Datasets:
Commit
•
f8f30d5
1
Parent(s):
8b17c82
fix description, fix meeting id feature, fix urls dict structure
Browse files
ami.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# Copyright
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
@@ -12,19 +12,14 @@
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
"""
|
15 |
-
|
16 |
-
|
17 |
-
and
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h.
|
22 |
-
For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage,
|
23 |
-
and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand,
|
24 |
-
are re-processed by professional human transcribers to ensure high transcription quality.
|
25 |
"""
|
26 |
|
27 |
-
import csv
|
28 |
import os
|
29 |
|
30 |
import datasets
|
@@ -292,7 +287,7 @@ class AMI(datasets.GeneratorBasedBuilder):
|
|
292 |
def _info(self):
|
293 |
features = datasets.Features(
|
294 |
{
|
295 |
-
"
|
296 |
"audio_id": datasets.Value("string"),
|
297 |
"text": datasets.Value("string"),
|
298 |
"audio": datasets.Audio(sampling_rate=16_000),
|
@@ -315,9 +310,9 @@ class AMI(datasets.GeneratorBasedBuilder):
|
|
315 |
|
316 |
audio_archives_urls = {}
|
317 |
for split in splits:
|
318 |
-
audio_archives_urls[split] =
|
319 |
-
|
320 |
-
|
321 |
|
322 |
audio_archives = dl_manager.download(audio_archives_urls)
|
323 |
local_extracted_archives_paths = dl_manager.extract(audio_archives) if not dl_manager.is_streaming else {
|
@@ -331,8 +326,8 @@ class AMI(datasets.GeneratorBasedBuilder):
|
|
331 |
datasets.SplitGenerator(
|
332 |
name=datasets.Split.TRAIN,
|
333 |
gen_kwargs={
|
334 |
-
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["train"]
|
335 |
-
"local_extracted_archives_paths": local_extracted_archives_paths["train"]
|
336 |
"annotation": annotations["train"],
|
337 |
"split": "train"
|
338 |
},
|
@@ -340,8 +335,8 @@ class AMI(datasets.GeneratorBasedBuilder):
|
|
340 |
datasets.SplitGenerator(
|
341 |
name=datasets.Split.VALIDATION,
|
342 |
gen_kwargs={
|
343 |
-
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["dev"]
|
344 |
-
"local_extracted_archives_paths": local_extracted_archives_paths["dev"]
|
345 |
"annotation": annotations["dev"],
|
346 |
"split": "dev"
|
347 |
},
|
@@ -349,8 +344,8 @@ class AMI(datasets.GeneratorBasedBuilder):
|
|
349 |
datasets.SplitGenerator(
|
350 |
name=datasets.Split.TEST,
|
351 |
gen_kwargs={
|
352 |
-
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["eval"]
|
353 |
-
"local_extracted_archives_paths": local_extracted_archives_paths["eval"]
|
354 |
"annotation": annotations["eval"],
|
355 |
"split": "eval"
|
356 |
},
|
@@ -367,12 +362,12 @@ class AMI(datasets.GeneratorBasedBuilder):
|
|
367 |
line_items = line.strip().split()
|
368 |
_id = line_items[0]
|
369 |
text = " ".join(line_items[1:])
|
370 |
-
_,
|
371 |
audio_filename = "_".join([split, _id.lower()]) + ".wav"
|
372 |
|
373 |
transcriptions[audio_filename] = {
|
374 |
"audio_id": _id,
|
375 |
-
"
|
376 |
"text": text,
|
377 |
"begin_time": int(begin_time) / 100,
|
378 |
"end_time": int(end_time) / 100,
|
@@ -380,7 +375,7 @@ class AMI(datasets.GeneratorBasedBuilder):
|
|
380 |
"speaker_id": speaker_id,
|
381 |
}
|
382 |
|
383 |
-
features = ["
|
384 |
for archive, local_archive_path in zip(audio_archives, local_extracted_archives_paths):
|
385 |
for audio_path, audio_file in archive:
|
386 |
# audio_path is like 'EN2001a/train_ami_en2001a_h00_mee068_0414915_0415078.wav'
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
"""
|
15 |
+
The AMI Meeting Corpus consists of 100 hours of meeting recordings. The recordings use a range of signals
|
16 |
+
synchronized to a common timeline. These include close-talking and far-field microphones, individual and
|
17 |
+
room-view video cameras, and output from a slide projector and an electronic whiteboard. During the meetings,
|
18 |
+
the participants also have unsynchronized pens available to them that record what is written. The meetings
|
19 |
+
were recorded in English using three different rooms with different acoustic properties, and include mostly
|
20 |
+
non-native speakers.
