Datasets:

ArXiv:
File size: 13,731 Bytes
30bd47b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# DynaSent: Dynamic Sentiment Analysis Dataset

DynaSent is an English-language benchmark task for ternary (positive/negative/neutral) sentiment analysis. This dataset card is forked from the original [DynaSent Repository](https://github.com/cgpotts/dynasent).

## Contents

* [Citation](#Citation)
* [Dataset files](#dataset-files)
* [Quick start](#quick-start)
* [Data format](#data-format)
* [Models](#models)
* [Other files](#other-files)
* [License](#license)


## Citation

[Christopher Potts](http://web.stanford.edu/~cgpotts/), [Zhengxuan Wu](http://zen-wu.social), Atticus Geiger, and [Douwe Kiela](https://douwekiela.github.io). 2020. [DynaSent: A dynamic benchmark for sentiment analysis](https://arxiv.org/abs/2012.15349). Ms., Stanford University and Facebook AI Research.

```stex
  @article{potts-etal-2020-dynasent,
    title={{DynaSent}: A Dynamic Benchmark for Sentiment Analysis},
    author={Potts, Christopher and Wu, Zhengxuan and Geiger, Atticus and Kiela, Douwe},
    journal={arXiv preprint arXiv:2012.15349},
    url={https://arxiv.org/abs/2012.15349},
    year={2020}}
```

## Dataset files

The dataset is [dynasent-v1.1.zip](dynasent-v1.1.zip), which is included in this repository. `v1.1` differs from `v1` only in that `v1.1` has proper unique ids for Round 1 and corrects a bug that led to some non-unique ids in Round 2. There are no changes to the examples or other metadata.

The dataset consists of two rounds, each with a train/dev/test split:


### Round 1: Naturally occurring sentences

* `dynasent-v1.1-round01-yelp-train.jsonl`
* `dynasent-v1.1-round01-yelp-dev.jsonl`
* `dynasent-v1.1-round01-yelp-test.jsonl`


### Round 1: Sentences crowdsourced using Dynabench

* `dynasent-v1.1-round02-dynabench-train.jsonl`
* `dynasent-v1.1-round02-dynabench-dev.jsonl`
* `dynasent-v1.1-round02-dynabench-test.jsonl`


### SST-dev revalidation

The dataset also contains a version of the [Stanford Sentiment Treebank](https://nlp.stanford.edu/sentiment/) dev set in our format with labels from our validation task:

* `sst-dev-validated.jsonl`


## Quick start

This function can be used to load any subset of the files:

```python
import json

def load_dataset(*src_filenames, labels=None):
    data = []
    for filename in src_filenames:
        with open(filename) as f:
            for line in f:
                d = json.loads(line)
                if labels is None or d['gold_label'] in labels:
                    data.append(d)
    return data
```

For example, to create a Round 1 train set restricting to examples with ternary gold labels:

```python
import os

r1_train_filename = os.path.join('dynasent-v1.1', 'dynasent-v1.1-round01-yelp-train.jsonl')

ternary_labels = ('positive', 'negative', 'neutral')

r1_train = load_dataset(r1_train_filename, labels=ternary_labels)

X_train, y_train = zip(*[(d['sentence'], d['gold_label']) for d in r1_train])
```

## Data format

### Round 1 format

```python
{'hit_ids': ['y5238'],
 'sentence': 'Roto-Rooter is always good when you need someone right away.',
 'indices_into_review_text': [0, 60],
 'model_0_label': 'positive',
 'model_0_probs': {'negative': 0.01173639390617609,
  'positive': 0.7473671436309814,
  'neutral': 0.24089649319648743},
 'text_id': 'r1-0000001',
 'review_id': 'IDHkeGo-nxhqX4Exkdr08A', 
 'review_rating': 1,
 'label_distribution': {'positive': ['w130', 'w186', 'w207', 'w264', 'w54'],
  'negative': [],
  'neutral': [],
  'mixed': []},
 'gold_label': 'positive'}
```

Details:

* `'hit_ids'`: List of Amazon Mechanical Turk Human Interface Tasks (HITs) in which this example appeared during validation. The values are anonymized but used consistently throughout the dataset.
* `'sentence'`: The example text.
* `'indices_into_review_text':` indices of `'sentence'` into the original review in the [Yelp Academic Dataset](https://www.yelp.com/dataset).
* `'model_0_label'`: prediction of Model 0 as described in the paper. The possible values are `'positive'`, `'negative'`, and `'neutral'`.
* `'model_0_probs'`: probability distribution predicted by Model 0. The keys are `('positive', 'negative', 'neutral')` and the values are floats.
* `'text_id'`: unique identifier for this entry.
* `'review_id'`: review-level identifier for the review from the [Yelp Academic Dataset](https://www.yelp.com/dataset) containing `'sentence'`.
* `'review_rating'`: review-level star-rating for the review containing `'sentence'` in the [Yelp Academic Dataset](https://www.yelp.com/dataset). The possible values are `1`, `2`, `3`, `4`, and `5`.
* `'label_distribution':` response distribution from the MTurk validation task. The keys are `('positive', 'negative', 'neutral')` and the values are lists of anonymized MTurk ids, which are used consistently throughout the dataset.
* `'gold_label'`: the label chosen by at least three of the five workers if there is one (possible values: `'positive'`, `'negative'`, '`neutral'`, and `'mixed'`), else `None`. 

