Datasets:
File size: 15,309 Bytes
c8dd0c7 9342ffe b1ed64a c8dd0c7 9928d5e 3b9973a c010856 db44f3c 7758e0d 711677a 7d47fce c8dd0c7 9342ffe b1ed64a c8dd0c7 9928d5e 3b9973a c010856 db44f3c 7758e0d 711677a 7d47fce e2fd3a2 01a5184 c8dd0c7 bc7a58a cbda908 bc7a58a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
---
dataset_info:
- config_name: acordaos_tcu
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: meta
struct:
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
splits:
- name: train
num_bytes: 2543994549.48221
num_examples: 462031
download_size: 1566036137
dataset_size: 2543994549.48221
- config_name: datastf
features:
- name: text
dtype: string
- name: meta
struct:
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
- name: id
dtype: int64
splits:
- name: train
num_bytes: 1555024472.2888384
num_examples: 310119
download_size: 853863429
dataset_size: 1555024472.2888384
- config_name: iudicium_textum
features:
- name: text
dtype: string
- name: meta
struct:
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
- name: id
dtype: int64
splits:
- name: train
num_bytes: 692805629.2689289
num_examples: 153373
download_size: 372281973
dataset_size: 692805629.2689289
- config_name: mlp_pt_BRCAD-5
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: meta
struct:
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
splits:
- name: train
num_bytes: 3523570990.7531776
num_examples: 542680
download_size: 1883985787
dataset_size: 3523570990.7531776
- config_name: mlp_pt_CJPG
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: meta
struct:
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
splits:
- name: train
num_bytes: 28122511051.563988
num_examples: 6260096
download_size: 19944599978
dataset_size: 28122511051.563988
- config_name: mlp_pt_eurlex-caselaw
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: meta
struct:
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
splits:
- name: train
num_bytes: 1134175020.033026
num_examples: 78893
download_size: 609610934
dataset_size: 1134175020.033026
- config_name: mlp_pt_eurlex-contracts
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: meta
struct:
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
splits:
- name: train
num_bytes: 343350961.1607806
num_examples: 8511
download_size: 99128584
dataset_size: 343350961.1607806
- config_name: mlp_pt_eurlex-legislation
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: meta
struct:
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
splits:
- name: train
num_bytes: 2316503707.9080825
num_examples: 95024
download_size: 1051142246
dataset_size: 2316503707.9080825
- config_name: mlp_pt_legal-mc4
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: meta
struct:
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
splits:
- name: train
num_bytes: 4400930935.870118
num_examples: 187637
download_size: 2206590934
dataset_size: 4400930935.870118
- config_name: parlamento-pt
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: meta
struct:
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
splits:
- name: train
num_bytes: 2265120232.5456176
num_examples: 2109931
download_size: 1189159296
dataset_size: 2265120232.5456176
configs:
- config_name: acordaos_tcu
data_files:
- split: train
path: acordaos_tcu/train-*
- config_name: datastf
data_files:
- split: train
path: datastf/train-*
- config_name: iudicium_textum
data_files:
- split: train
path: iudicium_textum/train-*
- config_name: mlp_pt_BRCAD-5
data_files:
- split: train
path: mlp_pt_BRCAD-5/train-*
- config_name: mlp_pt_CJPG
data_files:
- split: train
path: mlp_pt_CJPG/train-*
- config_name: mlp_pt_eurlex-caselaw
data_files:
- split: train
path: mlp_pt_eurlex-caselaw/train-*
- config_name: mlp_pt_eurlex-contracts
data_files:
- split: train
path: mlp_pt_eurlex-contracts/train-*
- config_name: mlp_pt_eurlex-legislation
data_files:
- split: train
path: mlp_pt_eurlex-legislation/train-*
- config_name: mlp_pt_legal-mc4
data_files:
- split: train
path: mlp_pt_legal-mc4/train-*
- config_name: parlamento-pt
data_files:
- split: train
path: parlamento-pt/train-*
license: cc-by-4.0
language:
- pt
tags:
- legal
pretty_name: LegalPT (deduplicated)
size_categories:
- 10M<n<100M
---
# LegalPT (deduplicated)
LegalPT aggregates the maximum amount of publicly available legal data in Portuguese, drawing from varied sources including legislation, jurisprudence, legal articles, and government documents.
This version is deduplicated using [MinHash algorithm](https://dl.acm.org/doi/abs/10.5555/647819.736184) and [Locality Sensitive Hashing](https://dspace.mit.edu/bitstream/handle/1721.1/134231/v008a014.pdf?sequence=2&isAllowed=y), following the approach of [Lee et al. (2022)](http://arxiv.org/abs/2107.06499).
The raw version is also available [here](https://huggingface.co/datasets/eduagarcia/LegalPT).