|
|
|
|
|
|
|
|
|
21 |
"""
|
22 |
|
|
|
23 |
import os
|
24 |
|
25 |
import datasets
|
|
|
287 |
def _info(self):
|
288 |
features = datasets.Features(
|
289 |
{
|
290 |
+
"meeting_id": datasets.Value("string"),
|
291 |
"audio_id": datasets.Value("string"),
|
292 |
"text": datasets.Value("string"),
|
293 |
"audio": datasets.Audio(sampling_rate=16_000),
|
|
|
310 |
|
311 |
audio_archives_urls = {}
|
312 |
for split in splits:
|
313 |
+
audio_archives_urls[split] = [
|
314 |
+
_AUDIO_ARCHIVE_URL.format(subset=self.config.name, split=split, _id=m) for m in _SAMPLE_IDS[split]
|
315 |
+
]
|
316 |
|
317 |
audio_archives = dl_manager.download(audio_archives_urls)
|
318 |
local_extracted_archives_paths = dl_manager.extract(audio_archives) if not dl_manager.is_streaming else {
|
|
|
326 |
datasets.SplitGenerator(
|
327 |
name=datasets.Split.TRAIN,
|
328 |
gen_kwargs={
|
329 |
+
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["train"]],
|
330 |
+
"local_extracted_archives_paths": local_extracted_archives_paths["train"],
|
331 |
"annotation": annotations["train"],
|
332 |
"split": "train"
|
333 |
},
|
|
|
335 |
datasets.SplitGenerator(
|
336 |
name=datasets.Split.VALIDATION,
|
337 |
gen_kwargs={
|
338 |
+
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["dev"]],
|
339 |
+
"local_extracted_archives_paths": local_extracted_archives_paths["dev"],
|
340 |
"annotation": annotations["dev"],
|
341 |
"split": "dev"
|
342 |
},
|
|
|
344 |
datasets.SplitGenerator(
|
345 |
name=datasets.Split.TEST,
|
346 |
gen_kwargs={
|
347 |
+
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["eval"]],
|
348 |
+
"local_extracted_archives_paths": local_extracted_archives_paths["eval"],
|
349 |
"annotation": annotations["eval"],
|
350 |
"split": "eval"
|
351 |
},
|
|
|
362 |
line_items = line.strip().split()
|
363 |
_id = line_items[0]
|
364 |
text = " ".join(line_items[1:])
|
365 |
+
_, meeting_id, microphone_id, speaker_id, begin_time, end_time = _id.split("_")
|
366 |
audio_filename = "_".join([split, _id.lower()]) + ".wav"
|
367 |
|
368 |
transcriptions[audio_filename] = {
|
369 |
"audio_id": _id,
|
370 |
+
"meeting_id": meeting_id,
|
371 |
"text": text,
|
372 |
"begin_time": int(begin_time) / 100,
|
373 |
"end_time": int(end_time) / 100,
|
|
|
375 |
"speaker_id": speaker_id,
|
376 |
}
|
377 |
|
378 |
+
features = ["meeting_id", "audio_id", "text", "begin_time", "end_time", "microphone_id", "speaker_id"]
|
379 |
for archive, local_archive_path in zip(audio_archives, local_extracted_archives_paths):
|
380 |
for audio_path, audio_file in archive:
|
381 |
# audio_path is like 'EN2001a/train_ami_en2001a_h00_mee068_0414915_0415078.wav'
|