Datasets:
Tasks:
Question Answering
Modalities:
Text
Sub-tasks:
open-domain-qa
Languages:
English
Size:
100K - 1M
ArXiv:
License:
File size: 7,271 Bytes
e514d48 08cf776 e514d48 08cf776 501df66 08cf776 6de3fad 08cf776 6de3fad 0b26da6 6de3fad 08cf776 ff64fc8 08cf776 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
---
annotations_creators:
- machine-generated
- expert-generated
language:
- en
language_creators:
- found
license:
- mit
multilinguality:
- monolingual
pretty_name: KQA-Pro
size_categories:
- 10K<n<100K
source_datasets:
- original
tags:
- knowledge graph
- freebase
task_categories:
- question-answering
task_ids:
- open-domain-qa
---
# Dataset Card for KQA Pro
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Configs](#data-configs)
- [Data Splits](#data-splits)
- [Additional Information](#additional-information)
- [How to run SPARQLs and programs](#how-to-run-sparqls-and-programs)
- [Knowledge Graph File](#knowledge-graph-file)
- [How to Submit to Leaderboard](#how-to-submit-results-of-test-set)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://thukeg.gitee.io/kqa-pro/
- **Repository:** https://github.com/shijx12/KQAPro_Baselines
- **Paper:** [KQA Pro: A Dataset with Explicit Compositional Programs for Complex Question Answering over Knowledge Base](https://aclanthology.org/2022.acl-long.422/)
- **Leaderboard:** http://thukeg.gitee.io/kqa-pro/leaderboard.html
- **Point of Contact:** shijx12 at gmail dot com
### Dataset Summary
KQA Pro is a large-scale dataset of complex question answering over knowledge base. The questions are very diverse and challenging, requiring multiple reasoning capabilities including compositional reasoning, multi-hop reasoning, quantitative comparison, set operations, and etc. Strong supervisions of SPARQL and program are provided for each question.
### Supported Tasks and Leaderboards
It supports knowlege graph based question answering. Specifically, it provides SPARQL and *program* for each question.
### Languages
English
## Dataset Structure
**train.json/val.json**
```
[
{
'question': str,
'sparql': str, # executable in our virtuoso engine
'program':
[
{
'function': str, # function name
'dependencies': [int], # functional inputs, representing indices of the preceding functions
'inputs': [str], # textual inputs
}
],
'choices': [str], # 10 answer choices
'answer': str, # golden answer
}
]
```
**test.json**
```
[
{
'question': str,
'choices': [str], # 10 answer choices
}
]
```
### Data Configs
This dataset has two configs: `train_val` and `test` because they have different available fields. Please specify this like `load_dataset('drt/kqa_pro', 'train_val')`.
### Data Splits
train, val, test
## Additional Information
### Knowledge Graph File
You can find the knowledge graph file `kb.json` in the original github repository. It comes with the format:
```json
{
'concepts':
{
'<id>':
{
'name': str,
'instanceOf': ['<id>', '<id>'], # ids of parent concept
}
},
'entities': # excluding concepts
{
'<id>':
{
'name': str,
'instanceOf': ['<id>', '<id>'], # ids of parent concept
'attributes':
[
{
'key': str, # attribute key
'value': # attribute value
{
'type': 'string'/'quantity'/'date'/'year',
'value': float/int/str, # float or int for quantity, int for year, 'yyyy/mm/dd' for date
'unit': str, # for quantity
},
'qualifiers':
{
'<qk>': # qualifier key, one key may have multiple corresponding qualifier values
[
{
'type': 'string'/'quantity'/'date'/'year',
'value': float/int/str,
'unit': str,
}, # the format of qualifier value is similar to attribute value
]
}
},
]
'relations':
[
{
'predicate': str,
'object': '<id>', # NOTE: it may be a concept id
'direction': 'forward'/'backward',
'qualifiers':
{
'<qk>': # qualifier key, one key may have multiple corresponding qualifier values
[
{
'type': 'string'/'quantity'/'date'/'year',
'value': float/int/str,
'unit': str,
}, # the format of qualifier value is similar to attribute value
]
}
},
]
}
}
}
```
### How to run SPARQLs and programs
We implement multiple baselines in our [codebase](https://github.com/shijx12/KQAPro_Baselines), which includes a supervised SPARQL parser and program parser.
In the SPARQL parser, we implement a query engine based on [Virtuoso](https://github.com/openlink/virtuoso-opensource.git).
You can install the engine based on our [instructions](https://github.com/shijx12/KQAPro_Baselines/blob/master/SPARQL/README.md), and then feed your predicted SPARQL to get the answer.
In the program parser, we implement a rule-based program executor, which receives a predicted program and returns the answer.
Detailed introductions of our functions can be found in our [paper](https://arxiv.org/abs/2007.03875).
### How to submit results of test set
You need to predict answers for all questions of test set and write them in a text file **in order**, one per line.
Here is an example:
```
Tron: Legacy
Palm Beach County
1937-03-01
The Queen
...
```
Then you need to send the prediction file to us by email <[email protected]>, we will reply to you with the performance as soon as possible.
To appear in the learderboard, you need to also provide following information:
- model name
- affiliation
- open-ended or multiple-choice
- whether use the supervision of SPARQL in your model or not
- whether use the supervision of program in your model or not
- single model or ensemble model
- (optional) paper link
- (optional) code link
### Licensing Information
MIT License
### Citation Information
If you find our dataset is helpful in your work, please cite us by
```
@inproceedings{KQAPro,
title={{KQA P}ro: A Large Diagnostic Dataset for Complex Question Answering over Knowledge Base},
author={Cao, Shulin and Shi, Jiaxin and Pan, Liangming and Nie, Lunyiu and Xiang, Yutong and Hou, Lei and Li, Juanzi and He, Bin and Zhang, Hanwang},
booktitle={ACL'22},
year={2022}
}
```
### Contributions
Thanks to [@happen2me](https://github.com/happen2me) for adding this dataset.
|