Here is some code one could use to augment a dataset, as loaded by `load_dataset`, with a field giving the full review text from the [Yelp Academic Dataset](https://www.yelp.com/dataset):

```python
import json

def index_yelp_reviews(yelp_src_filename='yelp_academic_dataset_review.json'):
    index = {}
    with open(yelp_src_filename) as f:
        for line in f:
            d = json.loads(line)
            index[d['review_id']] = d['text']
    return index

yelp_index = index_yelp_reviews()

def add_review_text_round1(dataset, yelp_index):
    for d in dataset:
        review_text = yelp_index[d['text_id']]
        # Check that we can find the sentence as expected:
        start, end = d['indices_into_review_text']
        assert review_text[start: end] == d['sentence']
        d['review_text'] = review_text
    return dataset
```

### Round 2 format

```python
{'hit_ids': ['y22661'],
 'sentence': "We enjoyed our first and last meal in Toronto at Bombay Palace, and I can't think of a better way to book our journey.",
 'sentence_author': 'w250',
 'has_prompt': True,
 'prompt_data': {'indices_into_review_text': [2093, 2213],
  'review_rating': 5,
  'prompt_sentence': "Our first and last meals in Toronto were enjoyed at Bombay Palace and I can't think of a better way to bookend our trip.",
  'review_id': 'Krm4kSIb06BDHternF4_pA'},
 'model_1_label': 'positive',
 'model_1_probs': {'negative': 0.29140257835388184,
  'positive': 0.6788994669914246,
  'neutral': 0.029697999358177185},
 'text_id': 'r2-0000001',
 'label_distribution': {'positive': ['w43', 'w26', 'w155', 'w23'],
  'negative': [],
  'neutral': [],
  'mixed': ['w174']},
 'gold_label': 'positive'}
 ```

Details:

* `'hit_ids'`: List of Amazon Mechanical Turk Human Interface Tasks (HITs) in which this example appeared during validation. The values are anonymized but used consistently throughout the dataset.
* `'sentence'`: The example text.
* `'sentence_author'`:  Anonymized MTurk id of the worker who wrote `'sentence'`. These are from the same family of ids as used in `'label_distribution'`, but this id is never one of the ids in `'label_distribution'` for this example.
* `'has_prompt'`: `True` if the `'sentence'` was written with a Prompt else `False`.
* `'prompt_data'`: None if `'has_prompt'` is False, else:
  * `'indices_into_review_text'`: indices of `'prompt_sentence'` into the original review in the [Yelp Academic Dataset](https://www.yelp.com/dataset).
  * `'review_rating'`: review-level star-rating for the review containing `'sentence'` in the [Yelp Academic Dataset](https://www.yelp.com/dataset).
  * `'prompt_sentence'`: The prompt text.
  * `'review_id'`: review-level identifier for the review from the [Yelp Academic Dataset](https://www.yelp.com/dataset) containing `'prompt_sentence'`.
* `'model_1_label'`: prediction of Model 1 as described in the paper. The possible values are `'positive'`, `'negative'`, and '`neutral'`.
* `'model_1_probs'`: probability distribution predicted by Model 1. The keys are `('positive', 'negative', 'neutral')` and the values are floats.  
* `'text_id'`: unique identifier for this entry.
* `'label_distribution'`: response distribution from the MTurk validation task. The keys are  `('positive', 'negative', 'neutral')` and the values are lists of anonymized MTurk ids, which are used consistently throughout the dataset.
* `'gold_label'`: the label chosen by at least three of the five workers if there is one (possible values: `'positive'`, `'negative'`, '`neutral'`, and `'mixed'`), else `None`. 

