Datasets:
Tasks:
Question Answering
Modalities:
Text
Sub-tasks:
open-domain-qa
Languages:
English
Size:
100K - 1M
ArXiv:
License:
"""KQA Pro: A large-scale, diverse, challenging dataset of complex question answering over knowledge base.""" | |
import json | |
import os | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@inproceedings{KQAPro, | |
title={{KQA P}ro: A Large Diagnostic Dataset for Complex Question Answering over Knowledge Base}, | |
author={Cao, Shulin and Shi, Jiaxin and Pan, Liangming and Nie, Lunyiu and Xiang, Yutong and Hou, Lei and Li, Juanzi and He, Bin and Zhang, Hanwang}, | |
booktitle={ACL'22}, | |
year={2022} | |
} | |
""" | |
_DESCRIPTION = """\ | |
A large-scale, diverse, challenging dataset of complex question answering over knowledge base. | |
""" | |
_URL = "https://thukeg.gitee.io/kqa-pro/" | |
_DOWNLOAD_URL = "https://cloud.tsinghua.edu.cn/f/df54ff66d1dc4ca7823e/?dl=1" | |
_TRAIN_CONFIG_NAME = "train_val" | |
_TEST_CONFIG_NAME = "test" | |
class KQAProConfig(datasets.BuilderConfig): | |
"""BuilderConfig for KQA Pro.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for KQA Pro. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(KQAProConfig, self).__init__(**kwargs) | |
class KQAPro(datasets.GeneratorBasedBuilder): | |
"""KQAPro: A large scale knowledge-based question answering dataset.""" | |
BUILDER_CONFIGS = [ | |
KQAProConfig( | |
name=_TRAIN_CONFIG_NAME, | |
description="KQA Pro" | |
), | |
KQAProConfig( | |
name=_TEST_CONFIG_NAME, | |
description="KQA Pro" | |
), | |
] | |
def _info(self): | |
if self.config.name == _TEST_CONFIG_NAME: | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"question": datasets.Value("string"), | |
"choices": datasets.features.Sequence(datasets.Value("string")), | |
} | |
), | |
supervised_keys=None, | |
homepage=_URL, | |
citation=_CITATION, | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"question": datasets.Value("string"), | |
"sparql": datasets.Value("string"), | |
"program": datasets.features.Sequence( | |
{ | |
"function": datasets.Value("string"), | |
"dependencies": datasets.features.Sequence(datasets.Value("int32")), | |
"inputs": datasets.features.Sequence(datasets.Value("string")) | |
} | |
), | |
"choices": datasets.features.Sequence(datasets.Value("string")), | |
"answer": datasets.Value("string") | |
} | |
), | |
# No default supervised_keys (as we have to pass both question | |
# and context as input). | |
supervised_keys=None, | |
homepage=_URL, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
downloaded_files = { | |
"train": "train.json", | |
"val": "val.json", | |
"test": "test.json" | |
} | |
if self.config.name == _TEST_CONFIG_NAME: | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={ | |
"filepath": downloaded_files["test"]}) | |
] | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={ | |
"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={ | |
"filepath": downloaded_files["val"]}) | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
kqa = json.load(f) | |
for idx, sample in enumerate(kqa): | |
yield idx, sample | |