6(4) == [1, 3, 2.0, 8.0, 3.0],\"Test 1\"\n\tassert f6(5) == [1, 3, 2.0, 8.0, 3.0, 15.0],\"Test 2\"\n\tassert f6(6) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0],\"Test 3\"\n\tassert f6(7) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0],\"Test 4\"\n\tassert f6(8) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0],\"Test 5\"\n\tassert f6(9) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0],\"Test 6\"\n\tassert f6(20) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0, 6.0, 48.0, 7.0, 63.0, 8.0, 80.0, 9.0, 99.0, 10.0, 120.0, 11.0],\"Test 7\"\n\tassert f6(0) == [1],\"Test 8\"\n\tassert f6(1) == [1, 3],\"Test 9\"\n\t\"\"\"\n if n == 0:\n return [1]\n my_tri = [1, 3]\n for i in range(2, n + 1):\n if i % 2 == 0:\n my_tri.append(i \/ 2 + 1)\n else:\n my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) \/ 2)\n return my_tri\n\n# Rust f6 translation\n","entry_point":"tri","canonical_solution":" if n == 0:\n return [1]\n my_tri = [1, 3]\n for i in range(2, n + 1):\n if i % 2 == 0:\n my_tri.append(i \/ 2 + 1)\n else:\n my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) \/ 2)\n return my_tri\n","test":"def check(candidate):\n assert candidate(3) == [1, 3, 2.0, 8.0],\"Test 0\"\n assert candidate(4) == [1, 3, 2.0, 8.0, 3.0],\"Test 1\"\n assert candidate(5) == [1, 3, 2.0, 8.0, 3.0, 15.0],\"Test 2\"\n assert candidate(6) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0],\"Test 3\"\n assert candidate(7) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0],\"Test 4\"\n assert candidate(8) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0],\"Test 5\"\n assert candidate(9) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0],\"Test 6\"\n assert candidate(20) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0, 6.0, 48.0, 7.0, 63.0, 8.0, 80.0, 9.0, 99.0, 10.0, 120.0, 11.0],\"Test 7\"\n assert candidate(0) == [1],\"Test 8\"\n assert candidate(1) == [1, 3],\"Test 9\"\n"} {"task_id":"HumanEval\/131","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(n):\n \"\"\"Given a positive integer n, return the product of the odd f6.\n Return 0 if all f6 are even. \tassert f6(5) == 5,\"Test 0\"\n\tassert f6(54) == 5,\"Test 1\"\n\tassert f6(120) ==1,\"Test 2\"\n\tassert f6(5014) == 5,\"Test 3\"\n\tassert f6(98765) == 315,\"Test 4\"\n\tassert f6(5576543) == 2625,\"Test 5\"\n\tassert f6(2468) == 0,\"Test 6\"\n\t\"\"\"\n product = 1\n odd_count = 0\n for digit in str(n):\n int_digit = int(digit)\n if int_digit%2 == 1:\n product= product*int_digit\n odd_count+=1\n if odd_count ==0:\n return 0\n else:\n return product\n\n# Rust f6 translation\n","entry_point":"digits","canonical_solution":" product = 1\n odd_count = 0\n for digit in str(n):\n int_digit = int(digit)\n if int_digit%2 == 1:\n product= product*int_digit\n odd_count+=1\n if odd_count ==0:\n return 0\n else:\n return product\n","test":"def check(candidate):\n assert candidate(5) == 5,\"Test 0\"\n assert candidate(54) == 5,\"Test 1\"\n assert candidate(120) ==1,\"Test 2\"\n assert candidate(5014) == 5,\"Test 3\"\n assert candidate(98765) == 315,\"Test 4\"\n assert candidate(5576543) == 2625,\"Test 5\"\n assert candidate(2468) == 0,\"Test 6\"\n"} {"task_id":"HumanEval\/132","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(string):\n '''\n Create a function that takes a string as input which contains only square brackets.\n where at least one bracket in the subsequence is nested.\n\n '''\n\tassert f6('[[]]') == True,\"Test 0\"\n\tassert f6('[]]]]]]][[[[[]') == False,\"Test 1\"\n\tassert f6('[][]') == False,\"Test 2\"\n\tassert f6(('[]')) == False,\"Test 3\"\n\tassert f6('[[[[]]]]') == True,\"Test 4\"\n\tassert f6('[]]]]]]]]]]') == False,\"Test 5\"\n\tassert f6('[][][[]]') == True,\"Test 6\"\n\tassert f6('[[]') == False,\"Test 7\"\n\tassert f6('[]]') == False,\"Test 8\"\n\tassert f6('[[]][[') == True,\"Test 9\"\n\tassert f6('[[][]]') == True,\"Test 10\"\n\tassert f6('') == False,\"Test 11\"\n\tassert f6('[[[[[[[[') == False,\"Test 12\"\n\tassert f6(']]]]]]]]') == False,\"Test 13\"\n\t\"\"\"\n opening_bracket_index = []\n closing_bracket_index = []\n for i in range(len(string)):\n if string[i] == '[':\n opening_bracket_index.append(i)\n else:\n closing_bracket_index.append(i)\n closing_bracket_index.reverse()\n cnt = 0\n i = 0\n l = len(closing_bracket_index)\n for idx in opening_bracket_index:\n if i < l and idx < closing_bracket_index[i]:\n cnt += 1\n i += 1\n return cnt >= 2\n\n \n\n# Rust f6 translation\n","entry_point":"is_nested","canonical_solution":" opening_bracket_index = []\n closing_bracket_index = []\n for i in range(len(string)):\n if string[i] == '[':\n opening_bracket_index.append(i)\n else:\n closing_bracket_index.append(i)\n closing_bracket_index.reverse()\n cnt = 0\n i = 0\n l = len(closing_bracket_index)\n for idx in opening_bracket_index:\n if i < l and idx < closing_bracket_index[i]:\n cnt += 1\n i += 1\n return cnt >= 2\n\n \n","test":"def check(candidate):\n assert candidate('[[]]') == True,\"Test 0\"\n assert candidate('[]]]]]]][[[[[]') == False,\"Test 1\"\n assert candidate('[][]') == False,\"Test 2\"\n assert candidate(('[]')) == False,\"Test 3\"\n assert candidate('[[[[]]]]') == True,\"Test 4\"\n assert candidate('[]]]]]]]]]]') == False,\"Test 5\"\n assert candidate('[][][[]]') == True,\"Test 6\"\n assert candidate('[[]') == False,\"Test 7\"\n assert candidate('[]]') == False,\"Test 8\"\n assert candidate('[[]][[') == True,\"Test 9\"\n assert candidate('[[][]]') == True,\"Test 10\"\n assert candidate('') == False,\"Test 11\"\n assert candidate('[[[[[[[[') == False,\"Test 12\"\n assert candidate(']]]]]]]]') == False,\"Test 13\"\n"} {"task_id":"HumanEval\/133","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\ndef f6(lst):\n \"\"\"You are given a list of numbers.\n You need to return the sum of squared numbers in the given list,\n round each element in the list to the upper int(Ceiling) first. \tassert f6([1,2,3])==14,\"Test 0\"\n\tassert f6([1.0,2,3])==14,\"Test 1\"\n\tassert f6([1,3,5,7])==84,\"Test 2\"\n\tassert f6([1.4,4.2,0])==29,\"Test 3\"\n\tassert f6([-2.4,1,1])==6,\"Test 4\"\n\tassert f6([100,1,15,2])==10230,\"Test 5\"\n\tassert f6([10000,10000])==200000000,\"Test 6\"\n\tassert f6([-1.4,4.6,6.3])==75,\"Test 7\"\n\tassert f6([-1.4,17.9,18.9,19.9])==1086,\"Test 8\"\n\tassert f6([0])==0,\"Test 9\"\n\tassert f6([-1])==1,\"Test 10\"\n\tassert f6([-1,1,0])==2,\"Test 11\"\n\t\"\"\"\n import math\n squared = 0\n for i in lst:\n squared += math.ceil(i)**2\n return squared\n\n# Rust f6 translation\n","entry_point":"sum_squares","canonical_solution":" import math\n squared = 0\n for i in lst:\n squared += math.ceil(i)**2\n return squared\n","test":"def check(candidate):\n assert candidate([1,2,3])==14,\"Test 0\"\n assert candidate([1.0,2,3])==14,\"Test 1\"\n assert candidate([1,3,5,7])==84,\"Test 2\"\n assert candidate([1.4,4.2,0])==29,\"Test 3\"\n assert candidate([-2.4,1,1])==6,\"Test 4\"\n assert candidate([100,1,15,2])==10230,\"Test 5\"\n assert candidate([10000,10000])==200000000,\"Test 6\"\n assert candidate([-1.4,4.6,6.3])==75,\"Test 7\"\n assert candidate([-1.4,17.9,18.9,19.9])==1086,\"Test 8\"\n assert candidate([0])==0,\"Test 9\"\n assert candidate([-1])==1,\"Test 10\"\n assert candidate([-1,1,0])==2,\"Test 11\"\n"} {"task_id":"HumanEval\/134","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(txt):\n '''\n of a given string is an alphabetical character and is not\n Note: \"word\" is a group of characters separated by space. \tassert f6(\"apple\") == False,\"Test 