File size: 13,731 Bytes
30bd47b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
# DynaSent: Dynamic Sentiment Analysis Dataset
DynaSent is an English-language benchmark task for ternary (positive/negative/neutral) sentiment analysis. This dataset card is forked from the original [DynaSent Repository](https://github.com/cgpotts/dynasent).
## Contents
* [Citation](#Citation)
* [Dataset files](#dataset-files)
* [Quick start](#quick-start)
* [Data format](#data-format)
* [Models](#models)
* [Other files](#other-files)
* [License](#license)
## Citation
[Christopher Potts](http://web.stanford.edu/~cgpotts/), [Zhengxuan Wu](http://zen-wu.social), Atticus Geiger, and [Douwe Kiela](https://douwekiela.github.io). 2020. [DynaSent: A dynamic benchmark for sentiment analysis](https://arxiv.org/abs/2012.15349). Ms., Stanford University and Facebook AI Research.
```stex
@article{potts-etal-2020-dynasent,
title={{DynaSent}: A Dynamic Benchmark for Sentiment Analysis},
author={Potts, Christopher and Wu, Zhengxuan and Geiger, Atticus and Kiela, Douwe},
journal={arXiv preprint arXiv:2012.15349},
url={https://arxiv.org/abs/2012.15349},
year={2020}}
```
## Dataset files
The dataset is [dynasent-v1.1.zip](dynasent-v1.1.zip), which is included in this repository. `v1.1` differs from `v1` only in that `v1.1` has proper unique ids for Round 1 and corrects a bug that led to some non-unique ids in Round 2. There are no changes to the examples or other metadata.
The dataset consists of two rounds, each with a train/dev/test split:
### Round 1: Naturally occurring sentences
* `dynasent-v1.1-round01-yelp-train.jsonl`
* `dynasent-v1.1-round01-yelp-dev.jsonl`
* `dynasent-v1.1-round01-yelp-test.jsonl`
### Round 1: Sentences crowdsourced using Dynabench
* `dynasent-v1.1-round02-dynabench-train.jsonl`
* `dynasent-v1.1-round02-dynabench-dev.jsonl`
* `dynasent-v1.1-round02-dynabench-test.jsonl`
### SST-dev revalidation
The dataset also contains a version of the [Stanford Sentiment Treebank](https://nlp.stanford.edu/sentiment/) dev set in our format with labels from our validation task:
* `sst-dev-validated.jsonl`
## Quick start
This function can be used to load any subset of the files:
```python
import json
def load_dataset(*src_filenames, labels=None):
data = []
for filename in src_filenames:
with open(filename) as f:
for line in f:
d = json.loads(line)
if labels is None or d['gold_label'] in labels:
data.append(d)
return data
```
For example, to create a Round 1 train set restricting to examples with ternary gold labels:
```python
import os
r1_train_filename = os.path.join('dynasent-v1.1', 'dynasent-v1.1-round01-yelp-train.jsonl')
ternary_labels = ('positive', 'negative', 'neutral')
r1_train = load_dataset(r1_train_filename, labels=ternary_labels)
X_train, y_train = zip(*[(d['sentence'], d['gold_label']) for d in r1_train])
```
## Data format
### Round 1 format
```python
{'hit_ids': ['y5238'],
'sentence': 'Roto-Rooter is always good when you need someone right away.',
'indices_into_review_text': [0, 60],
'model_0_label': 'positive',
'model_0_probs': {'negative': 0.01173639390617609,
'positive': 0.7473671436309814,
'neutral': 0.24089649319648743},
'text_id': 'r1-0000001',
'review_id': 'IDHkeGo-nxhqX4Exkdr08A',
'review_rating': 1,
'label_distribution': {'positive': ['w130', 'w186', 'w207', 'w264', 'w54'],
'negative': [],
'neutral': [],
'mixed': []},
'gold_label': 'positive'}
```
Details:
* `'hit_ids'`: List of Amazon Mechanical Turk Human Interface Tasks (HITs) in which this example appeared during validation. The values are anonymized but used consistently throughout the dataset.
* `'sentence'`: The example text.
* `'indices_into_review_text':` indices of `'sentence'` into the original review in the [Yelp Academic Dataset](https://www.yelp.com/dataset).
* `'model_0_label'`: prediction of Model 0 as described in the paper. The possible values are `'positive'`, `'negative'`, and `'neutral'`.
* `'model_0_probs'`: probability distribution predicted by Model 0. The keys are `('positive', 'negative', 'neutral')` and the values are floats.
* `'text_id'`: unique identifier for this entry.
* `'review_id'`: review-level identifier for the review from the [Yelp Academic Dataset](https://www.yelp.com/dataset) containing `'sentence'`.