To add the review texts to the `'prompt_data'` field, one can extend the code above for Round 1 with the following function:

```python
def add_review_text_round2(dataset, yelp_index):
    for d in dataset:
        if d['has_prompt']:
            prompt_data = d['prompt_data']
            review_text = yelp_index[prompt_data['review_id']]
            # Check that we can find the sentence as expected:
            start, end = prompt_data['indices_into_review_text']
            assert review_text[start: end] == prompt_data['prompt_sentence']
            prompt_data['review_text'] = review_text
    return dataset
```

### SST-dev format

```python
{'hit_ids': ['s20533'],
 'sentence': '-LRB- A -RRB- n utterly charming and hilarious film that reminded me of the best of the Disney comedies from the 60s.',
 'tree': '(4 (2 (1 -LRB-) (2 (2 A) (3 -RRB-))) (4 (4 (2 n) (4 (3 (2 utterly) (4 (3 (4 charming) (2 and)) (4 hilarious))) (3 (2 film) (3 (2 that) (4 (4 (2 (2 reminded) (3 me)) (4 (2 of) (4 (4 (2 the) (4 best)) (2 (2 of) (3 (2 the) (3 (3 Disney) (2 comedies))))))) (2 (2 from) (2 (2 the) (2 60s)))))))) (2 .)))',
 'text_id': 'sst-dev-validate-0000437',
 'sst_label': '4',
 'label_distribution': {'positive': ['w207', 'w3', 'w840', 'w135', 'w26'],
  'negative': [],
  'neutral': [],
  'mixed': []},
 'gold_label': 'positive'}
```

Details:

* `'hit_ids'`: List of Amazon Mechanical Turk Human Interface Tasks (HITs) in which this example appeared during validation. The values are anonymized but used consistently throughout the dataset.
* `'sentence'`: The example text.
* `'tree'`: The parsetree for the example as given in the SST distribution.
* `'text_id'`: A new identifier for this example.
* `'sst_label'`: The root-node label from the SST. Possible values `'0'`, `'1'` `'2'`, `'3'`, and `'4'`.
* `'label_distribution':` response distribution from the MTurk validation task. The keys are  `('positive', 'negative', 'neutral')` and the values are lists of anonymized MTurk ids, which are used consistently throughout the dataset.
* `'gold_label'`: the label chosen by at least three of the five workers if there is one (possible values: `'positive'`, `'negative'`, '`neutral'`, and `'mixed'`), else `None`.


## Models

Model 0 and Model 1 from the paper are available here:

https://drive.google.com/drive/folders/1dpKrjNJfAILUQcJPAFc5YOXUT51VEjKQ?usp=sharing

This repository includes a Python module `dynasent_models.py` that provides a [Hugging Face](https://huggingface.co)-based wrapper around these ([PyTorch](https://pytorch.org)) models. Simple examples:

```python
import os
from dynasent_models import DynaSentModel

# `dynasent_model0` should be downloaded from the above Google Drive link and 
# placed in the `models` directory. `dynasent_model1` works the same way.
model = DynaSentModel(os.path.join('models', 'dynasent_model0.bin'))

examples = [
    "superb",
    "They said the experience would be amazing, and they were right!",
    "They said the experience would be amazing, and they were wrong!"]

model.predict(examples)
```
This should return the list `['positive', 'positive', 'negative']`.

The `predict_proba` method provides access to the predicted distribution over the class labels; see the demo at the bottom of `dynasent_models.py` for details.

The following code uses `load_dataset` from above to reproduce the Round 2 dev-set report on Model 0 from the paper:

```python
import os
from sklearn.metrics import classification_report
from dynasent_models import DynaSentModel

dev_filename = os.path.join('dynasent-v1.1', 'dynasent-v1.1-round02-dynabench-dev.jsonl')

dev = load_dataset(dev_filename)

X_dev, y_dev = zip(*[(d['sentence'], d['gold_label']) for d in dev])

model = DynaSentModel(os.path.join('models', 'dynasent_model0.bin'))

preds = model.predict(X_dev)

print(classification_report(y_dev, preds, digits=3))
```
For a fuller report on these models, see our paper and [our model card](dynasent_modelcard.md).


## Other files


### Analysis notebooks

The following notebooks reproduce the dataset statistics, figures, and random example selections from the paper:

* `analyses_comparative.ipynb`
* `analysis_round1.ipynb`
* `analysis_round2.ipynb`
* `analysis_sst_dev_revalidate.ipynb`

The Python module `dynasent_utils.py` contains functions that support those notebooks, and `dynasent.mplstyle` helps with styling the plots.


### Datasheet

The [Datasheet](https://arxiv.org/abs/1803.09010) for our dataset:

* [dynasent_datasheet.md](dynasent_datasheet.md)


### Model Card

The [Model Card](https://arxiv.org/pdf/1810.03993.pdf) for our models:

* [dynasent_modelcard.md](dynasent_modelcard.md)


### Tests

The module `test_dataset.py` contains PyTest tests for the dataset. To use it, run

```
py.test -vv test_dataset.py
```

in the root directory of this repository.


### Validation HIT code

The file `validation-hit-contents.html` contains the HTML/Javascript used in the validation task. It could be used directly on Amazon Mechanical Turk, by simply pasting its contents into the usual HIT creation window.


## License

DynaSent has a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/).