0\"\n\tassert f6(\"apple pi e\") == True,\"Test 1\"\n\tassert f6(\"eeeee\") == False,\"Test 2\"\n\tassert f6(\"A\") == True,\"Test 3\"\n\tassert f6(\"Pumpkin pie \") == False,\"Test 4\"\n\tassert f6(\"Pumpkin pie 1\") == False,\"Test 5\"\n\tassert f6(\"\") == False,\"Test 6\"\n\tassert f6(\"eeeee e \") == False,\"Test 7\"\n\tassert f6(\"apple pie\") == False,\"Test 8\"\n\tassert f6(\"apple pi e \") == False,\"Test 9\"\n\tassert True,\"Test 10\"\n\t\"\"\"\n \n check = txt.split(' ')[-1]\n return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122) else False\n\n# Rust f6 translation\n","entry_point":"check_if_last_char_is_a_letter","canonical_solution":" \n check = txt.split(' ')[-1]\n return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122) else False\n","test":"def check(candidate):\n assert candidate(\"apple\") == False,\"Test 0\"\n assert candidate(\"apple pi e\") == True,\"Test 1\"\n assert candidate(\"eeeee\") == False,\"Test 2\"\n assert candidate(\"A\") == True,\"Test 3\"\n assert candidate(\"Pumpkin pie \") == False,\"Test 4\"\n assert candidate(\"Pumpkin pie 1\") == False,\"Test 5\"\n assert candidate(\"\") == False,\"Test 6\"\n assert candidate(\"eeeee e \") == False,\"Test 7\"\n assert candidate(\"apple pie\") == False,\"Test 8\"\n assert candidate(\"apple pi e \") == False,\"Test 9\"\n assert True,\"Test 10\"\n"} {"task_id":"HumanEval\/135","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(arr):\n \"\"\"Create a function which returns the largest index of an element which\n is not greater than or equal to the element immediately preceding it. If\n no such element exists then return -1. The given array will not contain\n duplicate values. \tassert f6([1,2,4,3,5])==3,\"Test 0\"\n\tassert f6([1,2,4,5])==-1,\"Test 1\"\n\tassert f6([1,4,2,5,6,7,8,9,10])==2,\"Test 2\"\n\tassert f6([4,8,5,7,3])==4,\"Test 3\"\n\tassert f6([])==-1,\"Test 4\"\n\t\"\"\"\n ind=-1\n i=1\n while i bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(lst):\n '''\n Create a function that returns a tuple (a, b), where 'a' is\n the largest of negative integers, and 'b' is the smallest\n of positive integers in a list.\n If there is no negative or positive integers, return them as None. \tassert f6([2, 4, 1, 3, 5, 7]) == (None, 1),\"Test 0\"\n\tassert f6([2, 4, 1, 3, 5, 7, 0]) == (None, 1),\"Test 1\"\n\tassert f6([1, 3, 2, 4, 5, 6, -2]) == (-2, 1),\"Test 2\"\n\tassert f6([4, 5, 3, 6, 2, 7, -7]) == (-7, 2),\"Test 3\"\n\tassert f6([7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2),\"Test 4\"\n\tassert f6([]) == (None, None),\"Test 5\"\n\tassert f6([0]) == (None, None),\"Test 6\"\n\tassert f6([-1, -3, -5, -6]) == (-1, None),\"Test 7\"\n\tassert f6([-1, -3, -5, -6, 0]) == (-1, None),\"Test 8\"\n\tassert f6([-6, -4, -4, -3, 1]) == (-3, 1),\"Test 9\"\n\tassert f6([-6, -4, -4, -3, -100, 1]) == (-3, 1),\"Test 10\"\n\tassert True,\"Test 11\"\n\t\"\"\"\n smallest = list(filter(lambda x: x < 0, lst))\n largest = list(filter(lambda x: x > 0, lst))\n return (max(smallest) if smallest else None, min(largest) if largest else None)\n\n# Rust f6 translation\n","entry_point":"largest_smallest_integers","canonical_solution":" smallest = list(filter(lambda x: x < 0, lst))\n largest = list(filter(lambda x: x > 0, lst))\n return (max(smallest) if smallest else None, min(largest) if largest else None)\n","test":"def check(candidate):\n assert candidate([2, 4, 1, 3, 5, 7]) == (None, 1),\"Test 0\"\n assert candidate([2, 4, 1, 3, 5, 7, 0]) == (None, 1),\"Test 1\"\n assert candidate([1, 3, 2, 4, 5, 6, -2]) == (-2, 1),\"Test 2\"\n assert candidate([4, 5, 3, 6, 2, 7, -7]) == (-7, 2),\"Test 3\"\n assert candidate([7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2),\"Test 4\"\n assert candidate([]) == (None, None),\"Test 5\"\n assert candidate([0]) == (None, None),\"Test 6\"\n assert candidate([-1, -3, -5, -6]) == (-1, None),\"Test 7\"\n assert candidate([-1, -3, -5, -6, 0]) == (-1, None),\"Test 8\"\n assert candidate([-6, -4, -4, -3, 1]) == (-3, 1),\"Test 9\"\n assert candidate([-6, -4, -4, -3, -100, 1]) == (-3, 1),\"Test 10\"\n assert True,\"Test 11\"\n"} {"task_id":"HumanEval\/137","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(a, b):\n \"\"\"\n Create a function that takes integers, floats, or strings representing\n real numbers, and returns the larger variable in its given variable type.\n Return None if the values are equal.\n Note: If a real number is represented as a string, the floating point might be . or ,\n\n f6(1, 2.5) \u279e 2.5\n f6(1, \"2,3\") \u279e \"2,3\"\n f6(\"5,1\", \"6\") \u279e \"6\"\n f6(\"1\", 1) \u279e None\n \tassert f6(1, 2) == 2, \"Test 0\"\n\tassert f6(1, 2.5) == 2.5, \"Test 1\"\n\tassert f6(2, 3) == 3, \"Test 2\"\n\tassert f6(5, 6) == 6, \"Test 3\"\n\tassert f6(1, \"2,3\") == \"2,3\", \"Test 4\"\n\tassert f6(\"5,1\", \"6\") == \"6\", \"Test 5\"\n\tassert f6(\"1\", \"2\") == \"2\", \"Test 6\"\n\t\"\"\"\n temp_a, temp_b = a, b\n if isinstance(temp_a, str): temp_a = temp_a.replace(',','.')\n if isinstance(temp_b, str): temp_b = temp_b.replace(',','.')\n if float(temp_a) == float(temp_b): return None\n return a if float(temp_a) > float(temp_b) else b \n\n# Rust f6 translation\n","entry_point":"compare_one","canonical_solution":" temp_a, temp_b = a, b\n if isinstance(temp_a, str): temp_a = temp_a.replace(',','.')\n if isinstance(temp_b, str): temp_b = temp_b.replace(',','.')\n if float(temp_a) == float(temp_b): return None\n return a if float(temp_a) > float(temp_b) else b \n","test":"def check(candidate):\n assert candidate(1, 2) == 2, \"Test 0\"\n assert candidate(1, 2.5) == 2.5, \"Test 1\"\n assert candidate(2, 3) == 3, \"Test 2\"\n assert candidate(5, 6) == 6, \"Test 3\"\n assert candidate(1, \"2,3\") == \"2,3\", \"Test 4\"\n assert candidate(\"5,1\", \"6\") == \"6\", \"Test 5\"\n assert candidate(\"1\", \"2\") == \"2\", \"Test 6\"\n"} {"task_id":"HumanEval\/138","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(n):\n \"\"\"Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers. \tassert f6(4) == False,\"Test 0\"\n\tassert f6(6) == False,\"Test 1\"\n\tassert f6(8) == True,\"Test 2\"\n\tassert f6(10) == True,\"Test 3\"\n\tassert f6(11) == False,\"Test 4\"\n\tassert f6(12) == True,\"Test 5\"\n\tassert f6(13) == False,\"Test 6\"\n\tassert f6(16) == True,\"Test 7\"\n\t\"\"\"\n return n%2 == 0 and n >= 8\n\n# Rust f6 translation\n","entry_point":"is_equal_to_sum_even","canonical_solution":" return n%2 == 0 and n >= 8\n","test":"def check(candidate):\n assert candidate(4) == False,\"Test 0\"\n assert candidate(6) == False,\"Test 1\"\n assert candidate(8) == True,\"Test 2\"\n assert candidate(10) == True,\"Test 3\"\n assert candidate(11) == False,\"Test 4\"\n assert candidate(12) == True,\"Test 5\"\n assert candidate(13) == False,\"Test 6\"\n assert candidate(16) == True,\"Test 7\"\n"} {"task_id":"HumanEval\/139","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(n):\n \"\"\"The Brazilian factorial is defined as:\n brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!