## Dataset Details
Dataset is composed by six corpora:
[Ulysses-Tesemõ](https:github.com/ulysses-camara/ulysses-tesemo), [MultiLegalPile (PT)](https://arxiv.org/abs/2306.02069v2), [ParlamentoPT](http://arxiv.org/abs/2305.06721),
[Iudicium Textum](https://www.inf.ufpr.br/didonet/articles/2019_dsw_Iudicium_Textum_Dataset.pdf), [Acordãos TCU](https://link.springer.com/chapter/10.1007/978-3-030-61377-8_46), and
[DataSTF](https://legalhackersnatal.wordpress.com/2019/05/09/mais-dados-juridicos/).
- **MultiLegalPile**: a multilingual corpus of legal texts comprising 689 GiB of data, covering 24 languages in 17 jurisdictions. The corpus is separated by language, and the subset in Portuguese contains 92GiB of data, containing 13.76 billion words. This subset includes the jurisprudence of the Court of Justice of São Paulo (CJPG), appeals from the [5th Regional Federal Court (BRCAD-5)](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272287), the Portuguese subset of legal documents from the European Union, known as [EUR-Lex](https://eur-lex.europa.eu/homepage.html), and a filter for legal documents from [MC4](http://arxiv.org/abs/2010.11934).
- **Ulysses-Tesemõ**: a legal corpus in Brazilian Portuguese, composed of 2.2 million documents, totaling about 26GiB of text obtained from 96 different data sources. These sources encompass legal, legislative, academic papers, news, and related comments. The data was collected through web scraping of government websites.
- **ParlamentoPT**: a corpus for training language models in European Portuguese. The data was collected from the Portuguese government portal and consists of 2.6 million documents of transcriptions of debates in the Portuguese Parliament.
- **Iudicium Textum**: consists of rulings, votes, and reports from the Supreme Federal Court (STF) of Brazil, published between 2010 and 2018. The dataset contains 1GiB of data extracted from PDFs.
- **Acordãos TCU**: an open dataset from the Tribunal de Contas da União (Brazilian Federal Court of Accounts), containing 600,000 documents obtained by web scraping government websites. The documents span from 1992 to 2019.
- **DataSTF**: a dataset of monocratic decisions from the Superior Court of Justice (STJ) in Brazil, containing 700,000 documents (5GiB of data).
### Dataset Description
- **Language(s) (NLP):** Brazilian Portuguese (pt-BR)
- **License:** [Creative Commons Attribution 4.0 International Public License](https://creativecommons.org/licenses/by/4.0/deed.en)
- **Repository:** https://github.com/eduagarcia/roberta-legal-portuguese
- **Paper:** [More Information Needed]
## Data Collection and Processing
LegalPT is deduplicated using [MinHash algorithm](https://dl.acm.org/doi/abs/10.5555/647819.736184) and [Locality Sensitive Hashing](https://dspace.mit.edu/bitstream/handle/1721.1/134231/v008a014.pdf?sequence=2&isAllowed=y), following the approach of [Lee et al. (2022)](http://arxiv.org/abs/2107.06499).
We used 5-grams and a signature of size 256, considering two documents to be identical if their Jaccard Similarity exceeded 0.7.
Duplicate rate found by the Minhash-LSH algorithm for the LegalPT corpus:
| **Corpus** | **Documents** | **Docs. after deduplication** | **Duplicates (%)** |
|--------------------------|:--------------:|:-----------------------------:|:------------------:|
| Ulysses-Tesemõ | 2,216,656 | 1,737,720 | 21.61 |
| MultiLegalPile (PT) | | | |
| CJPG | 14,068,634 | 6,260,096 | 55.50 |
| BRCAD-5 | 3,128,292 | 542,680 | 82.65 |
| EUR-Lex (Caselaw) | 104,312 | 78,893 | 24.37 |
| EUR-Lex (Contracts) | 11,581 | 8,511 | 26.51 |
| EUR-Lex (Legislation) | 232,556 | 95,024 | 59.14 |
| Legal MC4 | 191,174 | 187,637 | 1.85 |
| ParlamentoPT | 2,670,846 | 2,109,931 | 21.00 |
| Iudicium Textum | 198,387 | 153,373 | 22.69 |
| Acordãos TCU | 634,711 | 462,031 | 27.21 |
| DataSTF | 737,769 | 310,119 | 57.97 |
| **Total (LegalPT)** | **24,194,918** | **11,946,015** | **50.63** |
## Citation
```bibtex
@InProceedings{garcia2024_roberlexpt,
author="Garcia, Eduardo A. S.
and Silva, N{\'a}dia F. F.
and Siqueira, Felipe
and Gomes, Juliana R. S.
and Albuqueruqe, Hidelberg O.
and Souza, Ellen
and Lima, Eliomar
and De Carvalho, André",
title="RoBERTaLexPT: A Legal RoBERTa Model pretrained with deduplication for Portuguese",
booktitle="Computational Processing of the Portuguese Language",
year="2024",
publisher="Association for Computational Linguistics"
}
```
## Acknowledgment
This work has been supported by the AI Center of Excellence (Centro de Excelência em Inteligência Artificial – CEIA) of the Institute of Informatics at the Federal University of Goiás (INF-UFG). |