* `'review_rating'`: review-level star-rating for the review containing `'sentence'` in the [Yelp Academic Dataset](https://www.yelp.com/dataset). The possible values are `1`, `2`, `3`, `4`, and `5`.
* `'label_distribution':` response distribution from the MTurk validation task. The keys are `('positive', 'negative', 'neutral')` and the values are lists of anonymized MTurk ids, which are used consistently throughout the dataset.
* `'gold_label'`: the label chosen by at least three of the five workers if there is one (possible values: `'positive'`, `'negative'`, '`neutral'`, and `'mixed'`), else `None`.
Here is some code one could use to augment a dataset, as loaded by `load_dataset`, with a field giving the full review text from the [Yelp Academic Dataset](https://www.yelp.com/dataset):
```python
import json
def index_yelp_reviews(yelp_src_filename='yelp_academic_dataset_review.json'):
index = {}
with open(yelp_src_filename) as f:
for line in f:
d = json.loads(line)
index[d['review_id']] = d['text']
return index
yelp_index = index_yelp_reviews()
def add_review_text_round1(dataset, yelp_index):
for d in dataset:
review_text = yelp_index[d['text_id']]
# Check that we can find the sentence as expected:
start, end = d['indices_into_review_text']
assert review_text[start: end] == d['sentence']
d['review_text'] = review_text
return dataset
```
### Round 2 format
```python
{'hit_ids': ['y22661'],
'sentence': "We enjoyed our first and last meal in Toronto at Bombay Palace, and I can't think of a better way to book our journey.",
'sentence_author': 'w250',
'has_prompt': True,
'prompt_data': {'indices_into_review_text': [2093, 2213],
'review_rating': 5,
'prompt_sentence': "Our first and last meals in Toronto were enjoyed at Bombay Palace and I can't think of a better way to bookend our trip.",
'review_id': 'Krm4kSIb06BDHternF4_pA'},
'model_1_label': 'positive',
'model_1_probs': {'negative': 0.29140257835388184,
'positive': 0.6788994669914246,
'neutral': 0.029697999358177185},
'text_id': 'r2-0000001',
'label_distribution': {'positive': ['w43', 'w26', 'w155', 'w23'],
'negative': [],
'neutral': [],
'mixed': ['w174']},
'gold_label': 'positive'}
```
Details:
* `'hit_ids'`: List of Amazon Mechanical Turk Human Interface Tasks (HITs) in which this example appeared during validation. The values are anonymized but used consistently throughout the dataset.
* `'sentence'`: The example text.
* `'sentence_author'`: Anonymized MTurk id of the worker who wrote `'sentence'`. These are from the same family of ids as used in `'label_distribution'`, but this id is never one of the ids in `'label_distribution'` for this example.
* `'has_prompt'`: `True` if the `'sentence'` was written with a Prompt else `False`.
* `'prompt_data'`: None if `'has_prompt'` is False, else:
* `'indices_into_review_text'`: indices of `'prompt_sentence'` into the original review in the [Yelp Academic Dataset](https://www.yelp.com/dataset).
* `'review_rating'`: review-level star-rating for the review containing `'sentence'` in the [Yelp Academic Dataset](https://www.yelp.com/dataset).
* `'prompt_sentence'`: The prompt text.
* `'review_id'`: review-level identifier for the review from the [Yelp Academic Dataset](https://www.yelp.com/dataset) containing `'prompt_sentence'`.
* `'model_1_label'`: prediction of Model 1 as described in the paper. The possible values are `'positive'`, `'negative'`, and '`neutral'`.
* `'model_1_probs'`: probability distribution predicted by Model 1. The keys are `('positive', 'negative', 'neutral')` and the values are floats.
* `'text_id'`: unique identifier for this entry.
* `'label_distribution'`: response distribution from the MTurk validation task. The keys are `('positive', 'negative', 'neutral')` and the values are lists of anonymized MTurk ids, which are used consistently throughout the dataset.
* `'gold_label'`: the label chosen by at least three of the five workers if there is one (possible values: `'positive'`, `'negative'`, '`neutral'`, and `'mixed'`), else `None`.