\n where n > 0. \tassert f6(4) == 288, \"Test 4\"\n\tassert f6(5) == 34560, \"Test 5\"\n\tassert f6(7) == 125411328000, \"Test 7\"\n\tassert f6(1) == 1, \"Test 1\"\n\t\"\"\"\n fact_i = 1\n special_fact = 1\n for i in range(1, n+1):\n fact_i *= i\n special_fact *= fact_i\n return special_fact\n\n# Rust f6 translation\n","entry_point":"special_factorial","canonical_solution":" fact_i = 1\n special_fact = 1\n for i in range(1, n+1):\n fact_i *= i\n special_fact *= fact_i\n return special_fact\n","test":"def check(candidate):\n assert candidate(4) == 288, \"Test 4\"\n assert candidate(5) == 34560, \"Test 5\"\n assert candidate(7) == 125411328000, \"Test 7\"\n assert candidate(1) == 1, \"Test 1\"\n"} {"task_id":"HumanEval\/140","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(text):\n \"\"\"\n Given a string text, replace all spaces in it with underscores, \n and if a string has more than 2 consecutive spaces, \n then replace all consecutive spaces with - \n. \tassert f6(\"Example\") == \"Example\",\"Test 0\"\n\tassert f6(\"Mudasir Hanif \") == \"Mudasir_Hanif_\",\"Test 1\"\n\tassert f6(\"Yellow Yellow Dirty Fellow\") == \"Yellow_Yellow__Dirty__Fellow\",\"Test 2\"\n\tassert f6(\"Exa mple\") == \"Exa-mple\",\"Test 3\"\n\tassert f6(\" Exa 1 2 2 mple\") == \"-Exa_1_2_2_mple\",\"Test 4\"\n\t\"\"\"\n new_text = \"\"\n i = 0\n start, end = 0, 0\n while i < len(text):\n if text[i] == \" \":\n end += 1\n else:\n if end - start > 2:\n new_text += \"-\"+text[i]\n elif end - start > 0:\n new_text += \"_\"*(end - start)+text[i]\n else:\n new_text += text[i]\n start, end = i+1, i+1\n i+=1\n if end - start > 2:\n new_text += \"-\"\n elif end - start > 0:\n new_text += \"_\"\n return new_text\n\n# Rust f6 translation\n","entry_point":"fix_spaces","canonical_solution":" new_text = \"\"\n i = 0\n start, end = 0, 0\n while i < len(text):\n if text[i] == \" \":\n end += 1\n else:\n if end - start > 2:\n new_text += \"-\"+text[i]\n elif end - start > 0:\n new_text += \"_\"*(end - start)+text[i]\n else:\n new_text += text[i]\n start, end = i+1, i+1\n i+=1\n if end - start > 2:\n new_text += \"-\"\n elif end - start > 0:\n new_text += \"_\"\n return new_text\n","test":"def check(candidate):\n assert candidate(\"Example\") == \"Example\",\"Test 0\"\n assert candidate(\"Mudasir Hanif \") == \"Mudasir_Hanif_\",\"Test 1\"\n assert candidate(\"Yellow Yellow Dirty Fellow\") == \"Yellow_Yellow__Dirty__Fellow\",\"Test 2\"\n assert candidate(\"Exa mple\") == \"Exa-mple\",\"Test 3\"\n assert candidate(\" Exa 1 2 2 mple\") == \"-Exa_1_2_2_mple\",\"Test 4\"\n"} {"task_id":"HumanEval\/141","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(file_name):\n \"\"\"Create a function which takes a string representing a file's name, and returns\n 'Yes' if the the file's name is valid, and returns 'No' otherwise.\n A file's name is considered to be valid if and only if all the following conditions \n are met:\n - There should not be more than three digits ('0'-'9') in the file's name.\n - The file's name contains exactly one dot '.'\n - The substring before the dot should not be empty, and it starts with a letter from \n the latin alphapet ('a'-'z' and 'A'-'Z').\n - The substring after the dot should be one of these: ['txt', 'exe', 'dll']. \tassert f6(\"example.txt\") == 'Yes',\"Test 0\"\n\tassert f6(\"1example.dll\") == 'No',\"Test 1\"\n\tassert f6('s1sdf3.asd') == 'No',\"Test 2\"\n\tassert f6('K.dll') == 'Yes',\"Test 3\"\n\tassert f6('MY16FILE3.exe') == 'Yes',\"Test 4\"\n\tassert f6('His12FILE94.exe') == 'No',\"Test 5\"\n\tassert f6('_Y.txt') == 'No',\"Test 6\"\n\tassert f6('?aREYA.exe') == 'No',\"Test 7\"\n\tassert f6('\/this_is_valid.dll') == 'No',\"Test 8\"\n\tassert f6('this_is_valid.wow') == 'No',\"Test 9\"\n\tassert f6('this_is_valid.txt') == 'Yes',\"Test 10\"\n\tassert f6('this_is_valid.txtexe') == 'No',\"Test 11\"\n\tassert f6('#this2_i4s_5valid.ten') == 'No',\"Test 12\"\n\tassert f6('@this1_is6_valid.exe') == 'No',\"Test 13\"\n\tassert f6('this_is_12valid.6exe4.txt') == 'No',\"Test 14\"\n\tassert f6('all.exe.txt') == 'No',\"Test 15\"\n\tassert f6('I563_No.exe') == 'Yes',\"Test 16\"\n\tassert f6('Is3youfault.txt') == 'Yes',\"Test 17\"\n\tassert f6('no_one#knows.dll') == 'Yes',\"Test 18\"\n\tassert f6('1I563_Yes3.exe') == 'No',\"Test 19\"\n\tassert f6('I563_Yes3.txtt') == 'No',\"Test 20\"\n\tassert f6('final..txt') == 'No',\"Test 21\"\n\tassert f6('final132') == 'No',\"Test 22\"\n\tassert f6('_f4indsartal132.') == 'No',\"Test 23\"\n\tassert f6('.txt') == 'No',\"Test 24\"\n\tassert f6('s.') == 'No',\"Test 25\"\n\t\"\"\"\n suf = ['txt', 'exe', 'dll']\n lst = file_name.split(sep='.')\n if len(lst) != 2:\n return 'No'\n if not lst[1] in suf:\n return 'No'\n if len(lst[0]) == 0:\n return 'No'\n if not lst[0][0].isalpha():\n return 'No'\n t = len([x for x in lst[0] if x.isdigit()])\n if t > 3:\n return 'No'\n return 'Yes'\n\n# Rust f6 translation\n","entry_point":"file_name_check","canonical_solution":" suf = ['txt', 'exe', 'dll']\n lst = file_name.split(sep='.')\n if len(lst) != 2:\n return 'No'\n if not lst[1] in suf:\n return 'No'\n if len(lst[0]) == 0:\n return 'No'\n if not lst[0][0].isalpha():\n return 'No'\n t = len([x for x in lst[0] if x.isdigit()])\n if t > 3:\n return 'No'\n return 'Yes'\n","test":"def check(candidate):\n assert candidate(\"example.txt\") == 'Yes',\"Test 0\"\n assert candidate(\"1example.dll\") == 'No',\"Test 1\"\n assert candidate('s1sdf3.asd') == 'No',\"Test 2\"\n assert candidate('K.dll') == 'Yes',\"Test 3\"\n assert candidate('MY16FILE3.exe') == 'Yes',\"Test 4\"\n assert candidate('His12FILE94.exe') == 'No',\"Test 5\"\n assert candidate('_Y.txt') == 'No',\"Test 6\"\n assert candidate('?aREYA.exe') == 'No',\"Test 7\"\n assert candidate('\/this_is_valid.dll') == 'No',\"Test 8\"\n assert candidate('this_is_valid.wow') == 'No',\"Test 9\"\n assert candidate('this_is_valid.txt') == 'Yes',\"Test 10\"\n assert candidate('this_is_valid.txtexe') == 'No',\"Test 11\"\n assert candidate('#this2_i4s_5valid.ten') == 'No',\"Test 12\"\n assert candidate('@this1_is6_valid.exe') == 'No',\"Test 13\"\n assert candidate('this_is_12valid.6exe4.txt') == 'No',\"Test 14\"\n assert candidate('all.exe.txt') == 'No',\"Test 15\"\n assert candidate('I563_No.exe') == 'Yes',\"Test 16\"\n assert candidate('Is3youfault.txt') == 'Yes',\"Test 17\"\n assert candidate('no_one#knows.dll') == 'Yes',\"Test 18\"\n assert candidate('1I563_Yes3.exe') == 'No',\"Test 19\"\n assert candidate('I563_Yes3.txtt') == 'No',\"Test 20\"\n assert candidate('final..txt') == 'No',\"Test 21\"\n assert candidate('final132') == 'No',\"Test 22\"\n assert candidate('_f4indsartal132.') == 'No',\"Test 23\"\n assert candidate('.txt') == 'No',\"Test 24\"\n assert candidate('s.') == 'No',\"Test 25\"\n"} {"task_id":"HumanEval\/142","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\n\n\ndef f6(lst):\n \"\"\"\"\n This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a \n multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not \n change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. \tassert f6([1,2,3]) == 6,\"Test 0\"\n\tassert f6([1,4,9]) == 14,\"Test 1\"\n\tassert f6([]) == 0,\"Test 2\"\n\tassert f6([1,1,1,1,1,1,1,1,1]) == 9,\"Test 3\"\n\tassert f6([-1,-1,-1,-1,-1,-1,-1,-1,-1]) == -3,\"Test 4\"\n\tassert f6([0]) == 0,\"Test 5\"\n\tassert f6([-1,-5,2,-1,-5]) == -126,\"Test 6\"\n\tassert f6([-56,-99,1,0,-2]) == 3030,\"Test 7\"\n\tassert f6([-1,0,0,0,0,0,0,0,-1]) == 0,\"Test 8\"\n\tassert f6([-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37]) == -14196,\"Test 9\"\n\tassert f6([-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10]) == -1448,\"Test 10\"\n\t\"\"\"\n result =[]\n for i in range(len(lst)):\n if i %3 == 0:\n result.append(lst[i]**2)\n elif i % 4 == 0 and i%3 != 0:\n result.append(lst[i]**3)\n else:\n result.append(lst[i])\n return sum(result)\n\n# Rust f6 translation\n","entry_point":"sum_squares","canonical_solution":" result =[]\n for i in range(len(lst)):\n if i %3 == 0:\n result.append(lst[i]**2)\n elif i % 4 == 0 and i%3 != 0:\n result.append(lst[i]**3)\n else:\n result.append(lst[i])\n return sum(result)\n","test":"def check(candidate):\n assert candidate([1,2,3]) == 6,\"Test 0\"\n assert candidate([1,4,9]) == 14,\"Test 1\"\n assert candidate([]) == 0,\"Test 2\"\n assert candidate([1,1,1,1,1,1,1,1,1]) == 9,\"Test 3\"\n assert candidate([-1,-1,-1,-1,-1,-1,-1,-1,-1]) == -3,\"Test 4\"\n assert candidate([0]) == 0,\"Test 5\"\n assert candidate([-1,-5,2,-1,-5]) == -126,\"Test 6\"\n assert candidate([-56,-99,1,0,-2]) == 3030,\"Test 7\"\n assert candidate([-1,0,0,0,0,0,0,0,-1]) == 0,\"Test 8\"\n assert candidate([-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37]) == -14196,\"Test 9\"\n assert candidate([-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10]) == -1448,\"Test 10\"\n"} {"task_id":"HumanEval\/143","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(sentence):\n \"\"\"\n You are given a string representing a sentence,\n the sentence contains some words separated by a space,\n and you have to return a string that contains the words from the original sentence,\n whose lengths are prime numbers,\n the order of the words in the new string should be the same as the original one. \tassert f6(\"This is a test\") == \"is\",\"Test 0\"\n\tassert f6(\"lets go for swimming\") == \"go for\",\"Test 1\"\n\tassert f6(\"there is no place available here\") == \"there is no place\",\"Test 2\"\n\tassert f6(\"Hi I am Hussein\") == \"Hi am Hussein\",\"Test 3\"\n\tassert f6(\"go for it\") == \"go for it\",\"Test 4\"\n\tassert f6(\"here\") == \"\",\"Test 5\"\n\tassert f6(\"here is\") == \"is\",\"Test 6\"\n\t\"\"\"\n new_lst = []\n for word in sentence.split():\n flg = 0\n if len(word) == 1:\n flg = 1\n for i in range(2, len(word)):\n if len(word)%i == 0:\n flg = 1\n if flg == 0 or len(word) == 2:\n new_lst.append(word)\n return \" \".join(new_lst)\n\n# Rust f6 translation\n","entry_point":"words_in_sentence","canonical_solution":" new_lst = []\n for word in sentence.split():\n flg = 0\n if len(word) == 1:\n flg = 1\n for i in range(2, len(word)):\n if len(word)%i == 0:\n flg = 1\n if flg == 0 or len(word) == 2:\n new_lst.append(word)\n return \" \".join(new_lst)\n","test":"def check(candidate):\n assert candidate(\"This is a test\") == \"is\",\"Test 0\"\n assert candidate(\"lets go for swimming\") == \"go for\",\"Test 1\"\n assert candidate(\"there is no place available here\") == \"there is no place\",\"Test 2\"\n assert candidate(\"Hi I am Hussein\") == \"Hi am Hussein\",\"Test 3\"\n assert candidate(\"go for it\") == \"go for it\",\"Test 4\"\n assert candidate(\"here\") == \"\",\"Test 5\"\n assert candidate(\"here is\") == \"is\",\"Test 6\"\n"} {"task_id":"HumanEval\/144","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(x, n):\n \"\"\"Your task is to implement a function that will f6 the expression\n otherwise. Both x and n, are string representation of a fraction, and have the following format,\n \/ where both numerator and denominator are positive whole numbers.\n\n You can assume that x, and n are valid fractions, and do not have zero as denominator.\n\n \tassert f6(\"1\/5\", \"5\/1\") == True, \"Test 0\"\n\tassert f6(\"1\/6\", \"2\/1\") == False, \"Test 1\"\n\tassert f6(\"5\/1\", \"3\/1\") == True, \"Test 2\"\n\tassert f6(\"7\/10\", \"10\/2\") == False, \"Test 3\"\n\tassert f6(\"2\/10\", \"50\/10\") == True, \"Test 4\"\n\tassert f6(\"7\/2\", \"4\/2\") == True, \"Test 5\"\n\t\"\"\"\n a, b = x.split(\"\/\")\n c, d = n.split(\"\/\")\n numerator = int(a) * int(c)\n denom = int(b) * int(d)\n if (numerator\/denom == int(numerator\/denom)):\n return True\n return False\n\n# Rust f6 translation\n","entry_point":"simplify","canonical_solution":" a, b = x.split(\"\/\")\n c, d = n.split(\"\/\")\n numerator = int(a) * int(c)\n denom = int(b) * int(d)\n if (numerator\/denom == int(numerator\/denom)):\n return True\n return False\n","test":"def check(candidate):\n assert candidate(\"1\/5\", \"5\/1\") == True, \"Test 0\"\n assert candidate(\"1\/6\", \"2\/1\") == False, \"Test 1\"\n assert candidate(\"5\/1\", \"3\/1\") == True, \"Test 2\"\n assert candidate(\"7\/10\", \"10\/2\") == False, \"Test 3\"\n assert candidate(\"2\/10\", \"50\/10\") == True, \"Test 4\"\n assert candidate(\"7\/2\", \"4\/2\") == True, \"Test 5\"\n"} {"task_id":"HumanEval\/145","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(nums):\n \"\"\"\n Write a function which sorts the given list of integers\n in ascending order according to the sum of their digits.\n Note: if there are several items with similar sum of their digits,\n order them based on their index in original list. \tassert f6([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11],\"Test 0\"\n\tassert f6([1234,423,463,145,2,423,423,53,6,37,3457,3,56,0,46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457],\"Test 1\"\n\tassert f6([]) == [],\"Test 2\"\n\tassert f6([1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54],\"Test 3\"\n\tassert f6([1,2,3,4,5,6,7,8,9,10,11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9],\"Test 4\"\n\tassert f6([0,6,6,-76,-21,23,4]) == [-76, -21, 0, 4, 23, 6, 6],\"Test 5\"\n\tassert True,\"Test 6\"\n\t\"\"\"\n def digits_sum(n):\n neg = 1\n if n < 0: n, neg = -1 * n, -1 \n n = [int(i) for i in str(n)]\n n[0] = n[0] * neg\n return sum(n)\n return sorted(nums, key=digits_sum)\n\n# Rust f6 translation\n","entry_point":"order_by_points","canonical_solution":" def digits_sum(n):\n neg = 1\n if n < 0: n, neg = -1 * n, -1 \n n = [int(i) for i in str(n)]\n n[0] = n[0] * neg\n return sum(n)\n return sorted(nums, key=digits_sum)\n","test":"def check(candidate):\n assert candidate([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11],\"Test 0\"\n assert candidate([1234,423,463,145,2,423,423,53,6,37,3457,3,56,0,46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457],\"Test 1\"\n assert candidate([]) == [],\"Test 2\"\n assert candidate([1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54],\"Test 3\"\n assert candidate([1,2,3,4,5,6,7,8,9,10,11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9],\"Test 4\"\n assert candidate([0,6,6,-76,-21,23,4]) == [-76, -21, 0, 4, 23, 6, 6],\"Test 5\"\n assert True,\"Test 6\"\n"} {"task_id":"HumanEval\/146","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(nums):\n \"\"\"Write a function that takes an array of numbers as input and returns \n the number of elements in the array that are greater than 10 and both \n first and last digits of a number are odd (1, 3, 5, 7, 9). \tassert f6([5, -2, 1, -5]) == 0 ,\"Test 0\"\n\tassert f6([15, -73, 14, -15]) == 1,\"Test 1\"\n\tassert f6([33, -2, -3, 45, 21, 109]) == 2,\"Test 2\"\n\tassert f6([43, -12, 93, 125, 121, 109]) == 4,\"Test 3\"\n\tassert f6([71, -2, -33, 75, 21, 19]) == 3,\"Test 4\"\n\tassert f6([1]) == 0 ,\"Test 5\"\n\tassert f6([]) == 0 ,\"Test 6\"\n\t\"\"\"\n \n count = 0\n for num in nums:\n if num > 10:\n odd_digits = (1, 3, 5, 7, 9)\n number_as_string = str(num)\n if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in odd_digits:\n count += 1\n \n return count \n\n# Rust f6 translation\n","entry_point":"specialFilter","canonical_solution":" \n count = 0\n for num in nums:\n if num > 10:\n odd_digits = (1, 3, 5, 7, 9)\n number_as_string = str(num)\n if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in odd_digits:\n count += 1\n \n return count \n","test":"def check(candidate):\n assert candidate([5, -2, 1, -5]) == 0 ,\"Test 0\"\n assert candidate([15, -73, 14, -15]) == 1,\"Test 1\"\n assert candidate([33, -2, -3, 45, 21, 109]) == 2,\"Test 2\"\n assert candidate([43, -12, 93, 125, 121, 109]) == 4,\"Test 3\"\n assert candidate([71, -2, -33, 75, 21, 19]) == 3,\"Test 4\"\n assert candidate([1]) == 0 ,\"Test 5\"\n assert candidate([]) == 0 ,\"Test 6\"\n"} {"task_id":"HumanEval\/147","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(n):\n \"\"\"\n You are given a positive integer n. You have to create an integer array a of length n.