import json import datasets import gzip logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """\\nRomanian diacritic dataset""" _CITATION = """n/a""" _URL = "https://github.com/dumitrescustefan/diacritic" _DATA_URL = "https://huggingface.co/datasets/dumitrescustefan/diacritic/resolve/main/data/{split_suffix}-{index:03d}.json.gz" _N_SHARDS_PER_SPLIT = { "train": 78, "validation": 1 } class RLM(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig(name="v1", version="1.0.0", description="v1.0 of romanian diacritic corpus"), ] DEFAULT_CONFIG_NAME = "v1" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("int64"), "text": datasets.Value("string"), } ), supervised_keys=None, homepage=_URL, citation=_CITATION, ) def _split_generators(self, dl_manager): data_urls = {} for split in ["train", "validation"]: data_urls[split] = [ _DATA_URL.format(split_suffix=split, index=iindex) for iindex in range(_N_SHARDS_PER_SPLIT[split]) ] train_downloaded_files = dl_manager.download(data_urls["train"]) validation_downloaded_files = dl_manager.download(data_urls["validation"]) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files}), ] def _generate_examples(self, filepaths): """This function returns the examples in the raw (text) form by iterating on all the files.""" id_ = 0 for filepath in filepaths: logger.info("generating examples from = %s", filepath) with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: for line in f: if line: example = json.loads(line) yield id_, example id_ += 1