To add the review texts to the `'prompt_data'` field, one can extend the code above for Round 1 with the following function:
```python
def add_review_text_round2(dataset, yelp_index):
for d in dataset:
if d['has_prompt']:
prompt_data = d['prompt_data']
review_text = yelp_index[prompt_data['review_id']]
# Check that we can find the sentence as expected:
start, end = prompt_data['indices_into_review_text']
assert review_text[start: end] == prompt_data['prompt_sentence']
prompt_data['review_text'] = review_text
return dataset
```
### SST-dev format
```python
{'hit_ids': ['s20533'],
'sentence': '-LRB- A -RRB- n utterly charming and hilarious film that reminded me of the best of the Disney comedies from the 60s.',
'tree': '(4 (2 (1 -LRB-) (2 (2 A) (3 -RRB-))) (4 (4 (2 n) (4 (3 (2 utterly) (4 (3 (4 charming) (2 and)) (4 hilarious))) (3 (2 film) (3 (2 that) (4 (4 (2 (2 reminded) (3 me)) (4 (2 of) (4 (4 (2 the) (4 best)) (2 (2 of) (3 (2 the) (3 (3 Disney) (2 comedies))))))) (2 (2 from) (2 (2 the) (2 60s)))))))) (2 .)))',
'text_id': 'sst-dev-validate-0000437',
'sst_label': '4',
'label_distribution': {'positive': ['w207', 'w3', 'w840', 'w135', 'w26'],
'negative': [],
'neutral': [],
'mixed': []},
'gold_label': 'positive'}
```
Details:
* `'hit_ids'`: List of Amazon Mechanical Turk Human Interface Tasks (HITs) in which this example appeared during validation. The values are anonymized but used consistently throughout the dataset.
* `'sentence'`: The example text.
* `'tree'`: The parsetree for the example as given in the SST distribution.
* `'text_id'`: A new identifier for this example.
* `'sst_label'`: The root-node label from the SST. Possible values `'0'`, `'1'` `'2'`, `'3'`, and `'4'`.
* `'label_distribution':` response distribution from the MTurk validation task. The keys are `('positive', 'negative', 'neutral')` and the values are lists of anonymized MTurk ids, which are used consistently throughout the dataset.
* `'gold_label'`: the label chosen by at least three of the five workers if there is one (possible values: `'positive'`, `'negative'`, '`neutral'`, and `'mixed'`), else `None`.
## Models
Model 0 and Model 1 from the paper are available here:
https://drive.google.com/drive/folders/1dpKrjNJfAILUQcJPAFc5YOXUT51VEjKQ?usp=sharing
This repository includes a Python module `dynasent_models.py` that provides a [Hugging Face](https://huggingface.co)-based wrapper around these ([PyTorch](https://pytorch.org)) models. Simple examples:
```python
import os
from dynasent_models import DynaSentModel
# `dynasent_model0` should be downloaded from the above Google Drive link and
# placed in the `models` directory. `dynasent_model1` works the same way.
model = DynaSentModel(os.path.join('models', 'dynasent_model0.bin'))
examples = [
"superb",
"They said the experience would be amazing, and they were right!",
"They said the experience would be amazing, and they were wrong!"]
model.predict(examples)
```
This should return the list `['positive', 'positive', 'negative']`.
The `predict_proba` method provides access to the predicted distribution over the class labels; see the demo at the bottom of `dynasent_models.py` for details.
The following code uses `load_dataset` from above to reproduce the Round 2 dev-set report on Model 0 from the paper:
```python
import os
from sklearn.metrics import classification_report
from dynasent_models import DynaSentModel
dev_filename = os.path.join('dynasent-v1.1', 'dynasent-v1.1-round02-dynabench-dev.jsonl')
dev = load_dataset(dev_filename)
X_dev, y_dev = zip(*[(d['sentence'], d['gold_label']) for d in dev])
model = DynaSentModel(os.path.join('models', 'dynasent_model0.bin'))
preds = model.predict(X_dev)
print(classification_report(y_dev, preds, digits=3))
```
For a fuller report on these models, see our paper and [our model card](dynasent_modelcard.md).
## Other files
### Analysis notebooks
The following notebooks reproduce the dataset statistics, figures, and random example selections from the paper:
* `analyses_comparative.ipynb`
* `analysis_round1.ipynb`
* `analysis_round2.ipynb`
* `analysis_sst_dev_revalidate.ipynb`
The Python module `dynasent_utils.py` contains functions that support those notebooks, and `dynasent.mplstyle` helps with styling the plots.
### Datasheet
The [Datasheet](https://arxiv.org/abs/1803.09010) for our dataset:
* [dynasent_datasheet.md](dynasent_datasheet.md)
### Model Card
The [Model Card](https://arxiv.org/pdf/1810.03993.pdf) for our models:
* [dynasent_modelcard.md](dynasent_modelcard.md)
### Tests
The module `test_dataset.py` contains PyTest tests for the dataset. To use it, run
```
py.test -vv test_dataset.py
```
in the root directory of this repository.
### Validation HIT code
The file `validation-hit-contents.html` contains the HTML/Javascript used in the validation task. It could be used directly on Amazon Mechanical Turk, by simply pasting its contents into the usual HIT creation window.
## License
DynaSent has a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/). |