\n For each i (1 \u2264 i \u2264 n), the value of a[i] = i * i - i + 1.\n Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, \n and a[i] + a[j] + a[k] is a multiple of 3. \tassert f6(5) == 1,\"Test 0\"\n\tassert f6(6) == 4,\"Test 1\"\n\tassert f6(10) == 36,\"Test 2\"\n\tassert f6(100) == 53361,\"Test 3\"\n\t\"\"\"\n A = [i*i - i + 1 for i in range(1,n+1)]\n ans = []\n for i in range(n):\n for j in range(i+1,n):\n for k in range(j+1,n):\n if (A[i]+A[j]+A[k])%3 == 0:\n ans += [(A[i],A[j],A[k])]\n return len(ans)\n\n# Rust f6 translation\n","entry_point":"get_max_triples","canonical_solution":" A = [i*i - i + 1 for i in range(1,n+1)]\n ans = []\n for i in range(n):\n for j in range(i+1,n):\n for k in range(j+1,n):\n if (A[i]+A[j]+A[k])%3 == 0:\n ans += [(A[i],A[j],A[k])]\n return len(ans)\n","test":"def check(candidate):\n assert candidate(5) == 1,\"Test 0\"\n assert candidate(6) == 4,\"Test 1\"\n assert candidate(10) == 36,\"Test 2\"\n assert candidate(100) == 53361,\"Test 3\"\n"} {"task_id":"HumanEval\/148","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(planet1, planet2):\n '''\n There are eight planets in our solar system: the closerst to the Sun \n is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, \n Uranus, Neptune.\n Write a function that takes two planet names as strings planet1 and planet2. \n The function should return a tuple containing all planets whose orbits are \n located between the orbit of planet1 and the orbit of planet2, sorted by \n the proximity to the sun. \n The function should return an empty tuple if planet1 or planet2\n are not correct planet names. \tassert f6(\"Jupiter\",\"Test 0\"\n\tassert f6(\"Earth\",\"Test 1\"\n\tassert f6(\"Mercury\",\"Test 2\"\n\tassert f6(\"Neptune\",\"Test 3\"\n\tassert f6(\"Earth\",\"Test 4\"\n\tassert f6(\"Mars\",\"Test 5\"\n\tassert f6(\"Jupiter\",\"Test 6\"\n\t\"\"\"\n planet_names = (\"Mercury\", \"Venus\", \"Earth\", \"Mars\", \"Jupiter\", \"Saturn\", \"Uranus\", \"Neptune\")\n if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2:\n return ()\n planet1_index = planet_names.index(planet1)\n planet2_index = planet_names.index(planet2)\n if planet1_index < planet2_index:\n return (planet_names[planet1_index + 1: planet2_index])\n else:\n return (planet_names[planet2_index + 1 : planet1_index])\n\n# Rust f6 translation\n","entry_point":"bf","canonical_solution":" planet_names = (\"Mercury\", \"Venus\", \"Earth\", \"Mars\", \"Jupiter\", \"Saturn\", \"Uranus\", \"Neptune\")\n if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2:\n return ()\n planet1_index = planet_names.index(planet1)\n planet2_index = planet_names.index(planet2)\n if planet1_index < planet2_index:\n return (planet_names[planet1_index + 1: planet2_index])\n else:\n return (planet_names[planet2_index + 1 : planet1_index])\n","test":"def check(candidate):\n assert candidate(\"Jupiter\",\"Test 0\"\n assert candidate(\"Earth\",\"Test 1\"\n assert candidate(\"Mercury\",\"Test 2\"\n assert candidate(\"Neptune\",\"Test 3\"\n assert candidate(\"Earth\",\"Test 4\"\n assert candidate(\"Mars\",\"Test 5\"\n assert candidate(\"Jupiter\",\"Test 6\"\n"} {"task_id":"HumanEval\/149","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(lst):\n \"\"\"Write a function that accepts a list of strings as a parameter,\n deletes the strings that have odd lengths from it,\n and returns the resulted list with a sorted order,\n The list is always a list of strings and never an array of numbers,\n and it may contain duplicates.\n The order of the list should be ascending by length of each word, and you\n should return the list sorted by that rule.\n If two words have the same length, sort the list alphabetically.\n The function should return a list of strings in sorted order.\n You may assume that all words will have the same length. \tassert f6([\"aa\",\"Test 0\"\n\tassert f6([\"school\",\"Test 1\"\n\tassert f6([\"d\",\"Test 2\"\n\tassert f6([\"d\",\"Test 3\"\n\tassert f6([\"AI\",\"Test 4\"\n\tassert f6([\"a\",\"Test 5\"\n\tassert f6(['aaaa', 'bbbb', 'dd', 'cc']) == [\"cc\",\"Test 6\"\n\t\"\"\"\n lst.sort()\n new_lst = []\n for i in lst:\n if len(i)%2 == 0:\n new_lst.append(i)\n return sorted(new_lst, key=len)\n\n# Rust f6 translation\n","entry_point":"sorted_list_sum","canonical_solution":" lst.sort()\n new_lst = []\n for i in lst:\n if len(i)%2 == 0:\n new_lst.append(i)\n return sorted(new_lst, key=len)\n","test":"def check(candidate):\n assert candidate([\"aa\",\"Test 0\"\n assert candidate([\"school\",\"Test 1\"\n assert candidate([\"d\",\"Test 2\"\n assert candidate([\"d\",\"Test 3\"\n assert candidate([\"AI\",\"Test 4\"\n assert candidate([\"a\",\"Test 5\"\n assert candidate(['aaaa', 'bbbb', 'dd', 'cc']) == [\"cc\",\"Test 6\"\n"} {"task_id":"HumanEval\/150","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(n, x, y):\n \"\"\"A simple program which should return the value of x if n is \n a prime number and should return the value of y otherwise. \tassert f6(7, 34, 12) == 34,\"Test 0\"\n\tassert f6(15, 8, 5) == 5,\"Test 1\"\n\tassert f6(3, 33, 5212) == 33,\"Test 2\"\n\tassert f6(1259, 3, 52) == 3,\"Test 3\"\n\tassert f6(7919, -1, 12) == -1,\"Test 4\"\n\tassert f6(3609, 1245, 583) == 583,\"Test 5\"\n\tassert f6(91, 56, 129) == 129,\"Test 6\"\n\tassert f6(6, 34, 1234) == 1234,\"Test 7\"\n\tassert f6(1, 2, 0) == 0,\"Test 8\"\n\tassert f6(2, 2, 0) == 2,\"Test 9\"\n\t\"\"\"\n if n == 1:\n return y\n for i in range(2, n):\n if n % i == 0:\n return y\n break\n else:\n return x\n\n# Rust f6 translation\n","entry_point":"x_or_y","canonical_solution":" if n == 1:\n return y\n for i in range(2, n):\n if n % i == 0:\n return y\n break\n else:\n return x\n","test":"def check(candidate):\n assert candidate(7, 34, 12) == 34,\"Test 0\"\n assert candidate(15, 8, 5) == 5,\"Test 1\"\n assert candidate(3, 33, 5212) == 33,\"Test 2\"\n assert candidate(1259, 3, 52) == 3,\"Test 3\"\n assert candidate(7919, -1, 12) == -1,\"Test 4\"\n assert candidate(3609, 1245, 583) == 583,\"Test 5\"\n assert candidate(91, 56, 129) == 129,\"Test 6\"\n assert candidate(6, 34, 1234) == 1234,\"Test 7\"\n assert candidate(1, 2, 0) == 0,\"Test 8\"\n assert candidate(2, 2, 0) == 2,\"Test 9\"\n"} {"task_id":"HumanEval\/151","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(lst):\n '''\n Given a list of numbers, return the sum of squares of the numbers\n in the list that are odd. Ignore numbers that are negative or not integers.\n \n f6([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10\n f6([-1, -2, 0]) == 0\n f6([9, -2]) == 81\n f6([0]) == 0 \n \n If the input list is empty, return 0.\n '''\n\tassert f6([]) == 0 ,\"Test 0\"\n\tassert f6([5, 4]) == 25 ,\"Test 1\"\n\tassert f6([0.1, 0.2, 0.3]) == 0 ,\"Test 2\"\n\tassert f6([-10, -20, -30]) == 0 ,\"Test 3\"\n\tassert f6([-1, -2, 8]) == 0,\"Test 4\"\n\tassert f6([0.2, 3, 5]) == 34,\"Test 5\"\n\tassert f6(lst) == odd_sum ,\"Test 6\"\n\t\"\"\"\n return sum([i**2 for i in lst if i > 0 and i%2!=0 and \".\" not in str(i)])\n\n# Rust f6 translation\n","entry_point":"double_the_difference","canonical_solution":" return sum([i**2 for i in lst if i > 0 and i%2!