|
""" |
|
Inspired from |
|
https://huggingface.co/datasets/ydshieh/coco_dataset_script/blob/main/coco_dataset_script.py |
|
""" |
|
|
|
import json |
|
import os |
|
import datasets |
|
import collections |
|
|
|
|
|
class COCOBuilderConfig(datasets.BuilderConfig): |
|
def __init__(self, name, splits, **kwargs): |
|
super().__init__(name, **kwargs) |
|
self.splits = splits |
|
|
|
|
|
|
|
|
|
_CITATION = """\ |
|
@article{doclaynet2022, |
|
title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis}, |
|
doi = {10.1145/3534678.353904}, |
|
url = {https://arxiv.org/abs/2206.01062}, |
|
author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J}, |
|
year = {2022} |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
DocLayNet is a human-annotated document layout segmentation dataset from a broad variety of document sources. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://developer.ibm.com/exchanges/data/all/doclaynet/" |
|
|
|
|
|
_LICENSE = "CDLA-Permissive-1.0" |
|
|
|
|
|
|
|
|
|
|
|
_URLs = { |
|
"core": "https://codait-cos-dax.s3.us.cloud-object-storage.appdomain.cloud/dax-doclaynet/1.0.0/DocLayNet_core.zip", |
|
} |
|
|
|
|
|
class COCODataset(datasets.GeneratorBasedBuilder): |
|
"""An example dataset script to work with the local (downloaded) COCO dataset""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIG_CLASS = COCOBuilderConfig |
|
BUILDER_CONFIGS = [ |
|
COCOBuilderConfig(name="2022.08", splits=["train", "val", "test"]), |
|
] |
|
DEFAULT_CONFIG_NAME = "2022.08" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"image_id": datasets.Value("int64"), |
|
"image": datasets.Image(), |
|
"width": datasets.Value("int32"), |
|
"height": datasets.Value("int32"), |
|
|
|
"doc_category": datasets.Value( |
|
"string" |
|
), |
|
"collection": datasets.Value("string"), |
|
"doc_name": datasets.Value("string"), |
|
"page_no": datasets.Value("int64"), |
|
} |
|
) |
|
object_dict = { |
|
"category_id": datasets.ClassLabel( |
|
names=[ |
|
"Caption", |
|
"Footnote", |
|
"Formula", |
|
"List-item", |
|
"Page-footer", |
|
"Page-header", |
|
"Picture", |
|
"Section-header", |
|
"Table", |
|
"Text", |
|
"Title", |
|
] |
|
), |
|
"image_id": datasets.Value("string"), |
|
"id": datasets.Value("int64"), |
|
"area": datasets.Value("int64"), |
|
"bbox": datasets.Sequence(datasets.Value("float32"), length=4), |
|
"segmentation": [[datasets.Value("float32")]], |
|
"iscrowd": datasets.Value("bool"), |
|
"precedence": datasets.Value("int32"), |
|
} |
|
features["objects"] = [object_dict] |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
archive_path = dl_manager.download_and_extract(_URLs) |
|
splits = [] |
|
for split in self.config.splits: |
|
if split == "train": |
|
dataset = datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"json_path": os.path.join( |
|
archive_path["core"], "COCO", "train.json" |
|
), |
|
"image_dir": os.path.join(archive_path["core"], "PNG"), |
|
"split": "train", |
|
}, |
|
) |
|
elif split in ["val", "valid", "validation", "dev"]: |
|
dataset = datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"json_path": os.path.join( |
|
archive_path["core"], "COCO", "val.json" |
|
), |
|
"image_dir": os.path.join(archive_path["core"], "PNG"), |
|
"split": "val", |
|
}, |
|
) |
|
elif split == "test": |
|
dataset = datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"json_path": os.path.join( |
|
archive_path["core"], "COCO", "test.json" |
|
), |
|
"image_dir": os.path.join(archive_path["core"], "PNG"), |
|
"split": "test", |
|
}, |
|
) |
|
else: |
|
continue |
|
|
|
splits.append(dataset) |
|
return splits |
|
|
|
def _generate_examples( |
|
|
|
self, |
|
json_path, |
|
image_dir, |
|
split, |
|
): |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
|
|
def _image_info_to_example(image_info, image_dir): |
|
image = image_info["file_name"] |
|
return { |
|
"image_id": image_info["id"], |
|
"image": os.path.join(image_dir, image), |
|
"width": image_info["width"], |
|
"height": image_info["height"], |
|
"doc_category": image_info["doc_category"], |
|
"collection": image_info["collection"], |
|
"doc_name": image_info["doc_name"], |
|
"page_no": image_info["page_no"], |
|
} |
|
|
|
with open(json_path, encoding="utf8") as f: |
|
annotation_data = json.load(f) |
|
images = annotation_data["images"] |
|
annotations = annotation_data["annotations"] |
|
image_id_to_annotations = collections.defaultdict(list) |
|
for annotation in annotations: |
|
image_id_to_annotations[annotation["image_id"]].append(annotation) |
|
|
|
for idx, image_info in enumerate(images): |
|
example = _image_info_to_example(image_info, image_dir) |
|
annotations = image_id_to_annotations[image_info["id"]] |
|
objects = [] |
|
for annotation in annotations: |
|
category_id = annotation["category_id"] |
|
if category_id != -1: |
|
category_id = category_id - 1 |
|
annotation["category_id"] = category_id |
|
objects.append(annotation) |
|
example["objects"] = objects |
|
yield idx, example |
|
|