=0 and \".\" not in str(i)])\n","test":"def check(candidate):\n assert candidate([]) == 0 ,\"Test 0\"\n assert candidate([5, 4]) == 25 ,\"Test 1\"\n assert candidate([0.1, 0.2, 0.3]) == 0 ,\"Test 2\"\n assert candidate([-10, -20, -30]) == 0 ,\"Test 3\"\n assert candidate([-1, -2, 8]) == 0,\"Test 4\"\n assert candidate([0.2, 3, 5]) == 34,\"Test 5\"\n assert candidate(lst) == odd_sum ,\"Test 6\"\n"} {"task_id":"HumanEval\/152","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(game,guess):\n \"\"\"I think we all remember that feeling when the result of some long-awaited\n event is finally known. The feelings and thoughts you have at that moment are\n definitely worth noting down and comparing.\n Your task is to determine if a person correctly guessed the results of a number of matches.\n You are given two arrays of scores and guesses of equal length, where each index shows a match. \n Return an array of the same length denoting how far off each guess was. If they have guessed correctly,\n the value is 0, and if not, the value is the absolute difference between the guess and the score. \tassert f6([1,2,3,4,5,1],[1,2,3,4,2,-2])==[0,0,0,0,3,3],\"Test 0\"\n\tassert f6([0,0,0,0,0,0],[0,0,0,0,0,0])==[0,0,0,0,0,0],\"Test 1\"\n\tassert f6([1,2,3],[-1,-2,-3])==[2,4,6],\"Test 2\"\n\tassert f6([1,2,3,5],[-1,2,3,4])==[2,0,0,1],\"Test 3\"\n\tassert True,\"Test 4\"\n\t\"\"\"\n return [abs(x-y) for x,y in zip(game,guess)]\n\n# Rust f6 translation\n","entry_point":"compare","canonical_solution":" return [abs(x-y) for x,y in zip(game,guess)]\n","test":"def check(candidate):\n assert candidate([1,2,3,4,5,1],[1,2,3,4,2,-2])==[0,0,0,0,3,3],\"Test 0\"\n assert candidate([0,0,0,0,0,0],[0,0,0,0,0,0])==[0,0,0,0,0,0],\"Test 1\"\n assert candidate([1,2,3],[-1,-2,-3])==[2,4,6],\"Test 2\"\n assert candidate([1,2,3,5],[-1,2,3,4])==[2,0,0,1],\"Test 3\"\n assert True,\"Test 4\"\n"} {"task_id":"HumanEval\/153","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(class_name, extensions):\n \"\"\"You will be given the name of a class (a string) and a list of extensions.\n The extensions are to be used to load additional classes to the class. The\n strength of the extension is as follows: Let CAP be the number of the uppercase\n letters in the extension's name, and let SM be the number of lowercase letters \n in the extension's name, the strength is given by the fraction CAP - SM. \n You should find the strongest extension and return a string in this \n format: ClassName.StrongestExtensionName.\n If there are two or more extensions with the same strength, you should\n choose the one that comes first in the list. \tassert f6('Watashi', ['tEN', 'niNE', 'eIGHt8OKe']) == 'Watashi.eIGHt8OKe',\"Test 0\"\n\tassert f6('Boku123', ['nani', 'NazeDa', 'YEs.WeCaNe', '32145tggg']) == 'Boku123.YEs.WeCaNe',\"Test 1\"\n\tassert f6('__YESIMHERE', ['t', 'eMptY', 'nothing', 'zeR00', 'NuLl__', '123NoooneB321']) == '__YESIMHERE.NuLl__',\"Test 2\"\n\tassert f6('K', ['Ta', 'TAR', 't234An', 'cosSo']) == 'K.TAR',\"Test 3\"\n\tassert f6('__HAHA', ['Tab', '123', '781345', '-_-']) == '__HAHA.123',\"Test 4\"\n\tassert f6('YameRore', ['HhAas', 'okIWILL123', 'WorkOut', 'Fails', '-_-']) == 'YameRore.okIWILL123',\"Test 5\"\n\tassert f6('finNNalLLly', ['Die', 'NowW', 'Wow', 'WoW']) == 'finNNalLLly.WoW',\"Test 6\"\n\tassert f6('_', ['Bb', '91245']) == '_.Bb',\"Test 7\"\n\tassert f6('Sp', ['671235', 'Bb']) == 'Sp.671235',\"Test 8\"\n\t\"\"\"\n strong = extensions[0]\n my_val = len([x for x in extensions[0] if x.isalpha() and x.isupper()]) - len([x for x in extensions[0] if x.isalpha() and x.islower()])\n for s in extensions:\n val = len([x for x in s if x.isalpha() and x.isupper()]) - len([x for x in s if x.isalpha() and x.islower()])\n if val > my_val:\n strong = s\n my_val = val\n\n ans = class_name + \".\" + strong\n return ans\n\n\n# Rust f6 translation\n","entry_point":"Strongest_Extension","canonical_solution":" strong = extensions[0]\n my_val = len([x for x in extensions[0] if x.isalpha() and x.isupper()]) - len([x for x in extensions[0] if x.isalpha() and x.islower()])\n for s in extensions:\n val = len([x for x in s if x.isalpha() and x.isupper()]) - len([x for x in s if x.isalpha() and x.islower()])\n if val > my_val:\n strong = s\n my_val = val\n\n ans = class_name + \".\" + strong\n return ans\n\n","test":"def check(candidate):\n assert candidate('Watashi', ['tEN', 'niNE', 'eIGHt8OKe']) == 'Watashi.eIGHt8OKe',\"Test 0\"\n assert candidate('Boku123', ['nani', 'NazeDa', 'YEs.WeCaNe', '32145tggg']) == 'Boku123.YEs.WeCaNe',\"Test 1\"\n assert candidate('__YESIMHERE', ['t', 'eMptY', 'nothing', 'zeR00', 'NuLl__', '123NoooneB321']) == '__YESIMHERE.NuLl__',\"Test 2\"\n assert candidate('K', ['Ta', 'TAR', 't234An', 'cosSo']) == 'K.TAR',\"Test 3\"\n assert candidate('__HAHA', ['Tab', '123', '781345', '-_-']) == '__HAHA.123',\"Test 4\"\n assert candidate('YameRore', ['HhAas', 'okIWILL123', 'WorkOut', 'Fails', '-_-']) == 'YameRore.okIWILL123',\"Test 5\"\n assert candidate('finNNalLLly', ['Die', 'NowW', 'Wow', 'WoW']) == 'finNNalLLly.WoW',\"Test 6\"\n assert candidate('_', ['Bb', '91245']) == '_.Bb',\"Test 7\"\n assert candidate('Sp', ['671235', 'Bb']) == 'Sp.671235',\"Test 8\"\n"} {"task_id":"HumanEval\/154","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(a , b):\n\n \tassert f6(\"xyzw\",\"xyw\") == False , \"Test 0\"\n\tassert f6(\"yello\",\"ell\") == True , \"Test 1\"\n\tassert f6(\"whattup\",\"ptut\") == False , \"Test 3\"\n\tassert f6(\"efef\",\"fee\") == True , \"Test 4\"\n\tassert f6(\"abab\",\"Test 4\"\n\tassert f6(\"abab\",\"aabb\") == False ,\"Test 5\"\n\tassert f6(\"winemtt\",\"tinem\") == True , \"Test 6\"\n\t\"\"\"\n l = len(b)\n pat = b + b\n for i in range(len(a) - l + 1):\n for j in range(l + 1):\n if a[i:i+l] == pat[j:j+l]:\n return True\n return False\n\n# Rust f6 translation\n","entry_point":"cycpattern_check","canonical_solution":" l = len(b)\n pat = b + b\n for i in range(len(a) - l + 1):\n for j in range(l + 1):\n if a[i:i+l] == pat[j:j+l]:\n return True\n return False\n","test":"def check(candidate):\n assert candidate(\"xyzw\",\"xyw\") == False , \"Test 0\"\n assert candidate(\"yello\",\"ell\") == True , \"Test 1\"\n assert candidate(\"whattup\",\"ptut\") == False , \"Test 3\"\n assert candidate(\"efef\",\"fee\") == True , \"Test 4\"\n assert candidate(\"abab\",\"Test 4\"\n assert candidate(\"abab\",\"aabb\") == False ,\"Test 5\"\n assert candidate(\"winemtt\",\"tinem\") == True , \"Test 6\"\n"} {"task_id":"HumanEval\/155","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(num):\n \"\"\"Given an integer. return a tuple that has the number of even and odd digits respectively. \tassert f6(7) == (0, 1),\"Test 0\"\n\tassert f6(-78) == (1, 1),\"Test 1\"\n\tassert f6(3452) == (2, 2),\"Test 2\"\n\tassert f6(346211) == (3, 3),\"Test 3\"\n\tassert f6(-345821) == (3, 3),\"Test 4\"\n\tassert f6(-2) == (1, 0),\"Test 5\"\n\tassert f6(-45347) == (2, 3),\"Test 6\"\n\tassert f6(0) == (1, 0),\"Test 7\"\n\tassert True,\"Test 8\"\n\t\"\"\"\n even_count = 0\n odd_count = 0\n for i in str(abs(num)):\n if int(i)%2==0:\n even_count +=1\n else:\n odd_count +=1\n return (even_count, odd_count)\n\n# Rust f6 translation\n","entry_point":"even_odd_count","canonical_solution":" even_count = 0\n odd_count = 0\n for i in str(abs(num)):\n if int(i)%2==0:\n even_count +=1\n else:\n odd_count +=1\n return (even_count, odd_count)\n","test":"def check(candidate):\n assert candidate(7) == (0, 1),\"Test 0\"\n assert candidate(-78) == (1, 1),\"Test 1\"\n assert candidate(3452) == (2, 2),\"Test 2\"\n assert candidate(346211) == (3, 3),\"Test 3\"\n assert candidate(-345821) == (3, 3),\"Test 4\"\n assert candidate(-2) == (1, 0),\"Test 5\"\n assert candidate(-45347) == (2, 3),\"Test 6\"\n assert candidate(0) == (1, 0),\"Test 7\"\n assert True,\"Test 8\"\n"} {"task_id":"HumanEval\/156","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(number):\n \"\"\"\n Given a positive integer, obtain its roman numeral equivalent as a string,\n and return it in lowercase.\n Restrictions: 1 <= num <= 1000. \tassert f6(19) == 'xix',\"Test 0\"\n\tassert f6(152) == 'clii',\"Test 1\"\n\tassert f6(251) == 'ccli',\"Test 2\"\n\tassert f6(426) == 'cdxxvi',\"Test 3\"\n\tassert f6(500) == 'd',\"Test 4\"\n\tassert f6(1) == 'i',\"Test 5\"\n\tassert f6(4) == 'iv',\"Test 6\"\n\tassert f6(43) == 'xliii',\"Test 7\"\n\tassert f6(90) == 'xc',\"Test 8\"\n\tassert f6(94) == 'xciv',\"Test 9\"\n\tassert f6(532) == 'dxxxii',\"Test 10\"\n\tassert f6(900) == 'cm',\"Test 11\"\n\tassert f6(994) == 'cmxciv',\"Test 12\"\n\tassert f6(1000) == 'm',\"Test 13\"\n\tassert True,\"Test 14\"\n\t\"\"\"\n num = [1, 4, 5, 9, 10, 40, 50, 90, \n 100, 400, 500, 900, 1000] \n sym = [\"I\", \"IV\", \"V\", \"IX\", \"X\", \"XL\", \n \"L\", \"XC\", \"C\", \"CD\", \"D\", \"CM\", \"M\"] \n i = 12\n res = ''\n while number: \n div = number \/\/ num[i] \n number %= num[i] \n while div: \n res += sym[i] \n div -= 1\n i -= 1\n return res.lower()\n\n# Rust f6 translation\n","entry_point":"int_to_mini_roman","canonical_solution":" num = [1, 4, 5, 9, 10, 40, 50, 90, \n 100, 400, 500, 900, 1000] \n sym = [\"I\", \"IV\", \"V\", \"IX\", \"X\", \"XL\", \n \"L\", \"XC\", \"C\", \"CD\", \"D\", \"CM\", \"M\"] \n i = 12\n res = ''\n while number: \n div = number \/\/ num[i] \n number %= num[i] \n while div: \n res += sym[i] \n div -= 1\n i -= 1\n return res.lower()\n","test":"def check(candidate):\n assert candidate(19) == 'xix',\"Test 0\"\n assert candidate(152) == 'clii',\"Test 1\"\n assert candidate(251) == 'ccli',\"Test 2\"\n assert candidate(426) == 'cdxxvi',\"Test 3\"\n assert candidate(500) == 'd',\"Test 4\"\n assert candidate(1) == 'i',\"Test 5\"\n assert candidate(4) == 'iv',\"Test 6\"\n assert candidate(43) == 'xliii',\"Test 7\"\n assert candidate(90) == 'xc',\"Test 8\"\n assert candidate(94) == 'xciv',\"Test 9\"\n assert candidate(532) == 'dxxxii',\"Test 10\"\n assert candidate(900) == 'cm',\"Test 11\"\n assert candidate(994) == 'cmxciv',\"Test 12\"\n assert candidate(1000) == 'm',\"Test 13\"\n assert True,\"Test 14\"\n"} {"task_id":"HumanEval\/157","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(a, b, c):\n '''\n A right-angled triangle is a triangle in which one angle is right angle or \n 90 degree. \tassert f6(3, 4, 5) == True,\"Test 0\"\n\tassert f6(1, 2, 3) == False,\"Test 1\"\n\tassert f6(10, 6, 8) == True,\"Test 2\"\n\tassert f6(2, 2, 2) == False,\"Test 3\"\n\tassert f6(7, 24, 25) == True,\"Test 4\"\n\tassert f6(10, 5, 7) == False,\"Test 5\"\n\tassert f6(5, 12, 13) == True,\"Test 6\"\n\tassert f6(15, 8, 17) == True,\"Test 7\"\n\tassert f6(48, 55, 73) == True,\"Test 8\"\n\tassert f6(1, 1, 1) == False,\"Test 9\"\n\tassert f6(2, 2, 10) == False,\"Test 10\"\n\t\"\"\"\n return a*a == b*b + c*c or b*b == a*a + c*c or c*c == a*a + b*b\n\n# Rust f6 translation\n","entry_point":"right_angle_triangle","canonical_solution":" return a*a == b*b + c*c or b*b == a*a + c*c or c*c == a*a + b*b\n","test":"def check(candidate):\n assert candidate(3, 4, 5) == True,\"Test 0\"\n assert candidate(1, 2, 3) == False,\"Test 1\"\n assert candidate(10, 6, 8) == True,\"Test 2\"\n assert candidate(2, 2, 2) == False,\"Test 3\"\n assert candidate(7, 24, 25) == True,\"Test 4\"\n assert candidate(10, 5, 7) == False,\"Test 5\"\n assert candidate(5, 12, 13) == True,\"Test 6\"\n assert candidate(15, 8, 17) == True,\"Test 7\"\n assert candidate(48, 55, 73) == True,\"Test 8\"\n assert candidate(1, 1, 1) == False,\"Test 9\"\n assert candidate(2, 2, 10) == False,\"Test 10\"\n"} {"task_id":"HumanEval\/158","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(words):\n \"\"\"Write a function that accepts a list of strings.\n The list contains different words. Return the word with maximum number\n of unique characters. If multiple strings have maximum number of unique\n characters, return the one which comes first in lexicographical order.\n\n f6([\"name\", \"of\", \"string\"]) == \"string\"\n f6([\"name\", \"enam\", \"game\"]) == \"enam\"\n f6([\"aaaaaaa\", \"bb\" ,\"cc\"]) == \"\"aaaaaaa\"\n \tassert (f6([\"name\",\"Test 0\"\n\tassert (f6([\"name\",\"Test 1\"\n\tassert (f6([\"aaaaaaa\",\"Test 2\"\n\tassert (f6([\"abc\",\"Test 3\"\n\tassert (f6([\"play\", \"this\", \"game\", \"of\",\"Test 4\"\n\tassert (f6([\"play\",\"Test 5\"\n\tassert (f6([\"we\",\"Test 6\"\n\tassert (f6([\"we\",\"Test 7\"\n\tassert (f6([\"this\",\"Test 8\"\n\tassert (f6([\"b\"]) == \"b\"), 't9',\"Test 9\"\n\tassert (f6([\"play\",\"Test 10\"\n\t\"\"\"\n return sorted(words, key = lambda x: (-len(set(x)), x))[0]\n\n# Rust f6 translation\n","entry_point":"find_max","canonical_solution":" return sorted(words, key = lambda x: (-len(set(x)), x))[0]\n","test":"def check(candidate):\n assert (candidate([\"name\",\"Test 0\"\n assert (candidate([\"name\",\"Test 1\"\n assert (candidate([\"aaaaaaa\",\"Test 2\"\n assert (candidate([\"abc\",\"Test 3\"\n assert (candidate([\"play\", \"this\", \"game\", \"of\",\"Test 4\"\n assert (candidate([\"play\",\"Test 5\"\n assert (candidate([\"we\",\"Test 6\"\n assert (candidate([\"we\",\"Test 7\"\n assert (candidate([\"this\",\"Test 8\"\n assert (candidate([\"b\"]) == \"b\"), 't9',\"Test 9\"\n assert (candidate([\"play\",\"Test 10\"\n"} {"task_id":"HumanEval\/159","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(number, need, remaining):\n \"\"\"\n You're a hungry rabbit, and you already have f6en a certain number of carrots,\n but now you need to f6 more carrots to complete the day's meals.\n you should return an array of [ total number of f6en carrots after your meals,\n the number of carrots left after your meals ]\n if there are not enough remaining carrots, you will f6 all remaining carrots, but will still be hungry. \tassert True,\"Test 0\"\n\tassert f6(5, 6, 10) == [11, 4],\"Test 1\"\n\tassert f6(4, 8, 9) == [12, 1],\"Test 2\"\n\tassert f6(1, 10, 10) == [11, 0],\"Test 3\"\n\tassert f6(2, 11, 5) == [7, 0],\"Test 4\"\n\tassert True,\"Test 5\"\n\tassert f6(4, 5, 7) == [9, 2],\"Test 6\"\n\tassert f6(4, 5, 1) == [5, 0],\"Test 7\"\n\t\"\"\"\n if(need <= remaining):\n return [ number + need , remaining-need ]\n else:\n return [ number + remaining , 0]\n\n# Rust f6 translation\n","entry_point":"eat","canonical_solution":" if(need <= remaining):\n return [ number + need , remaining-need ]\n else:\n return [ number + remaining , 0]\n","test":"def check(candidate):\n assert True,\"Test 0\"\n assert candidate(5, 6, 10) == [11, 4],\"Test 1\"\n assert candidate(4, 8, 9) == [12, 1],\"Test 2\"\n assert candidate(1, 10, 10) == [11, 0],\"Test 3\"\n assert candidate(2, 11, 5) == [7, 0],\"Test 4\"\n assert True,\"Test 5\"\n assert candidate(4, 5, 7) == [9, 2],\"Test 6\"\n assert candidate(4, 5, 1) == [5, 0],\"Test 7\"\n"} {"task_id":"HumanEval\/160","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(operator, operand):\n \"\"\"\n Given two lists operator, and operand. The first list has basic algebra operations, and \n the second list is a list of integers. Use the two given lists to build the algebric \n expression and return the evaluation of this expression.\n\n The basic algebra operations:\n Addition ( + ) \n Subtraction ( - ) \n Multiplication ( * ) \n Floor division ( \/\/ ) \n Exponentiation ( ** ). \tassert f6(['**', '*', '+'], [2, 3, 4, 5]) == 37,\"Test 0\"\n\tassert f6(['+', '*', '-'], [2, 3, 4, 5]) == 9,\"Test 1\"\n\tassert f6(['\/\/', '*'], [7, 3, 4]) == 8,\"Test 2\"\n\tassert True,\"Test 3\"\n\t\"\"\"\n expression = str(operand[0])\n for oprt, oprn in zip(operator, operand[1:]):\n expression+= oprt + str(oprn)\n return eval(expression)\n\n# Rust f6 translation\n","entry_point":"do_algebra","canonical_solution":" expression = str(operand[0])\n for oprt, oprn in zip(operator, operand[1:]):\n expression+= oprt + str(oprn)\n return eval(expression)\n","test":"def check(candidate):\n assert candidate(['**', '*', '+'], [2, 3, 4, 5]) == 37,\"Test 0\"\n assert candidate(['+', '*', '-'], [2, 3, 4, 5]) == 9,\"Test 1\"\n assert candidate(['\/\/', '*'], [7, 3, 4]) == 8,\"Test 2\"\n assert True,\"Test 3\"\n"} {"task_id":"HumanEval\/161","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef solve(s):\n \"\"\"You are given a string s.\n if s[i] is a letter, reverse its case from lower to upper or vise versa, \n otherwise keep it as it is.\n If the string contains no letters, reverse the string.\n The function should return the resulted string. \tassert f6(\"AsDf\") == \"aSdF\",\"Test 0\"\n\tassert f6(\"1234\") == \"4321\",\"Test 1\"\n\tassert f6(\"ab\") == \"AB\",\"Test 2\"\n\tassert f6(\"#a@C\") == \"#A@c\",\"Test 3\"\n\tassert f6(\"#AsdfW^45\") == \"#aSDFw^45\",\"Test 4\"\n\tassert f6(\"#6@2\") == \"2@6#\",\"Test 5\"\n\tassert f6(\"#$a^D\") == \"#$A^d\",\"Test 6\"\n\tassert f6(\"#ccc\") == \"#CCC\",\"Test 7\"\n\t\"\"\"\n flg = 0\n idx = 0\n new_str = list(s)\n for i in s:\n if i.isalpha():\n new_str[idx] = i.swapcase()\n flg = 1\n idx += 1\n s = \"\"\n for i in new_str:\n s += i\n if flg == 0:\n return s[len(s)::-1]\n return s\n\n# Rust f6 translation\n","entry_point":"solve_2","canonical_solution":" flg = 0\n idx = 0\n new_str = list(s)\n for i in s:\n if i.isalpha():\n new_str[idx] = i.swapcase()\n flg = 1\n idx += 1\n s = \"\"\n for i in new_str:\n s += i\n if flg == 0:\n return s[len(s)::-1]\n return s\n","test":"def check(candidate):\n assert candidate(\"AsDf\") == \"aSdF\",\"Test 0\"\n assert candidate(\"1234\") == \"4321\",\"Test 1\"\n assert candidate(\"ab\") == \"AB\",\"Test 2\"\n assert candidate(\"#a@C\") == \"#A@c\",\"Test 3\"\n assert candidate(\"#AsdfW^45\") == \"#aSDFw^45\",\"Test 4\"\n assert candidate(\"#6@2\") == \"2@6#\",\"Test 5\"\n assert candidate(\"#$a^D\") == \"#$A^d\",\"Test 6\"\n assert candidate(\"#ccc\") == \"#CCC\",\"Test 7\"\n"} {"task_id":"HumanEval\/162","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(text):\n \"\"\"\n Given a string 'text', return its md5 hash equivalent string.\n If 'text' is an empty string, return None. \tassert f6('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62',\"Test 0\"\n\tassert f6('') == None,\"Test 1\"\n\tassert f6('A B C') == '0ef78513b0cb8cef12743f5aeb35f888',\"Test 2\"\n\tassert f6('password') == '5f4dcc3b5aa765d61d8327deb882cf99',\"Test 3\"\n\tassert True,\"Test 4\"\n\t\"\"\"\n import hashlib\n return hashlib.md5(text.encode('ascii')).hexdigest() if text else None\n\n# Rust f6 translation\n","entry_point":"string_to_md5","canonical_solution":" import hashlib\n return hashlib.md5(text.encode('ascii')).hexdigest() if text else None\n","test":"def check(candidate):\n assert candidate('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62',\"Test 0\"\n assert candidate('') == None,\"Test 1\"\n assert candidate('A B C') == '0ef78513b0cb8cef12743f5aeb35f888',\"Test 2\"\n assert candidate('password') == '5f4dcc3b5aa765d61d8327deb882cf99',\"Test 3\"\n assert True,\"Test 4\"\n"} {"task_id":"HumanEval\/163","prompt":"from typing import List, Dict, Tuple, Union, Optional\n\ndef f1(numbers: List[float], threshold: float) -> bool:\n \"\"\"\n f1: List[float] -> float -> bool\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert f1([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert f1([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n \"\"\"\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n\n# Rust f1 translation\nfn has_close_elements(numbers: Vec, threshold: f64) -> bool {\n for idx in 0..numbers.len() {\n for idx2 in 0..numbers.len() {\n if idx != idx2 {\n let distance = (numbers[idx] - numbers[idx2]).abs();\n if distance < threshold {\n return true;\n }\n }\n }\n }\n\n return false;\n}\ndef f2(paren_string: str) -> List[str]:\n \"\"\"\n f2: str -> List[str]\n assert f2('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert f2('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert f2('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert f2('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n \"\"\"\n result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n\n# Rust f2 translation\nfn f2(paren_string: &str) -> Vec {\n let mut result = Vec::new();\n let mut current_string = String::new();\n let mut current_depth = 0;\n\n for c in paren_string.chars() {\n if c == '(' {\n current_depth += 1;\n current_string.push(c);\n } else if c == ')' {\n current_depth -= 1;\n current_string.push(c);\n\n if current_depth == 0 {\n result.push(current_string);\n current_string = String::new();\n }\n }\n }\n\n return result;\n}\n\ndef f3(number: float) -> float:\n \"\"\" \n f3: float -> float\n assert f3(3.5) == 0.5\n assert abs(f3(1.33) - 0.33) < 1e-6\n assert abs(f3(123.456) - 0.456) < 1e-6\n \"\"\"\n return number % 1.0\n\n# Rust f3 translation\nfn f3(number: f64) -> f64 {\n return number % 1.0;\n}\n\ndef f4(a, b):\n \"\"\"\n Complete the function that takes two integers and returns the product of their unit digits.\n f4: int -> int -> int\n assert f4(148, 412) == 16, \n assert f4(19, 28) == 72, \n assert f4(2020, 1851) == 0\n assert f4(3,3) == 9\n assert f4(12,33) == 6\n \"\"\"\n return abs(a % 10) * abs(b % 10)\n\n# Rust f4 translation\nfn f4(a: i32, b: i32) -> i32 {\n return (a % 10).abs() * (b % 10).abs();\n}\n\ndef f5(xs: List[int]) -> List[int]:\n \"\"\" \n xs represent coefficients of a polynomial.\n f5: List[int] -> List[int]\n assert f5([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert f5([1, 2, 3]) == [2, 6]\n assert f5([3, 2, 1]) == [2, 2]\n assert f5([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert f5([1]) == []\n \"\"\"\n return [(i * x) for i, x in enumerate(xs)][1:]\n\n# Rust f5 translation\nfn f5(xs: Vec) -> Vec {\n return xs.iter().enumerate().map(|(i, x)| i as i32 * x).skip(1).collect();\n}\n\n\n\ndef f6(a, b):\n \"\"\"\n Given two positive integers a and b, return the even digits between a\n and b, in ascending order. \tassert f6(2, 10) == [2, 4, 6, 8], \"Test 1\"\n\tassert f6(10, 2) == [2, 4, 6, 8], \"Test 2\"\n\tassert f6(132, 2) == [2, 4, 6, 8], \"Test 3\"\n\tassert f6(17,89) == [], \"Test 4\"\n\tassert True,\"Test 4\"\n\t\"\"\"\n lower = max(2, min(a, b))\n upper = min(8, max(a, b))\n\n return [i for i in range(lower, upper+1) if i % 2 == 0]\n\n# Rust f6 translation\n","entry_point":"generate_integers","canonical_solution":" lower = max(2, min(a, b))\n upper = min(8, max(a, b))\n\n return [i for i in range(lower, upper+1) if i % 2 == 0]\n","test":"def check(candidate):\n assert candidate(2, 10) == [2, 4, 6, 8], \"Test 1\"\n assert candidate(10, 2) == [2, 4, 6, 8], \"Test 2\"\n assert candidate(132, 2) == [2, 4, 6, 8], \"Test 3\"\n assert candidate(17,89) == [], \"Test 4\"\n assert True,\"Test 4\"\n"}